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Our Goals

This text is designed for college students who aspire to take calculus and who either need to
take a course to prepare them for calculus or want to do some additional self-study. Many of
the core topics of the course will be familiar to students who have completed high school. At
the same time, we take a perspective on every topic that emphasizes how it is important in
calculus. This text is written in the spirit of Active Calculus and is especially ideal for students
who will eventually study calculus from that text. The reader will find that the text requires
them to engage actively with the material, to view topics from multiple perspectives, and to
develop deep conceptual undersanding of ideas.

Many courses at the high school and college level with titles such as “college algebra”, “pre-
calculus”, and “trigonometry” serve other disciplines and courses other than calculus. As
such, these prerequisite classes frequently contain wide-ranging material that, while math-
ematically interesting and important, isn’t necessary for calculus. Perhaps because of these
additional topics, certain ideas that are essential in calculus are under-emphasized or ig-
nored. In Active Prelude to Calculus, one of our top goals is to keep the focus narrow on the
following most important ideas.

• Functions as processes. The mathematical concept of function is sophisticated. Under-
standing how a function is a special mathematical process that converts a collection
of inputs to a collection of outputs is crucial for success in calculus, as calculus is the
study of how functions change.

• Average rate of change. The central idea in differential calculus is the instantaneous rate
of change of a function, which measures how fast a function’s output changes with
respect to changes in the input at a particular location. Because instantaneous rate of
change is defined in terms of average rate of change, it’s essential that students are
comfortable and familiar with the idea, meaning, and applications of average rate of
change.

• Library of basic functions. The vast majority of functions in calculus come from an al-
gebraic combination of a collection of familiar basic functions that include power, cir-
cular, exponential, and logarithmic functions. By developing understanding of a rel-
atively small family of basic functions and using these along with transformations to
consider larger collections of functions, wework tomake the central objects of calculus
more intuitive and accessible.

• Families of functions that model important phenomena. Mathematics is the language of
science, and it’s remarkable how effective mathematics is at representing observable

https://activecalculus.org/single/


physical phenomena. From quadratic functions that model how an object falls under
the influence of gravity, to shifted exponential functions that model how coffee cools,
to sinusoidal functions that model how a spring-mass system oscillates, familiar basic
functions find many important applications in the world around us. We regularly use
these physical situations to help us see the importance of functions and to understand
how families of functions that depend on different parameters are needed to represent
these situations.

• The sine and cosine are circular functions. Many students are first introduced to the sine
and cosine functions through right triangles. While this perspective is important, it is
more important in calculus and other advanced courses to understand how the sine
and cosine functions arise from a point traversing a circle. We take this circular func-
tion perspective early and first, and do so in order to develop deep understanding of
how the familiar sine and cosine waves are generated.

• Inverses of functions. When a function has an inverse function, the inverse function
affords us the opportunity to view an idea from a new perspective. Inverses also play
a crucial role in solving algebraic equations and in determining unknown parameters
in models. We emphasize the perspective that an inverse function is a process that
reverses the process of the original function, as well as important basic functions that
arise as inverses of other functions, especially logarithms and inverse trigonometric
functions.

• Exact values versus approximate ones. The ability to represent numbers exactly is a pow-
erful tool in mathematics. We regularly and consistently distinguish between a num-
ber’s exact value, such as

√
2, and its approximation, say 1.414. This idea is also closely

tied to functions and function notation: e−1, cos(2), and ln(7) are all symbolic repre-
sentations of exact numbers that can only be approximated by a computer.

• Finding function formulas in applied settings. In applied settingswith unknownvariables,
it’s especially useful to be able to represent relationships among variables, since such
relationships often lead to functions whose behavior we can study. We work through-
out Active Prelude to Calculus to ready students for problems in calculus that ask them
to develop function formulas by observing relationships.

• Long-term trends, unbounded behavior, and limits. By working to study functions as ob-
jects themselves, we often focus on trends and overall behavior. In addition to intro-
ducing the ideas of a function being increasing or decreasing, or concave up or concave
down, we also focus on using algebraic approaces to comprehend function behavior
where the input and/or output increase without bound. In anticipation of calculus,
we use limit notation and work to understand how this shorthand summarizes key
features of functions.

x



Features of the Text

Instructors and students alike will find several consistent features in the presentation, in-
cluding:

Motivating Questions At the start of each section, we list 2–3 motivating questions that pro-
vide motivation for why the following material is of interest to us. One goal of each
section is to answer each of the motivating questions.

Preview Activities Each section of the text begins with a short introduction, followed by a
preview activity. This brief reading and preview activity are designed to foreshadow
the upcoming ideas in the remainder of the section; both the reading and preview
activity are intended to be accessible to students in advance of class, and indeed to be
completed by students before the particular section is to be considered in class.

Activities A typical section in the text has at least three activities. These are designed to
engage students in an inquiry-based style that encourages them to construct solutions
to key examples on their own, working in small groups or individually.

Exercises There are dozens of college algebra and trignometry texts with (collectively) tens
of thousands of exercises. Rather than repeat standard and routine exercises in this
text, we recommend the use of WeBWorK with its access to the Open Problem Library
(OPL) and many thousands of relevant problems. In this text, each section includes
a small collection of anonymous WeBWorK exercises that offer students immediate
feedback without penalty, as well as 3–4 additional challenging exercises per section.
Each of the non-WeBWorK exercises hasmultiple parts, requires the student to connect
several key ideas, and expects that the student will do at least a modest amount of
writing to answer the questions and explain their findings.

Graphics As much as possible, we strive to demonstrate key fundamental ideas visually,
and to encourage students to do the same. Throughout the text, we use full-color¹
graphics to exemplify and magnify key ideas, and to use this graphical perspective
alongside both numerical and algebraic representations of calculus.

Interactive graphics Many of the ideas of how functions behave are best understood dy-
namically; applets offer an often ideal format for investigations and demonstrations.
Desmos provides a free and easy-to-use online graphing utility that we occasionally

¹To keep cost low, the graphics in the print-on-demand version are in black andwhite. When the text itself refers
to color in images, one needs to view the .html or .pdf electronically.



link to and often direct students to use. Thanks to David Austin, there are also select
interactive javascript figures within the text itself.

Summary of Key Ideas Each section concludes with a summary of the key ideas encoun-
tered in the preceding section; this summary normally reflects responses to the moti-
vating questions that began the section.

xii



Students! Read this!

This book is different.

The text is available in three different formats: HTML, PDF, and print, each of which is
available via links on the landing page at https://activecalculus.org/. The first two formats
are free. If you are going to use the book electronically, the best mode is the HTML. The
HTML version looks great in any browser, including on a smartphone, and the links are
much easier to navigate in HTML than in PDF. Some particular direct suggestions about
using the HTML follow among the next few paragraphs; alternatively, you can watch this
short video from the author (based on using the text Active Calculus, which is similar). It is
also wise to download and save the PDF, since you can use the PDF offline, while the HTML
version requires an internet connection. An inexpensive print copy is available on Amazon.

This book is intended to be read sequentially and engaged with, much more than to be used
as a lookup reference. For example, each section begins with a short introduction and a
PreviewActivity; you should read the short introduction and complete the PreviewActivity
prior to class. Your instructor may require you to do this. Most Preview Activities can be
completed in 15-20 minutes and are intended to be accessible based on the understanding
you have from preceding sections.

As you use the book, think of it as a workbook, not a worked-book. There is a great deal
of scholarship that shows people learn better when they interactively engage and struggle
with ideas themselves, rather than passively watch others. Thus, instead of reading worked
examples or watching an instructor complete examples, you will engage with Activities that
prompt you to grapple with concepts and develop deep understanding. You should expect
to spend time in class working with peers on Activities and getting feedback from them and
from your instructor. You can ask your instructor for a copy of the PDF file that has only the
activities alongwith room to record your work. Your goal should be to do all of the activities
in the relevant sections of the text and keep a careful record of your work.

Each section concludes with a Summary. Reading the Summary after you have read the
section and worked the Activities is a good way to find a short list of key ideas that are most
essential to take from the section. A good study habit is to write similar summaries in your
own words.

At the end of each section, you’ll find two types of Exercises. First, there are several anony-
mous WeBWorK exercises. These are online, interactive exercises that allow you to submit
answers for immediate feedback with unlimited attempts without penalty; to submit an-
swers, you have to be using the HTML version of the text (see this short video on the HTML

https://activecalculus.org/
https://activecalculus.org/prelude/
http://gvsu.edu/s/14i
http://gvsu.edu/s/14i
http://gvsu.edu/s/15y
http://gvsu.edu/s/14i
http://gvsu.edu/s/14i


version that includes a WeBWorK demonstration). You should use these exercises as a way
to test your understanding of basic ideas in the preceding section. If your institution uses
WeBWorK, youmay also need to log in to a server as directed by your instructor to complete
assigned WeBWorK sets as part of your course grade. The WeBWorK exercises included
in this text are ungraded and not connected to any individual account. Following the WeB-
WorK exercises there are 3-4 additional challenging exercises that are designed to encourage
you to connect ideas, investigate new situations, and write about your understanding.

The best way to be successful in mathematics generally and calculus specifically is to strive
to make sense of the main ideas. We make sense of ideas by asking questions, interacting
with others, attempting to solve problems, making mistakes, revising attempts, and writing
and speaking about our understanding. This text has been designed to help youmake sense
of key ideas that are needed in calculus and to help you be well-prepared for success in
calculus; wewish you the very best as you undertake the large and challenging task of doing
so.

xiv
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Instructors! Read this!

This book is different. Before you read further, first read “Students! Read this!” as well as
“Our Goals”.

Among the three formats (HTML, PDF, print), the HTML is optimal for display in class if
you have a suitable projector. The HTML is also best for navigation, as links to internal and
external references are much more obvious. We recommend saving a downloaded version
of the PDF format as a backup in the event you don’t have internet access. It’s a good idea for
each student to have a printed version of theActivitiesWorkbook, which you can acquire as a
PDF document by direct request to the author (boelkinm at gvsu dot edu); many instructors
use the PDF to have coursepacks printed for students to purchase from their local bookstore.

The text is written so that, on average, one section corresponds to two hours of class meet-
ing time. A typical instructional sequence when starting a new section might look like the
following:

• Students complete a Preview Activity in advance of class. Class begins with a short
debrief among peers followed by all class discussion. (5-10 minutes)

• Brief lecture and discussion to build on the preview activity and set the stage for the
next activity. (5-10 minutes)�

• Students engage with peers to work on and discuss the first activity in the section.
(15-20 minutes)�

• Brief discussion and possibly lecture to reach closure on the preceding activity, fol-
lowed by transition to new ideas. (Varies, but 5-15 minutes)

• Possibly begin next activity.

The next hour of class would be similar, but without the Preview Activity to complete prior
to class: the principal focus of class will be completing 2 activities. Then rinse and repeat.

We recommend that instructors use appropriate incentives to encourage students to com-
plete Preview Activities prior to class. Having these be part of completion-based assign-
ments that count 5% of the semester grade usually results in the vast majority of students
completing the vast majority of the previews. If you’d like to see a sample syllabus for how
to organize a course and weight various assignments, you can request one via email to the
author.



Note that the WeBWorK exercises in the HTML version are anonymous and there’s not a
way to track students’ engagement with them. These are intended to be formative for stu-
dents and provide them with immediate feedback without penalty. If your institution is
a WeBWorK user, in the near future we will have sets of .def files that correspond to the
sections in the text; these will be available upon request to the author.

The PreTeXt source code for the text can be found on GitHub. If you find errors in the text or
have other suggestions, you can file an issue on GitHub or email the author directly. To en-
gagewith instructorswho use the text, wemaintain both an email list and theOpenCalculus
blog; you can request that your address be added to the email list by contacting the author.
Finally, if you’re interested in a video presentation on using the similar Active Calculus text,
you can see this online video presentation to the MIT Electronic Seminar on Mathematics
Education; at about the 17-minute mark, the portion begins where we demonstrate features
of and how to use the text.

Thank you for considering Active Prelude to Calculus as a resource to help your students
develop deep understanding of the subject. I wish you the very best in your work and hope
to hear from you.

xvi
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CHAPTER 1
Relating Changing Quantities

1.1 Changing in Tandem

Motivating Questions

• If we have two quantities that are changing in tandem, how canwe connect the quan-
tities and understand how change in one affects the other?

• When the amount of water in a tank is changing, what behaviors can we observe?

Mathematics is the art of making sense of patterns. One way that patterns arise is when
two quantities are changing in tandem. In this setting, we may make sense of the situation
by expressing the relationship between the changing quantities through words, through
images, through data, or through a formula.

Preview Activity 1.1.1. Suppose that a rectangular aquarium is being filled with wa-
ter. The tank is 4 feet long by 2 feet wide by 3 feet high, and the hose that is filling the
tank is delivering water at a rate of 0.5 cubic feet per minute.

3

4

2

Figure 1.1.1: The empty aquarium.

3

4

2

Figure 1.1.2: The aquarium, partially
filled.

a. What are some different quantities that are changing in this scenario?

b. After 1 minute has elapsed, how much water is in the tank? At this moment,



Chapter 1 Relating Changing Quantities

how deep is the water?

c. Howmuchwater is in the tank and howdeep is thewater after 2 minutes? After
3 minutes?

d. How long will it take for the tank to be completely full? Why?

1.1.1 Using Graphs to Represent Relationships

In PreviewActivity 1.1.1, we saw how several changing quantities were related in the setting
of an aquariumfillingwithwater: time, the depth of thewater, and the total amount ofwater
in the tank are all changing, and any pair of these quantities changes in related ways. One
way that we can make sense of the situation is to record some data in a table. For instance,
observing that the tank is filling at a rate of 0.5 cubic feet per minute, this tells us that after
1 minute there will be 0.5 cubic feet of water in the tank, and after 2 minutes there will be
1 cubic foot of water in the tank, and so on. If we let t denote the time in minutes and V
the amount of water in the tank at time t, we can represent the relationship between these
quantities through Table 1.1.3.

t V
0 0.0
1 0.5
2 1.0
3 1.5
4 2.0
5 2.5

Table 1.1.3: Data for how the volume ofwa-
ter in the tank changes with time. 1 3 5

1

3

5

t

V (cubic feet)

Figure 1.1.4: A visual representation of the
data in Table 1.1.3.

We can also represent this data in a graph by plotting ordered pairs (t ,V) on a system of
coordinate axes, where t represents the horizontal distance of the point from the origin,
(0, 0), and V represents the vertical distance from (0, 0). The visual representation of the
table of values from Table 1.1.3 is seen in the graph in Figure 1.1.4.

Sometimes it is possible to use variables and one or more equations to connect quantities
that are changing in tandem. In the aquarium example from the preview activity, we can
observe that the volume, V , of a rectangular box that has length l, width w, and height h is

2



1.1 Changing in Tandem

given by
V � l · w · h,

and thus, since the water in the tank will always have length l � 4 feet and width w � 2 feet,
the volume of water in the tank is directly related to the depth of water in the tank by the
equation

V � 4 · 2 · h � 8h.

Depending on which variable we solve for, we can either see how V depends on h through
the equation V � 8h, or how h depends on V via the equation h �

1
8 V . From either perspec-

tive, we observe that as depth or volume increases, so must volume or depth correspond-
ingly increase.

Activity 1.1.2. Consider a tank in the shape of an inverted circular cone (point down)
where the tank’s radius is 2 feet and its depth is 4 feet. Suppose that the tank is being
filled with water that is entering at a constant rate of 0.75 cubic feet per minute.

a. Sketch a labeled picture of the tank, including a snapshot of there being water
in the tank prior to the tank being completely full.

b. What are some quantities that are changing in this scenario? What are some
quantities that are not changing?

c. Fill in the following table of values to determine how much water, V , is in the
tank at a given time in minutes, t, and thus generate a graph of the relationship
between volume and time by plotting the data on the provided axes.

t V
0
1
2
3
4
5

Table 1.1.5: Table to record data on vol-
ume and time in the conical tank.

V

t

Figure 1.1.6: How volume and time
change in tandem in the conical tank.

d. Finally, think about how the height of the water changes in tandem with time.
Without attempting to determine specific values of h at particular values of t,
how would you expect the data for the relationship between h and t to appear?
Use the provided axes to sketch at least two possibilities; write at least one sen-
tence to explain how you think the graph should appear.

3



Chapter 1 Relating Changing Quantities

h

t

h

t

1.1.2 Using Algebra to Add Perspective

One of the ways that we make sense of mathematical ideas is to view them from multi-
ple perspectives. We may use different means to establish different points of view: words,
numerical data, graphs, or symbols. In addition, sometimes by changing our perspective
within a particular approach we gain deeper insight.

2

4

Figure 1.1.7: The empty conical tank.

r

h

2

4

Figure 1.1.8: The conical tank, partially filled.
If we consider the conical tank discussed in Activity 1.1.2, as seen in Figure 1.1.7 and Fig-
ure 1.1.8, we can use algebra to better understand some of the relationships among changing
quantities. The volume of a cone with radius r and height h is given by the formula

V �
1
3πr2h.

Note that at any time while the tank is being filled, r (the radius of the surface of the water),
h (the depth of the water), and V (the volume of the water) are all changing; moreover, all

4



1.1 Changing in Tandem

are connected to one another. Because of the constraints of the tank itself (with radius 2 feet
and depth 4 feet), it follows that as the radius and height of the water change, they always
do so in the proportion

r
h
�

2
4 .

Solving this last equation for r, we see that r �
1
2 h; substituting this most recent result in the

equation for volume, it follows that

V �
1
3π

(
1
2 h

)2

h �
π
12 h3.

This most recent equation helps us understand how V and h change in tandem. We know
from our earlier work that the volume of water in the tank increases at a constant rate of 0.75
cubic feet per minute. This leads to the data shown in Table 1.1.9.

t 0 1 2 3 4 5
V 0.0 0.75 1.5 2.25 3.0 3.75

Table 1.1.9: How time and volume change in tandem in a conical tank.

With the equation V �
π
12 h3, we can now also see how the height of the water changes in

tandem with time. Solving the equation for h, note that h3 �
12
π V , and therefore

h �
3

√
12
π

V . (1.1.1)

Thus, when V � 0.75, it follows that h �
3
√

12
π 0.75 ≈ 1.42. Executing similar computations

with the other values ofV in Table 1.1.9, we get the followingupdated data that now includes
h.

t 0 1 2 3 4 5
V 0.0 0.75 1.5 2.25 3.0 3.75
h 0.0 1.42 1.79 2.05 2.25 2.43

Table 1.1.10: How time, volume, and height change in concert in a conical tank.

Plotting this data on two different sets of axes, we see the different ways that V and h change
with t. Whereas volume increases at a constant rate, as seen by the straight line appearance
of the points in Figure 1.1.11, we observe that the water’s height increases in a way that
it rises more slowly as time goes on, as shown by the way the curve the points lie on in
Figure 1.1.12 “bends down” as time passes.
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1 3 5

1

3

5

t

V (cubic feet)

Figure 1.1.11: Plotting V versus t.

1 3 5

1

3

5

t

h (feet)

Figure 1.1.12: Plotting h versus t.
These different behaviors make sense because of the shape of the tank. Since at first there is
less volume relative to depth near the cone’s point, as water flows in at a constant rate, the
water’s height will rise quickly. But as time goes on and more water is added at the same
rate, there is more space for the water to fill in order to make the water level rise, and thus
the water’s heigh rises more and more slowly as time passes.

Activity 1.1.3. Consider a tank in the shape of a sphere where the tank’s radius is 3
feet. Suppose that the tank is initially completely full and that it is being drained by
a pump at a constant rate of 1.2 cubic feet per minute.

a. Sketch a labeled picture of the tank, including a snapshot of somewater remain-
ing in the tank prior to the tank being completely empty.

b. What are some quantities that are changing in this scenario? What are some
quantities that are not changing?

c. Recall that the volume of a sphere of radius r is V �
4
3πr3. When the tank is

completely full at time t � 0 right before it starts being drained, howmuchwater
is present?

d. How long will it take for the tank to drain completely?

e. Fill in the following table of values to determine how much water, V , is in the
tank at a given time in minutes, t, and thus generate a graph of the relationship
between volume and time. Write a sentence to explain why the data’s graph
appears the way that it does.
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t V
0
20
40
60
80
94.24

Table 1.1.13: Data for how volume and
time change together.

20 60 100

20

60

100

t

V (cubic feet)

Figure 1.1.14: A plot of how volume
and time change in tandem in a
draining spherical tank.

f. Finally, think about how the height of the water changes in tandem with time.
What is the height of the water when t � 0? What is the height when the tank
is empty? How would you expect the data for the relationship between h and
t to appear? Use the provided axes to sketch at least two possibilities; write at
least one sentence to explain how you think the graph should appear.

h

t

h

t

1.1.3 Summary

• When two related quantities are changing in tandem, we can better understand how
change in one affects the other by using data, graphs, words, or algebraic symbols to
express the relationship between them. See, for instance, Table 1.1.9, Figure 1.1.11,
1.1.12, and Equation (1.1.1) that together help explain how the height and volume of

7
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water in a conical tank change in tandem as time changes.

• When the amount of water in a tank is changing, we can observe other quantities that
change, depending on the shape of the tank. For instance, if the tank is conical, we can
consider both the changing height of the water and the changing radius of the surface
of the water. In addition, whenever we think about a quantity that is changing as time
passes, we note that time itself is changing.

1.1.4 Exercises

1. The graph below shows the fuel consumption (inmiles per gallon, mpg) of a car driving
at various speeds (in miles per hour, mph).

(a) How much gas is used on a 400 mile trip at 80 mph?

(b) How much gas is saved by traveling 60 mph instead of 70 mph on a 600 mile trip?

(c) According to this graph, what is the most fuel efficient speed to travel?
2. Suppose we have an unusual tank whose base is a perfect sphere with radius 3 feet,

and then atop the spherical base is a cylindrical “chimney” that is a circular cylinder
of radius 1 foot and height 2 feet, as shown in Figure 1.1.15. The tank is initially empty,
but then a spigot is turned on that pumps water into the tank at a constant rate of 1.25
cubic feet per minute.

h

Figure 1.1.15: A spherical tank with a cylindrical chimney.

8



1.1 Changing in Tandem

Let V denote the total volume of water (in cubic feet) in the tank at any time t (in min-
utes), and h the depth of the water (in feet) at time t.

a. It is possible to use calculus to show that the total volume this tank can hold is
Vfull � π(22+ 38

3
√

2) ≈ 119.12 cubic feet. In addition, the actual height of the tank
(from the bottom of the spherical base to the top of the chimney) is hfull �

√
8+5 ≈

7.83 feet. How long does it take the tank to fill? Why?

b. On the blank axes provided below, sketch (by hand) possible graphs of how V
and t change in tandem and how h and t change in tandem.

V

t

h

t

For each graph, label any ordered pairs on the graph that you know for certain,
andwrite at least one sentence that explainswhy your graphs have the shape they
do.

c. How would your graph(s) change (if at all) if the chimney was shaped like an
inverted cone instead of a cylinder? Explain and discuss.

3. Suppose we have a tank that is a perfect sphere with radius 6 feet. The tank is initially
empty, but then a spigot is turned on that is pumping water into the tank in a very
special way: the faucet is regulated so that the depth of water in the tank is increasing
at a constant rate of 0.4 feet per minute.

Let V denote the total volume of water (in cubic feet) in the tank at any time t (in min-
utes), and h the depth of the water (in feet) at given time t.

a. How long does it take the tank to fill? What will the values of V and h be at the
moment the tank is full? Why?

b. On the blank axes provided below, sketch (by hand) possible graphs of how V
and t change in tandem and how h and t change in tandem.
For each graph, label any ordered pairs on the graph that you know for certain,
andwrite at least one sentence that explainswhy your graphs have the shape they
do.

9
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V

t

h

t

c. How do your responses change if the tank stays the same but instead the tank
is initially full and the tank drains in such a way that the height of the water is
always decreasing at a constant rate of 0.25 feet per minute?

4. The relationship between the position, s, of a car driving on a straight road at time
t is given by the graph pictured at left in Figure 1.1.16. The car’s position¹ has units
measured in thousands of feet while time is measured in minutes. For instance, the
point (4, 6) on the graph indicates that after 4 minutes, the car has traveled 6000 feet
from its starting location.

a. Write several sentences that explain the how the car is being driven and how you
make these conclusions from the graph.

b. How far did the car travel between t � 2 and t � 10?

c. Does the car ever travel in reverse? Why or why not? If not, howwould the graph
have to look to indicate such motion?

d. On the blank axes in Figure 1.1.16, plot points or sketch a curve to describe the
behavior of a car that is driven in the following way: from t � 0 to t � 5 the car
travels straight down the road at a constant rate of 1000 feet per minute. At t � 5,
the car pulls over and parks for 2 full minutes. Then, at t � 7, the car does an
abrupt U-turn and returns in the opposite direction at a constant rate of 800 feet
per minute for 5 additional minutes. As part of your work, determine (and label)
the car’s location at several additional points in time beyond t � 0, 5, 7, 12.

¹You can think of the car’s position like mile-markers on a highway. Saying that s � 500 means that the car is
located 500 feet from “marker zero” on the road.
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2 6 10

2

6

10

14

t

s

(4,6)

t

s

Figure 1.1.16: A graph of the relationship betwen a car’s position s and time t
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Chapter 1 Relating Changing Quantities

1.2 Functions: Modeling Relationships

Motivating Questions

• How can we use the mathematical idea of a function to represent the relationship
between two changing quantities?

• What are some formal characteristics of an abstract mathematical function? how do
we think differently about these characteristics in the context of a physical model?

Amathematical model is an abstract concept through which we use mathematical language
and notation to describe a phenomenon in the world around us. One example of a math-
ematical model is found in Dolbear’s Law¹. In the late 1800s, the physicist Amos Dolbear
was listening to crickets chirp and noticed a pattern: how frequently the crickets chirped
seemed to be connected to the outside temperature. If we let T represent the temperature in
degrees Fahrenheit and N the number of chirps per minute, we can summarize Dolbear’s
observations in the following table.

N (chirps per minute) 40 80 120 160
T (◦ Fahrenheit) 50◦ 60◦ 70◦ 80◦

Table 1.2.1: Data for Dolbear’s observations.

For a mathematical model, we often seek an algebraic formula that captures observed be-
havior accurately and can be used to predict behavior not yet observed. For the data in
Table 1.2.1, we observe that each of the ordered pairs in the table make the equation

T � 40 + 0.25N (1.2.1)

true. For instance, 70 � 40 + 0.25(120). Indeed, scientists who made many additional
cricket chirp observations followingDolbear’s initial counts found that the formula in Equa-
tion (1.2.1) holds with remarkable accuracy for the snowy tree cricket in temperatures rang-
ing from about 50◦ F to 85◦ F.

Preview Activity 1.2.1. Use Equation (1.2.1) to respond to the questions below.
a. If we hear snowy tree crickets chirping at a rate of 92 chirps per minute, what

does Dolbear’s model suggest should be the outside temperature?

b. If the outside temperature is 77◦ F, how many chirps per minute should we ex-
pect to hear?

c. Is the model valid for determining the number of chirps one should hear when
the outside temperature is 35◦ F? Why or why not?

¹You can read more in the Wikipedia entry for Dolbear’s Law, which has proven to be remarkably accurate for
the behavior of snowy tree crickets. For even more of the story, including a reference to this phenomenon on the
popular show The Big Bang Theory, see this article.
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1.2 Functions: Modeling Relationships

d. Suppose that in themorning an observer hears 65 chirps perminute, and several
hours later hears 75 chirps per minute. How much has the temperature risen
between observations?

e. Dolbear’s Law is known to be accurate for temperatures from 50◦ to 85◦. What
is the fewest number of chirps per minute an observer could expect to hear? the
greatest number of chirps per minute?

1.2.1 Functions

Themathematical concept of a function is one of the most central ideas in all of mathematics,
in part since functions provide an important tool for representing and explaining patterns.
At its core, a function is a repeatable process that takes a collection of input values and
generates a corresponding collection of output values with the property that if we use a
particular single input, the process always produces exactly the same single output.

For instance, Dolbear’s Law in Equation (1.2.1) provides a process that takes a given number
of chirps between 40 and 180 per minute and reliably produces the corresponding temper-
ature that corresponds to the number of chirps, and thus this equation generates a func-
tion. We often give functions shorthand names; using “D” for the “Dolbear” function, we
can represent the process of taking inputs (observed chirp rates) to outputs (corresponding
temperatures) using arrows:

80
D−→ 60

120
D−→ 70

N
D−→ 40 + 0.25N

Alternatively, for the relationship “80
D−→ 60”we can also use the equivalent notation “D(80) �

60” to indicate that Dolbear’s Law takes an input of 80 chirps per minute and produces a
corresponding output of 60 degrees Fahrenheit. More generally, we write “T � D(N) �

40 + 0.25N” to indicate that a certain temperature, T, is determined by a given number of
chirps per minute, N , according to the process D(N) � 40 + 0.25N .

Tables and graphs are particularly valuable ways to characterize and represent functions.
For the current example, we summarize some of the data the Dolbear function generates in
Table 1.2.2 and plot that data along with the underlying curve in Figure 1.2.3.

When a point such as (120, 70) in Figure 1.2.3 lies on a function’s graph, this indicates the
correspondence between input and output: when the value 120 chirps per minute is entered
in the function D, the result is 70 degrees Fahrenheit. More concisely, D(120) � 70. Aloud,
we read “D of 120 is 70”.

For most important concepts in mathematics, the mathematical community decides on for-
mal definitions to ensure that we have a shared language of understanding. In this text, we
will use the following definition of the term “function”.
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N T
40 50
80 60
120 70
160 80
180 85

Table 1.2.2: Data for the function
T � D(N) � 40 + 0.25N .

40 80 120 160

20

40

60

80

N (chirps/min)

T (degrees Fahrenheit)

(120,70)

Figure 1.2.3: Graph of data from the function
T � D(N) � 40 + 0.25N and the underlying
curve.

Definition 1.2.4 A function is a process that may be applied to a collection of input values to
produce a corresponding collection of output values in such away that the process produces
one and only one output value for any single input value. ♢

If we name a given function F and call the collection of possible inputs to F the set A and
the corresponding collection of potential outputs B, we say “F is a function from A to B,”
and sometimes write “F : A → B.” When a particular input value to F, say t, produces a
corresponding output z, we write “F(t) � z” and read this symbolic notation as “F of t is z.”
We often call t the independent variable and z the dependent variable , since z is a function of t.

Definition 1.2.5 Let F be a function from A to B. The set A of possible inputs to F is called
the domain of F; the set B of potential outputs from F is called the codomain of F. ♢

For the Dolbear function D(N) � 40 + 0.25N in the context of modeling temperature as
a function of the number of cricket chirps per minute, the domain of the function is A �

[40, 180]² and the codomain is “all Fahrenheit temperatures”. The codomain of a function is
the collection of possible outputs, which we distinguish from the collection of actual ouputs.

Definition 1.2.6 Let F be a function from A to B. The range of F is the collection of all actual
outputs of the function. That is, the range is the collection of all elements y in B for which it
is possible to find an element x in A such that F(x) � y. ♢

In many situations, the range of a function is much more challenging to determine than its
codomain. For the Dolbear function, the range is straightforward to find by using the graph
shown in Figure 1.2.3: since the actual outputs of D fall between T � 50 and T � 85 and

²The notation “[40, 180]” means “the collection of all real numbers x that satisfy 40 ≤ x ≤ 80” and is sometimes
called “interval notation”.
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include every value in that interval, the range of D is [50, 80].
The range of any function is always a subset of the codomain. It is possible for the range to
equal the codomain.

Activity 1.2.2. Consider a spherical tank of radius 4 m that is filling with water. Let V
be the volume of water in the tank (in cubic meters) at a given time, and h the depth
of the water (in meters) at the same time. It can be shown using calculus that V is a
function of h according to the rule

V � f (h) � π3 h2(12 − h).

a. What values of h make sense to consider in the context of this function? What
values of V make sense in the same context?

b. What is the domain of the function f in the context of the spherical tank? Why?
What is the corresponding codomain? Why?

c. Determine and interpret (with appropriate units) the values f (2), f (4), and f (8).
What is important about the value of f (8)?

d. Consider the claim: “since f (9) � π
3 92(12 − 9) � 81π ≈ 254.47, when the water

is 9 meters deep, there is about 254.47 cubic meters of water in the tank”. Is
this claim valid? Why or why not? Further, does it make sense to observe that
“ f (13) � − 169π

3 ”? Why or why not?

e. Can you determine a value of h for which f (h) � 300 cubic meters?

1.2.2 Comparing models and abstract functions

Again, a mathematical model is an abstract concept through which we use mathematical
language and notation to describe a phenomenon in the world around us. So far, we have
considered two different examples: the Dolbear function, T � D(N) � 40 + 0.25N , that
models how Fahrenheit temperature is a function of the number of cricket chirps per minute
and the function V � f (h) � π

3 h2(12−h) that models how the volume of water in a spherical
tank of radius 4 m is a function of the depth of thewater in the tank. While oftenwe consider
a function in the physical setting of some model, there are also many occasions where we
consider an abstract function for its own sake in order to study and understand it.

Example 1.2.7 A parabola and a falling ball. Calculus shows that for a tennis ball tossed
vertically from a window 48 feet above the ground at an initial vertical velocity of 32 feet per
second, the ball’s height above the ground at time t (where t � 0 is the instant the ball is
tossed) can be modeled by the function h � 1(t) � −16t2 + 32t + 48. Discuss the differences
between themodel 1 and the abstract function f determined by y � f (x) � −16x2+32x+48.

Solution. We start with the abstract function y � f (x) � −16x2 + 32x + 48. Absent a
physical context, we can investigate the behavior of this function by computing function
values, plotting points, and thinking about its overall behavior. We recognize the function
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f as quadratic³, noting that it opens down because of the leading coefficient of −16, with
vertex located at x �

−32
2(−16) � 1, y-intercept at (0, 48), and with x-intercepts at (−1, 0) and

(3, 0) because

−16x2
+ 32x + 48 � −16(x2 − 2x − 3) � −16(x − 3)(x + 1).

Computing some additional points to gain more information, we see both the data in Ta-
ble 1.2.8 and the corresponding graph in Figure 1.2.9.

x f (x)
−2 −80
−1 0
0 48
1 64
2 48
3 0
4 −80

Table 1.2.8: Data for the function y � f (x) �
−16x2 + 32x + 48. -2 2 4

20

40

60

x

y
(1,64)

y = f (x)

Figure 1.2.9: Graph of the function y � f (x)
and some data from the table.

For this abstract function, its domain is “all real numbers” since wemay input any real num-
ber x we wish into the formula f (x) � −16x2 + 32x + 48 and have the result be defined.
Moreover, taking a real number x and processing it in the formula f (x) � −16x2 + 32x + 48
will produce another real number. This tells us that the codomain of the abstract function f
is also “all real numbers.” Finally, from the graph and the data, we observe that the largest
possible output of the function f is y � 64. It is apparent that we can generate any y-value
less than or equal to 64, and thus the range of the abstract function f is all real numbers less
than or equal to 64. We denote this collection of real numbers using the shorthand interval
notation (−∞, 64].⁴
Next, we turn our attention to themodel h � 1(t) � −16t2+32t+48 that represents the height
of the ball, h, in feet t seconds after the ball in initially launched. Here, the big difference is
the domain, codomain, and range associated with the model. Since the model takes effect
once the ball is tossed, it only makes sense to consider the model for input values t ≥ 0.
Moreover, because the model ceases to apply once the ball lands, it is only valid for t ≤ 3.
Thus, the domain of 1 is [0, 3]. For the codomain, it only makes sense to consider values
of h that are nonnegative. That is, as we think of potential outputs for the model, then can
only be in the interval [0,∞). Finally, we can consider the graph of the model on the given
domain in Figure 1.2.11 and see that the range of the model is [0, 64], the collection of all
heights between its lowest (ground level) and its largest (at the vertex).
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t 1(t)
0 48
1 64
2 48
3 0

Table 1.2.10: Data for the model h � 1(t) �

−16t2 + 32t + 48.

-2 2 4

20

40

60

t

h
(1,64)

h = g(t)

Figure 1.2.11: Graph of the model h � 1(t)
and some data from the table.

□

Activity 1.2.3. Consider a spherical tank of radius 4 m that is completely full of water.
Suppose that the tank is being drained by regulating an exit valve in such a way that
the height of the water in the tank is always decreasing at a rate of 0.5 meters per
minute. Let V be the volume of water in the tank (in cubic meters) at a given time
t (in minutes), and h the depth of the water (in meters) at the same time. It can be
shown using calculus that V is a function of t according to the model

V � p(t) � 256π
3 − π24 t2(24 − t).

In addition, let h � q(t) be the function whose output is the depth of the water in the
tank at time t.

a. What is the height of the water when t � 0? When t � 1? When t � 2? How
long will it take the tank to completely drain? Why?

b. What is the domain of the model h � q(t)? What is the domain of the model
V � p(t)?

c. How much water is in the tank when the tank is full? What is the range of the
model h � q(t)? What is the range of the model V � p(t)?

d. We will frequently use a graphing utility to help us understand function behav-
ior, and strongly recommend Desmos because it is intuitive, online, and free.⁵
In this prepared Desmos worksheet, you can see how we enter the (abstract)
function V � p(t) �

256π
3 − π

24 t2(24 − t), as well as the corresponding graph

³We will engage in a brief review of quadratic functions in Section 1.5
⁴The notation (−in f t y , 64] stands for all the real numbers that lie to the left of an including 64. The “−∞”

indicates that there is no left-hand bound on the interval.
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the program generates. Make as many observations as you can about the model
V � p(t). You should discuss its shape and overall behavior, its domain, its
range, and more.

e. How does the model V � p(t) �
256π

3 − π
24 t2(24 − t) differ from the abstract

function y � r(x) � 256π
3 − π

24 x2(24 − x)? In particular, how do the domain and
range of the model differ from those of the abstract function, if at all?

f. How should the graph of the height function h � q(t) appear? Can you deter-
mine a formula for q? Explain your thinking.

1.2.3 Determining whether a relationship is a function or not

To this point in our discussion of functions, we have mostly focused on what the function
process may model and what the domain, codomain, and range of a model or abstract func-
tion are. It is also important to take note of another part of Definition 1.2.4: “. . . the process
produces one and only one output value for any single input value”. Said differently, if a
relationship or process ever associates a single input with two or more different outputs, the
process cannot be a function.

Example 1.2.12 Is the relationship between people and phone numbers a function?

Solution. No, this relationship is not a function. A given individual person can be associated
with more than one phone number, such as their cell phone and their work telephone. This
means that we can’t view phone numbers as a function of people: one input (a person) can
lead to two different outputs (phone numbers). We also can’t view people as a function of
phone numbers, since more than one person can be associated with a phone number, such
as when a family shares a single phone at home. □

Example 1.2.13 The relationship between x and y that is given in the following table where
we attempt to view y as depending on x.

x 1 2 3 4 5
y 13 11 10 11 13

Table 1.2.14: A table that relates x and y values.

Solution. The relationship between y and x in Table 1.2.14 allows us to think of y as a function
of x since each particular input is associated with one and only one output. If we name
the function f , we can say for instance that f (4) � 11. Moreover, the domain of f is the
set of inputs {1, 2, 3, 4, 5}, and the codomain (which is also the range) is the set of outputs
{10, 11, 13}. □

⁵To learn more about Desmos, see their outstanding online tutorials.
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Activity 1.2.4. Each of the following prompts describes a relationship between two
quantities. For each, your task is to decide whether or not the relationship can be
thought of as a function. If not, explain why. If so, state the domain and codomain of
the function and write at least one sentence to explain the process that leads from the
collection of inputs to the collection of outputs.

a. The relationship between x and y in each of the graphs below (address each
graph separately as a potential situation where y is a function of x). In Fig-
ure 1.2.15, any point on the circle relates x and y. For instance, the y-value

√
7

is related to the x-value −3. In Figure 1.2.16, any point on the blue curve relates
x and y. For instance, when x � −1, the corresponding y-value is y � 3. An
unfilled circle indicates that there is not a point on the graph at that specific
location.

(−3,
√

7)

x
2 + y

2 = 16

Figure 1.2.15: A circle of radius 4
centered at (0, 0).

-2 -1 1 2 3

-1

1

2

3

g

Figure 1.2.16: A graph of a possible
function 1.

b. The relationship between the day of the year and the value of the S&P500 stock
index (at the close of trading on a given day), where we attempt to consider the
index’s value (at the close of trading) as a function of the day of the year.

c. The relationship between a car’s velocity and its odometer, where we attempt to
view the car’s odometer reading as a function of its velocity.

d. The relationship between x and y that is given in the following table where we
attempt to view y as depending on x.

x 1 2 3 2 1
y 11 12 13 14 15

Table 1.2.17: A table that relates x and y values.

For a relationship or process to be a function, each individual input must be associated with
one and only one output. Thus, the usual way that we demonstrate a relationship or process
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is not a function is to find a particular input that is associated with two or more outputs.
When the relationship is given graphically, such as in Figure 1.2.15, we can use the vertical
line test to determine whether or not the graph represents a function.

Vertical Line Test.
A graph in the plane represents a function if and only if every vertical line intersects
the graph at most once. When the graph passes this test, the vertical coordinate of
each point on the graph can be viewed as a function of the horizontal coordinate of
the point.

Since the vertical line x � −3 passes through the circle in Figure 1.2.15 at both y � −
√

7 and
y �

√
7, the circle does not represent a relationship where y is a function of x. However,

since any vertical line we draw in Figure 1.2.16 intersects the blue curve at most one time,
the graph indeed represents a function.

We conclude with a formal definition of the graph of a function.

Definition 1.2.18 Let F : A → B, where A and B are each collections of real numbers. The
graph of F is the collection of all ordered pairs (x , y) that satisfy y � F(x). ♢

When we use a computing device such as Desmos to graph a function 1, the program is
generating a large collection of ordered pairs (x , 1(x)), plotting them in the x-y plane, and
connecting the points with short line segments.

1.2.4 Summary

• A function is a process that generates a relationship between two collections of quan-
tities. The function associates each member of a collection of input values with one
and only one member of the collection of output values. A function can be described
or defined by words, by a table of values, by a graph, or by a formula.

• Functions may be viewed as mathematical objects worthy of study for their own sake
and also as models that represent physical phenomena in the world around us. Every
function or model has a domain (the set of possible or allowable input values), a
codomain (the set of possible output values), and a range (the set of all actual output
values). Both the codomain and range depend on the domain. For an abstract func-
tion, the domain is usually viewed as the largest reasonable collection of input values;
for a function that models a physical phenomenon, the domain is usually determined
by the context of possibilities for the input in the phenomenon being considered.

1.2.5 Exercises

1. Based on the graphs of f (x) and 1(x) below, answer the following questions.
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1.2 Functions: Modeling Relationships

(a) Find f (5.2).
(b) Fill in the blanks in each of the two points below to correctly complete the coordi-
nates of two points on the graph of 1(x).
( 6.1 , ) ( , 2.9 )

(c) For what value(s) of x is/are f (x) � 2.9?

(d) For what value(s) of x is/are f (x) � 1(x)?
2. The table below A � f (d), the amount of money A (in billions of dollars) in bills of

denomination d circulating in US currency in 2005. For example according to the table
values below there were $60.2 billion worth of $50 bills in circulation.

Denomination (value of bill) 1 5 10 20 50 100
Dollar Value in Circulation 8.4 9.7 14.8 110.1 60.2 524.5

a) Find f (20).
b) Using your answer in (a), what was the total number of $20 bills (not amount of
money) in circulation in 2005?

c) Are the following statements True or False?

(i) There were more 20 dollar bills than 100 dollar bills

(ii) There were more 5 dollar bills than 20 dollar bills
3. Let f (t) denote the number of people eating in a restaurant t minutes after 5 PM. An-

swer the following questions:

a) Which of the following statements best describes the significance of the expression
f (4) � 21?

⊙ There are 4 people eating at 5:21 PM

⊙ There are 21 people eating at 5:04 PM

⊙ There are 21 people eating at 9:00 PM

⊙ Every 4 minutes, 21 more people are eating

⊙ None of the above
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b) Which of the following statements best describes the significance of the expression
f (a) � 20?

⊙ a minutes after 5 PM there are 20 people eating

⊙ Every 20 minutes, the number of people eating has increased by a people

⊙ At 5:20 PM there are a people eating

⊙ a hours after 5 PM there are 20 people eating

⊙ None of the above

c) Which of the following statements best describes the significance of the expression
f (20) � b?

⊙ Every 20 minutes, the number of people eating has increased by b people

⊙ b minutes after 5 PM there are 20 people eating

⊙ At 5:20 PM there are b people eating

⊙ b hours after 5 PM there are 20 people eating

⊙ None of the above

d) Which of the following statements best describes the significance of the expression
n � f (t)?

⊙ Every t minutes, n more people have begun eating

⊙ n hours after 5 PM there are t people eating

⊙ n minutes after 5 PM there are t people eating

⊙ t hours after 5 PM there are n people eating

⊙ None of the above
4. Chicago’s averagemonthly rainfall, R � f (t) inches, is given as a function of themonth,

t, where January is t � 1, in the table below.

t, month 1 2 3 4 5 6 7 8
R, inches 1.8 1.8 2.7 3.1 3.5 3.7 3.5 3.4

(a) Solve f (t) � 3.4.

The solution(s) to f (t) � 3.4 can be interpreted as saying

⊙ Chicago’s average rainfall is least in the month of August.

⊙ Chicago’s average rainfall in the month of August is 3.4 inches.

⊙ Chicago’s average rainfall increases by 3.4 inches in the month of May.
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⊙ Chicago’s average rainfall is greatest in the month of May.

⊙ None of the above

(b) Solve f (t) � f (5).
The solution(s) to f (t) � f (5) can be interpreted as saying

⊙ Chicago’s average rainfall is greatest in the month of May.

⊙ Chicago’s average rainfall is 3.5 inches in the months of May and July.

⊙ Chicago’s average rainfall is 3.5 inches in the month of May.

⊙ Chicago’s average rainfall is 3.5 inches in the month of July.

⊙ None of the above

5. A national park records data regarding the total fox population F over a 12 month pe-
riod, where t � 0 means January 1, t � 1 means February 1, and so on. Below is the
table of values they recorded:

t, month 0 1 2 3 4 5 6 7 8 9 10 11
F, foxes 150 143 125 100 75 57 50 57 75 100 125 143

(a) Is t a function of F?

(b) Let 1(t) � F denote the fox population in month t. Find all solution(s) to the equa-
tion 1(t) � 125. If there is more than one solution, give your answer as a comma sepa-
rated list of numbers.

6. An open box is to be made from a flat piece of material 20 inches long and 6 inches
wide by cutting equal squares of length xfrom the corners and folding up the sides.

Write the volume Vof the box as a function of x. Leave it as a product of factors, do not
multiply out the factors.

If we write the domain of the box as an open interval in the form (a , b), then what is a
and what is b?

7. Consider an inverted conical tank (point down) whose top has a radius of 3 feet and
that is 2 feet deep. The tank is initially empty and then is filled at a constant rate of 0.75
cubic feet per minute. Let V � f (t) denote the volume of water (in cubic feet) at time t
in minutes, and let h � 1(t) denote the depth of the water (in feet) at time t.

a. Recall that the volume of a conical tank of radius r and depth h is given by the
formula V �

1
3πr2h. How long will it take for the tank to be completely full and

how much water will be in the tank at that time?

b. On the provided axes, sketch possible graphs of both V � f (t) and h � 1(t),
making them as accurate as you can. Label the scale on your axes and points
whose coordinates you know for sure; write at least one sentence for each graph
to discuss the shape of your graph and why it makes sense in the context of the
model.
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V

t

h

t

c. What is the domain of the model h � 1(t)? its range? why?

d. It’s possible to show that the formula for the function 1 is 1(t) �
( t
π

)1/3. Use a
computational device to generate two plots: on the axes at left, the graph of the
model h � 1(t) �

( t
π

)1/3 on the domain that you decided in (c); on the axes at
right, the graph of the abstract function y � p(x) �

( t
π

)1/3 on a wider domain
than that of 1. What are the domain and range of p and how do these differ from
those of the physical model 1?

h

t

y

x

8. A person is taking a walk along a straight path. Their velocity, v (in feet per second),
which is a function of time t (in seconds), is given by the graph in Figure 1.2.19.

a. What is the person’s velocity when t � 2? when t � 7?

b. Are there any times when the person’s velocity is exactly v � 3 feet per second?
If yes, identify all such times; if not, explain why.

c. Describe the person’s behavior on the time interval 4 ≤ t ≤ 5.
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v (ft/sec)

v = f (t)

Figure 1.2.19: The velocity graph for a person walking along a straight path.

d. On which time interval does the person travel a farther distance: [1, 3] or [6, 8]?
Why?

9. Adriver of a new car periodically keeps track of the number of gallons of gas remaining
in their car’s tank, while simultaneously tracking the trip odometer mileage. Their data
is recorded in the following table. Note that atmileageswhere they add fuel to the tank,
they record the mileage twice: once before fuel is added, and once afterward.

D (miles) 0 50 100 100 150 200 250 300 300 350
G (gallons) 4.5 3.0 1.5 10.0 8.5 7.0 5.5 4.0 11.0 9.5

Table 1.2.20: Remaining gas as a function of distance traveled.

Use the table to respond to the questions below.

a. Can the amoung of fuel in the gas tank, G, be viewed as a function of distance
traveled, D? Why or why not?

b. Does the car’s fuel economy appear to be constant or does it appear to vary? Why?

c. At what odometer reading did the driver put the most gas in the tank?
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1.3 The Average Rate of Change of a Function

Motivating Questions

• What do we mean by the average rate of change of a function on an interval?

• What does the average rate of change of a function measure? How do we interpret
its meaning in context?

• How is the average rate of change of a function connected to a line that passes through
two points on the curve?

Given a function that models a certain phenomenon, it’s natural to ask such questions as
“how is the function changing on a given interval” or “on which interval is the function
changingmore rapidly?” The concept of average rate of change enables us to make these ques-
tions more mathematically precise. Initially, we will focus on the average rate of change of
an object moving along a straight-line path.

For a function s that tells the location of a moving object along a straight path at time t, we
define the average rate of change of s on the interval [a , b] to be the quantity

AV[a ,b] �
s(b) − s(a)

b − a
.

Note particularly that the average rate of change of s on [a , b] is measuring the change in
position divided by the change in time.

Preview Activity 1.3.1. Let the height function for a ball tossed vertically be given by
s(t) � 64− 16(t − 1)2, where t is measured in seconds and s is measured in feet above
the ground.

a. Compute the value of AV[1.5,2.5].

b. What are the units on the quantity AV[1.5,2.5]? What is the meaning of this num-
ber in the context of the rising/falling ball?

c. InDesmos, plot the function s(t) � 64−16(t−1)2 alongwith the points (1.5, s(1.5))
and (2.5, s(2.5)). Make a copy of your plot on the axes in Figure 1.3.1, labeling
key points as well as the scale on your axes. What is the domain of the model?
The range? Why?

d. Work by hand to find the equation of the line through the points (1.5, s(1.5)) and
(2.5, s(2.5)). Write the line in the form y � mt + b and plot the line in Desmos, as
well as on the axes above.

e. What is a geometric interpretation of the value AV[1.5,2.5] in light of your work
in the preceding questions?
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s

t

Figure 1.3.1: Axes for plotting the position function.

f. How do your answers in the preceding questions change if we instead consider
the interval [0.25, 0.75]? [0.5, 1.5]? [1, 3]?

1.3.1 Defining and interpreting the average rate of change of a function

In the context of a function that measures height or position of a moving object at a given
time, the meaning of the average rate of change of the function on a given interval is the
average velocity of the moving object because it is the ratio of change in position to change in
time. For example, in Preview Activity 1.3.1, the units on AV[1.5,2.5] � −32 are “feet per
second” since the units on the numerator are “feet” and on the denominator “seconds”.
Morever, −32 is numerically the same value as the slope of the line that connects the two
corresponding points on the graph of the position function, as seen in Figure 1.3.2. The fact
that the average rate of change is negative in this example indicates that the ball is falling.

While the average rate of change of a position function tells us the moving object’s average
velocity, in other contexts, the average rate of change of a function can be similarly defined
and has a related interpretation. We make the following formal definition.

Definition 1.3.4 For a function f defined on an interval [a , b], the average rate of change of
f on [a , b] is the quantity

AV[a ,b] �
f (b) − f (a)

b − a
.

♢

In every situation, the units on the average rate of change help us interpret its meaning, and
those units are always “units of output per unit of input.” Moreover, the average rate of
change of f on [a , b] always corresponds to the slope of the line between the points (a , f (a))
and (b , f (b)), as seen in Figure 1.3.3.
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AV[1.5,2.5] =−32

Figure 1.3.2: The average rate of change of s
on [1.5, 2.5] for the function in Preview
Activity 1.3.1.

x

y

(a, f (a))

(b, f (b))

AV[a,b] =
f (b)− f (a)

b−a

Figure 1.3.3: The average rate of change of an
abstract function f on the interval [a , b].

Activity 1.3.2. According to theUS census, the populations of Kent andOttawaCoun-
ties in Michigan where GVSU is located¹ from 1960 to 2010 measured in 10-year in-
tervals are given in the following tables.

1960 1970 1980 1990 2000 2010
363,187 411,044 444,506 500,631 574,336 602,622

Table 1.3.5: Kent County population data.

1960 1970 1980 1990 2000 2010
98,719 128,181 157,174 187,768 238,313 263,801

Table 1.3.6: Ottawa county population data.

Let K(Y) represent the population of Kent County in year Y and W(Y) the population
of Ottawa County in year Y.

a. Compute AV[1990,2010] for both K and W .

b. What are the units on each of the quantities you computed in (a.)?

c. Write a careful sentence that explains the meaning of the average rate of change
of theOttawa county population on the time interval [1990, 2010]. Your sentence
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should begin something like “In an average year between 1990 and 2010, the
population of Ottawa County was . . .”

d. Which county had a greater average rate of change during the time interval
[2000, 2010]? Were there any intervals in which one of the counties had a nega-
tive average rate of change?

e. Using the given data, what do you predict will be the population of Ottawa
County in 2018? Why?

The average rate of change of a function on an interval gives us an excellent way to describe
how the function behaves, on average. For instance, if we compute AV[1970,2000] for Kent
County, we find that

AV[1970,2000] �
574, 336 − 411, 044

30 � 5443.07,

which tells us that in an average year from 1970 to 2000, the population of Kent County
increased by about 5443 people. Said differently, we could also say that from 1970 to 2000,
Kent County was growing at an average rate of 5443 people per year. These ideas also afford
the opportunity to make comparisons over time. Since

AV[1990,2000] �
574, 336 − 500, 631

10 � 7370.5,

we can not only say that Kent county’s population increased by about 7370 in an average
year between 1990 and 2000, but also that the population was growing faster from 1990 to
2000 than it did from 1970 to 2000.

Finally, we can even use the average rate of change of a function to predict future behavior.
Since the population was changing on average by 7370.5 people per year from 1990 to 2000,
we can estimate that the population in 2002 is

K(2002) ≈ K(2000) + 2 · 7370.5 � 574, 336 + 14, 741 � 589, 077.

1.3.2 How average rate of change indicates function trends

We have already seen that it is natural to use words such as “increasing” and “decreasing”
to describe a function’s behavior. For instance, for the tennis ball whose height is modeled
by s(t) � 64 − 16(t − 1)2, we computed that AV[1.5,2.5] � −32, which indicates that on the
interval [1.5, 2.5], the tennis ball’s height is decreasing at an average rate of 32 feet per second.
Similarly, for the population of Kent County, since AV[1990,2000] � 7370.5, we know that on
the interval [1990, 2000] the population is increasing at an average rate of 7370.5 people per
year.

We make the following formal definitions to clarify what it means to say that a function is
increasing or decreasing.

¹Grand Rapids is in Kent, Allendale in Ottawa.
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Definition 1.3.7 Let f be a function defined on an interval (a , b) (that is, on the set of all x
for which a < x < b). We say that f is increasing on (a , b) provided that the function is
always rising as we move from left to right. That is, for any x and y in (a , b), if x < y, then
f (x) < f (y).
Similarly, we say that f is decreasing on (a , b) provided that the function is always falling
as we move from left to right. That is, for any x and y in (a , b), if x < y, then f (x) > f (y). ♢

If we compute the average rate of change of a function on an interval, we can decide if the
function is increasing or decreasing on average on the interval, but it takes more work² to
decide if the function is increasing or decreasing always on the interval.

Activity 1.3.3. Let’s consider two different functions and see how different computa-
tions of their average rate of change tells us about their respective behavior. Plots of
q and h are shown in Figures 1.3.8 and 1.3.9.

a. Consider the function q(x) � 4 − (x − 2)2. Compute AV[0,1], AV[1,2], AV[2,3], and
AV[3,4]. What do your last two computations tell you about the behavior of the
function q on [2, 4]?

b. Consider the function h(t) � 3 − 2(0.5)t . Compute AV[−1,1], AV[1,3], and AV[3,5].
What do your computations tell you about the behavior of the function h on
[−1, 5]?

c. On the graphs in Figures 1.3.8 and 1.3.9, plot the line segments whose respective
slopes are the average rates of change you computed in (a) and (b).

2 4

2

4

x

y

q(x) = 4− (x− 2)2

Figure 1.3.8: Plot of q from part (a).

2 4

2

4

t

y

h(t) = 3−2(0.5)t

Figure 1.3.9: Plot of h from part (b).

d. True or false: Since AV[0,3] � 1, the function q is increasing on the interval (0, 3).
Justify your decision.

e. Give an example of a function that has the same average rate of change nomatter
what interval you choose. You can provide your example through a table, a
graph, or a formula; regardless of your choice, write a sentence to explain.

²Calculus offers one way to justify that a function is always increasing or always decreasing on an interval.
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It is helpful be able to connect information about a function’s average rate of change and its
graph. For instance, if we have determined that AV[−3,2] � 1.75 for some function f , this
tells us that, on average, the function rises between the points x � −3 and x � 2 and does
so at an average rate of 1.75 vertical units for every horizontal unit. Moreover, we can even
determine that the difference between f (2) and f (−3) is

f (2) − f (−3) � 1.75 · 5 � 8.75

since f (2)− f (−3)
2−(−3) � 1.75.

Activity 1.3.4. Sketch at least two different possible graphs that satisfy the criteria for
the function stated in each part. Make your graphs as significantly different as you
can. If it is impossible for a graph to satisfy the criteria, explain why.

a. f is a function defined on [−1, 7] such that f (1) � 4 and AV[1,3] � −2.

y

x

y

x

b. 1 is a function defined on [−1, 7] such that 1(4) � 3, AV[0,4] � 0.5, and 1 is not
always increasing on (0, 4).

y

x

y

x
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c. h is a function defined on [−1, 7] such that h(2) � 5, h(4) � 3 and AV[2,4] � −2.

y

x

y

x

1.3.3 Summary

• For a function f defined on an interval [a , b], the average rate of change of f on [a , b]
is the quantity

AV[a ,b] �
f (b) − f (a)

b − a
.

• The value of AV[a ,b] �
f (b)− f (a)

b−a tells us howmuch the function rises or falls, on average,
for each additional unit we move to the right on the graph. For instance, if AV[3,7] �
0.75, this means that for additional 1-unit increase in the value of x on the interval
[3, 7], the function increases, on average, by 0.75 units. In applied settings, the units of
AV[a ,b] are “units of output per unit of input”.

• The value of AV[a ,b] �
f (b)− f (a)

b−a is also the slope of the line that passes through the
points (a , f (a)) and (b , f (b)) on the graph of f , as shown in Figure 1.3.3.

1.3.4 Exercises

1. Let P1 and P2 be the populations (in hundreds) of Town 1 and Town 2, respectively. The
table below shows data for these two populations for five different years.

Year 1980 1983 1987 1993 1999
P1 49 53 57 61 65
P2 79 72 65 58 51

Find the average rate of change of each population over each of the time intervals below.

(a) From 1980 to 1987, the average rate of change of the population of Town 1 was
hundred people per year, and the average rate of change of the population of Town 2
was hundred people per year.

(b) From 1987 to 1999, the average rate of change of the population of Town 1 was
hundred people per year, and the average rate of change of the population of Town 2

32



1.3 The Average Rate of Change of a Function

was hundred people per year.

(c) From 1980 to 1999, the average rate of change of the population of Town 1 was
hundred people per year, and the average rate of change of the population of Town 2
was hundred people per year.

2. (a) What is the average rate of change of 1(x) � −6−5x between the points (−4, 14) and
(5,−31)?
(b) The function 1 is (□ increasing □ decreasing) on the interval −4 ≤ x ≤ 5.

3. Find the average rate of change of f (x) � 3x2 + 7 between each of the pairs of points
below.

(a) Between (3, 34) and (5, 82)
(b) Between (c , k) and (q , t)
(c) Between (x , f (x)) and (x + h , f (x + h))

4. In 2005, you have 45 CDs in your collection. In 2008, you have 130 CDs. In 2012, you
have 50 CDs. What is the average rate of change in the size of your CD collection be-
tween:

(a) 2005 and 2008?

(b) 2008 and 2012?

(c) 2005 and 2012?

5. Based on the graphs of f (x) and 1(x) below, answer the following questions. You
should not approximate any of your answers.

a)What is the average rate of change of f (x) over the interval 2.2 ≤ x ≤ 6.1 ?

b)What is the average rate of change of 1(x) over the interval 2.2 ≤ x ≤ 6.1 ?

6. The graph below shows the distance traveled, D (in miles) as a function of time, t (in
hours).
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a) For each of the intervals, find the values of ∆D and ∆t between the indicated start
and end times. Enter your answers in their respective columns in the table below.

Time Interval ∆D ∆t
t = 1.5 to t = 4.5
t = 2 to t = 4.5
t = 1 to t = 3

b) Based on your results from (a) it follows that the average rate of change of D is con-
stant, it does not depend over which interval of time you choose. What is the constant
rate of change of D?

c)Which of the statements belowCORRECTLY explains the significance of your answer
to part (b)? Select ALL that apply (more than one may apply).

□ It is the average velocity of the car over the first two hours.

□ It is the total distance the car travels in five hours.

□ It is how far the car will travel in a half-hour.

□ It represents the car’s velocity.

□ It is the acceleration of the car over the five hour time interval.

□ It is the slope of the line.

□ None of the above

7. Let f (x) � 36 − x2.

a) Compute each of the following expressions and interpret each as an average rate of
change:

(i) f (4)− f (0)
4−0 �

(ii) f (6)− f (4)
6−4 �

(iii) f (6)− f (0)
6−0 �

b) Based on the graph sketched below, match each of your answers in (i) - (iii) with one
of the lines labeled A - F. Type the corresponding letter of the line segment next to the
appropriate formula. Clearly not all letters will be used.
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f (4)− f (0)
4−0

f (6)− f (4)
6−4

f (6)− f (0)
6−0

8. The table below gives the average temperature, T, at a depth d, in a borehole in Bel-
leterre, Quebec.

d, depth (m) T, temp (C◦)
25 5.50
50 5.20
75 5.10
100 5.10
125 5.30
150 5.50
175 5.75
200 6.00
225 6.25
250 6.50
275 6.75
300 7.00

Evaluate ∆T/∆d on the following intervals

a) 125 ≤ d ≤ 275 ∆T/∆d =

b) 25 ≤ d ≤ 125 ∆T/∆d =

c) 75 ≤ d ≤ 200 ∆T/∆d =

d) Which of the statements below correctly explains the significance of your answer to
part (c)? Select all that apply (more than one may apply).

□ On average, the temperature is changing at a rate of 0.0072 degrees Celsius per
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minute over the interval 75 ≤ d ≤ 200 .

□ 0.0072 is the slope of the graph of at d � 75.

□ The temperature changes by a total of 0.0072 degrees Celsius whenmoving from
a depth 75 meters to 200 meters.

□ Over the interval from 75 meters to 200 meters, the temperature changes on av-
erage at a rate of 0.0072 degrees Celsius per meter.

□ The temperature is changing at a rate of 0.0072 degrees Celsius perminutewhen
the depth is 75 meters.

□ None of the above

9. A cold can of soda is removed from a refrigerator. Its temperature F in degrees Fahren-
heit is measured at 5-minute intervals, as recorded in the following table.

t (minutes) 0 5 10 15 20 25 30 35
F (Fahrenheit temp) 37.00 44.74 50.77 55.47 59.12 61.97 64.19 65.92

Table 1.3.10: Data for the soda’s temperature as a function of time.

a. Determine AV[0,5], AV[5,10], and AV[10,15], including appropriate units. Choose
one of these quantities and write a careful sentence to explain its meaning. Your
sentence might look something like “On the interval . . ., the temperature of the
soda is . . . on average by . . . for each 1-unit increase in . . .”.

b. On which interval is there more total change in the soda’s temperature: [10, 20]
or [25, 35]?

c. What can you observe aboutwhen the soda’s temperature appears to be changing
most rapidly?

d. Estimate the soda’s temperature when t � 37 minutes. Write at least one sentence
to explain your thinking.

10. The position of a car driving along a straight road at time t in minutes is given by the
function y � s(t) that is pictured in Figure 1.3.11. The car’s position function has units
measured in thousands of feet. For instance, the point (2, 4) on the graph indicates that
after 2 minutes, the car has traveled 4000 feet.

a. In everyday language, describe the behavior of the car over the provided time
interval. In particular, carefully discuss what is happening on each of the time
intervals [0, 1], [1, 2], [2, 3], [3, 4], and [4, 5], plus provide commentary overall on
what the car is doing on the interval [0, 12].

b. Compute the average rate of change of s on the intervals [3, 4], [4, 6], and [5, 8].
Label your results using the notation “AV[a ,b]” appropriately, and include units
on each quantity.

36



1.3 The Average Rate of Change of a Function
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Figure 1.3.11: The graph of y � s(t), the position of the car (measured in thousands of
feet from its starting location) at time t in minutes.

c. On the graph of s, sketch the three lines whose slope corresponds to the values
of AV[3,4], AV[4,6], and AV[5,8] that you computed in (b).

d. Is there a time interval onwhich the car’s average velocity is 5000 feet perminute?
Why or why not?

e. Is there ever a time interval when the car is going in reverse? Why or why not?
11. Consider an inverted conical tank (point down) whose top has a radius of 3 feet and

that is 2 feet deep. The tank is initially empty and then is filled at a constant rate of 0.75
cubic feet per minute. Let V � f (t) denote the volume of water (in cubic feet) at time
t in minutes, and let h � 1(t) denote the depth of the water (in feet) at time t. It turns
out that the formula for the function 1 is 1(t) �

( t
π

)1/3.
a. In everyday language, describe how you expect the height function h � 1(t) to

behave as time increases.

b. For the height function h � 1(t) �
( t
π

)1/3, compute AV[0,2], AV[2,4], and AV[4,6].
Include units on your results.

c. Again working with the height function, can you determine an interval [a , b] on
which AV[a ,b] � 2 feet per minute? If yes, state the interval; if not, explain why
there is no such interval.

d. Now consider the volume function, V � f (t). Even though we don’t have a for-
mula for f , is it possible to determine the average rate of change of the volume
function on the intervals [0, 2], [2, 4], and [4, 6]? Why or why not?
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1.4 Linear Functions

Motivating Questions

• What behavior of a function makes its graph a straight line?

• For a function whose graph is a straight line, what structure does its formula have?

• How can we interpret the slope of a linear function in applied contexts?

Functionswhose graphs are straight lines are both the simplest and themost important func-
tions in mathematics. Lines often model important phenomena, and even when they don’t
directly model phenomena, lines can often approximate other functions that do. Whether a
function’s graph is a straight line or not is connected directly to its average rate of change.

Preview Activity 1.4.1.
a. Let y � f (x) � 7−3x. Determine AV[−3,−1], AV[2,5], and AV[4,10] for the function

f .

b. Let y � 1(x) be given by the data in Table 1.4.1.

x −5 −4 −3 −2 −1 0 1 2 3 4 5
1(x) −2.75 −2.25 −1.75 −1.25 −0.75 −0.25 0.25 0.75 1.25 1.75 2.25

Table 1.4.1: A table that defines the function y � 1(x).

Determine AV[−5,−2], AV[−1,1], and AV[0,4] for the function 1.

c. Consider the function y � h(x) defined by the graph in Figure 1.4.2.

-4 -2 2 4

-4

-2

2

4

x

y

y = h(x)

Figure 1.4.2: The graph of y � h(x).
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1.4 Linear Functions

Determine AV[−5,−2], AV[−1,1], and AV[0,4] for the function 1.

d. What do all three examples above have in common? How do they differ?

e. For the function y � f (x) � 7 − 3x from (a), find the simplest expression you
can for

AV[a ,b] �
f (b) − f (a)

b − a
where a , b.

1.4.1 Properties of linear functions

In Preview Activity 1.4.1, we considered three different functions for which the average rate
of change of each appeared to always be constant. For the first function in the preview
activity, y � f (x) � 7 − 3x, we can compute its average rate of change on an arbitrary
interval [a , b]. Doing so, we notice that

AV[a ,b] �
f (b) − f (a)

b − a

�
(7 − 3b) − (7 − 3a)

b − a

�
7 − 3b − 7 + 3a

b − a

�
−3b + 3a

b − a

�
−3(b − a)

b − a
� −3.

This result shows us that for the function y � f (x) � 7 − 3x, its average rate of change is
always −3, regardless of the interval we choose. Wewill use the property of having constant
rate of change as the defining property of a linear function.

Definition 1.4.3 A function f is linear provided that its average rate of change is constant
on every choice of interval in its domain¹. That is, for any inputs a and b for which a , b, it
follows that

f (b) − f (a)
b − a

� m

for some fixed constant m. We call m the slope of the linear function f . ♢

From prior study, we already know a lot about linear functions. In this section, we work to
understand some familiar properties in light of the new perspective of Definition 1.4.3.

Let’s suppose we know that a function f is linear with average rate of change AV[a ,b] � m
and that we also know the function value is y0 at some fixed input x0. That is, we know
that f (x0) � y0. From this information, we can find the formula for y � f (x) for any input

¹Here we are considering functions whose domain is the set of all real numbers.
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x. Working with the known point (x0 , f (x0)) and any other point (x , f (x)) on the function’s
graph, we know that the average rate of change between these two points must be the con-
stant m. This tells us that

f (x) − f (x0)
x − x0

� m.

Since we are interested in finding a formula for y � f (x), we solve this most recent equation
for f (x). Multiplying both sides by (x − x0), we see that

f (x) − f (x0) � m(x − x0).

Adding f (x0) to each side, it follows

f (x) � f (x0) + m(x − x0). (1.4.1)

This shows that to determine the formula for a linear function, all we need to know is its
average rate of change (or slope) and a single point the function passes through.

Example 1.4.4 Find a formula for a linear function f whose average rate of change is m � − 1
4

and passes through the point (−7,−5).
Solution. Using Equation (1.4.1) and the facts that m � − 1

4 and f (−7) � −5 (that is, x0 � −7
and f (x0) � −5), we have

f (x) � −5 − 1
4 (x − (−7)) � 5 − 1

4 (x + 7).

□

Replacing f (x) with y and f (x0) with y0, we call Equation (1.4.1) the point-slope form of a
line.

Point-slope form of a line.

A line with slope m (equivalently, average rate of change m) that passes through the
point (x0 , y0) has equation

y � y0 + m(x − x0).

Activity 1.4.2. Find an equation for the line that is determined by the following con-
ditions; write your answer in point-slope form wherever possible.

a. The line with slope 3
7 that passes through (−11,−17).

b. The line passing through the points (−2, 5) and (3,−1).

c. The line passing through (4, 9) that is parallel to the line 2x − 3y � 5.

d. Explain why the function f given by Table 1.4.5 appears to be linear and find a
formula for f (x).
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1.4 Linear Functions

x f (x)
1 7
3 3
4 1
7 −5

Table 1.4.5: Data for a linear function f .
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Figure 1.4.6: Plot of a linear function h.

e. Find a formula for the linear function shown in Figure 1.4.6.

Visualizing the various components of point-slope form is important. For a line through
(x0 , y0) with slope m, we know its equation is y � y0 + m(x − x0). In Figure 1.4.7, we see
that the line passes through (x0 , y0) along with an arbitary point (x , y), which makes the
vertical change between the two points given by y − y0 and the horizontal change between
the points x − x0. This is consistent with the fact that

AV[x0 ,x] � m �
y − y0

x − x0
.

Indeed, writing m �
y−y0
x−x0

is a rearrangement of the point-slope form of the line, y � y0 +

m(x − x0).
We naturally use the terms “increasing” and “decreasing” as from Definition 1.3.7 to de-
scribe lines based on whether their slope is positive or negative. A line with positive slope,
such as the one in Figure 1.4.7, is increasing because its constant rate of change is positive,
while a line with negative slope, such as in Figure 1.4.8 is decreasing because of its negative
rate of change. We say that a horizontal line (one whose slope is m � 0) is neither increasing
nor decreasing.

A special case arises when the known point on a line satisfies x0 � 0. In this situation, the
known point lies on the y-axis, and thus we call the point the “y-intercept” of the line. The
resulting form of the line’s equation is called slope-intercept form, which is also demonstrated
in Figure 1.4.8.

Slope-intercept form.

For the line with slope m and passing through (0, y0), its equation is

y � y0 + mx.

Slope-intercept form follows from point-slope form from the fact that replacing x0 with 0
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y = y0 +m(x− x0)

y− y0

x− x0

Figure 1.4.7: The point-slope form of a line’s
equation.

x

y

(0,y0)

(x,y)

y = y0 +mx

y− y0

x

Figure 1.4.8: The slope-intercept form of a
line’s equation.

gives us y � y0 + m(x − 0) � y0 + mx. In many textbooks, the slope-intercept form of a line
(often written y � mx + b) is treated as if it is the most useful form of a line. Point-slope
form is actually more important and valuable since we can easily write down the equation
of a line as soon as we know its slope and any point that lies on it, as opposed to needing to
find the y-intercept, which is needed for slope-intercept form. Moreover, point-slope form
plays a prominent role in calculus.

If a line is in slope-intercept or point-slope form, it is useful to be able to quickly interpret
key information about the line from the form of its equation.

Example 1.4.9 For the line given by y � −3 − 2.5(x − 5), determine its slope and a point that
lies on the line.

Solution. This line is in point-slope form. Its slope is m � −2.5 and a point on the line is
(5,−3). □

Example 1.4.10 For the line given by y � 6 + 0.25x, determine its slope and a point that lies
on the line.

Solution. This line is in slope-intercept form. Its slope is m � 0.25 and a point on the line is
(0, 6), which is also the line’s y-intercept. □

1.4.2 Interpreting linear functions in context

Since linear functions are defined by the property that their average rate of change is con-
stant, linear functions perfectly model quantities that change at a constant rate. In context,
we can often think of slope as a rate of change; analyzing units carefully often yields signif-
icant insight.
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1.4 Linear Functions

Example 1.4.11 The Dolbear function T � D(N) � 40 + 0.25N from Section 1.2 is a linear
function whose slope is m � 0.25. What is the meaning of the slope in this context?

Solution. Recall that T is measured in degrees Fahrenheit and N in chirps per minute. We
know that m � AV[a ,b] � 0.25 is the constant average rate of change of D. Its units are “units
of output per unit of input”, and thus “degrees Fahrenheit per chirp per minute”. This tells
us that the average rate of change of the temperature function is 0.25 degrees Fahrenheit
per chirp per minute, which means that for each additional chirp per minute observed, we
expect the temperature to rise by 0.25 degrees Fahrenheit.
Indeed, we can observe this through func-
tion values. We note that T(60) � 55 and
T(61) � 55.25: one additional observed
chirp per minute corresponds to a 0.25 de-
gree increase in temperature. We also see
this in the graph of the line, as seen in Fig-
ure 1.4.12: the slope between the points
(40, 50) and (120, 70) is

m �
70 − 50
120 − 40

�
20
80

� 0.25
degrees F

chirp per minute .
40 80 120 160

20

40

60

80

N (chirps/min)

T (degrees Fahrenheit)

m = 0.25 (120,70)

(40,50)

Figure 1.4.12: The linear Dolbear function
with slope m � 0.25 degrees Fahrenheit per
chirp per minute.

□

Like with the Dolbear function, it is often useful to write a linear function (whose output is
called y) that models a quantity changing at a constant rate (as a function of some input t)
by writing the function relationship in the form

y � b + mt

where b and m are constants. We may think of the four quantities involved in the following
way:

• The constant b is the “starting value” of the output that corresponds to an input of
t � 0;

• The constant m is the rate at which the output changes with respect to changes in the
input: for each additional 1-unit change in input, the output will change by m units.

• The variable t is the independent (input) variable. A nonzero value for t corresponds
to how much the input variable has changed from an initial value of 0.

• The variable y is the dependent (output) variable. The value of y results from a partic-
ular choice of t, and can be thought of as the starting output value (b) plus the change
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in output that results from the corresponding change in input t.

Activity 1.4.3. The summit of Africa’s largest peak, Mt. Kilimanjaro², has two main
ice fields and a glacier at its peak. Geologists measured the ice cover in the year 2000
(t � 0) to be approximately 1951 m2; in the year 2007, the ice cover measured 1555 m2.

a. Suppose that the amount of ice cover at the peak of Mt. Kilimanjaro is changing
at a constant average rate from year to year. Find a linear model A � f (t)whose
output is the area, A, in square meters in year t (where t is the number of years
after 2000).

b. What do the slope and A-intercept mean in the model you found in (a)? In
particular, what are the units on the slope?

c. Compute f (17). What does this quantity measure? Write a complete sentence
to explain.

d. If the model holds further into the future, when do we predict the ice cover will
vanish?

e. In light of your work above, what is a reasonable domain to use for the model
A � f (t)? What is the corresponding range?

Activity 1.4.4. In each of the following prompts, we investigate linear functions in
context.

a. A town’s population initially has 28750 people present and then grows at a con-
stant rate of 825 people per year. Find a linear model P � f (t) for the number
of people in the town in year t.

b. A different town’s population Q is given by the function Q � 1(t) � 42505−465t.
What is the slope of this function and what is its meaning in the model? Write
a complete sentence to explain.

c. A spherical tank is being drained with a pump. Initially the tank is full with 32π
3

cubic feet of water. Assume the tank is drained at a constant rate of 1.2 cubic
feet per minute. Find a linear model V � p(t) for the total amount of water in
the tank at time t. In addition, what is a reasonable domain for the model?

d. A conical tank is being filled in such a way that the height of the water in the
tank, h (in feet), at time t (in minutes) is given by the function h � q(t) � 0.65t.
What can you say about how the water level is rising? Write at least one careful
sentence to explain.

e. Suppose we know that a 5-year old car’s value is $10200, and that after 10 years
its value is $4600. Find a linear function C � L(t) whose output is the value
of the car in year t. What is a reasonable domain for the model? What is the

²The main context of this problem comes from Exercise 30 on p. 27 of Connally’s Functions Modeling Change, 5th
ed.
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value and meaning of the slope of the line? Write at least one careful sentence
to explain.

1.4.3 Summary

• Any function f with domain all real numbers that has a constant average rate of change
on every interval [a , b] will have a straight line graph. We call such functions linear
functions.

• A linear function y � f (x) can be written in the form y � f (x) � y0 +m(x − x0), where
m is the slope of the line and (x0 , y0) is a point that lies on the line. In particular,
f (x0) � y0.

• In an applied context where we have a linear function that models a phenomenon in
the world around us, the slope tells us the function’s (constant) average rate of change.
The units on the slope, m, are always “units of output per unit of input” and this
enables us to articulate how the output changes in response to a 1-unit change in input.

1.4.4 Exercises

1. A town has a population of 2000 people at time t � 0. In each of the following cases,
write a formula for the population P, of the town as a function of year t.

(a) The population increases by 90 people per year.

(b) The population increases by 1 percent a year.

2. Let t be time in seconds and let r(t) be the rate, in gallons per second, that water enters
a reservoir:

r(t) � 600 − 30t .

(a) Evaluate the expression r(5).
(b) Which one of the statements below best describes the physical meaning of the value
of r(5) ?

⊙ How many seconds until the water is entering to reservoir at a rate of 5 gallons
per second.

⊙ The rate at which the rate of the water entering the reservoir is decreasing when
5 gallons remain in the reservoir.

⊙ The total amount, in gallons, of water in the reservoir after 5 seconds.

⊙ The rate, in gallons per second, at which the water is entering reservoir after 5
seconds.

⊙ None of the above
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(c) For each of the mathematical expressions below, match one of the statements A - E
below which best explains its meaning in practical terms.

(a) The slope of the graph of r(t).

(b) The vertical intercept of the graph of r(t).

A. The rate, in gallons per second, at which the water is initially entering the reser-
voir.

B. After how many seconds the water stops flowing into the reservoir and starts to
drain out.

C. The average rate, in gallons per second, at which water is flowing out of the reser-
voir.

D. The initial amount of water, in gallons, in the reservoir.

E. The rate at which the rate of water entering the reservoir is decreasing in gallons
per second squared.

(d) For 0 ≤ t ≤ 30, when does the reservoir have the most water?

(e) For 0 ≤ t ≤ 30, when does the reservoir have the least water?

(f) If the domain of r(t) is 0 ≤ t ≤ 30, what is the range of r(t)?

3. A report by the US Geological Survey indicates that glaciers in Glacier National Park,
Montana, are shrinking. Recent estimates indicate the area covered by glaciers has
decreased from over 25.5 km2 in 1850 to about 16.5 km2 in 1995. Let A � f (t) give the
area (in square km) t years after 2000, and assume f (t) � 16.2 − 0.062t.

a) Find and explain the meaning of the slope. Which statement best explains its signif-
icance?

⊙ The area covered by glaciers is decreasing by 62, 000 m2 every year.

⊙ The total area covered by glaciers decreased by 16.2 km2 from 1850 to 2000.

⊙ The area covered by glaciers is decreasing by 62 m2 every year.

⊙ The total area covered by glaciers is increasing by 0.062 km2 every year.

⊙ The area covered by glaciers is decreasing by 16.2 km2 every year.

⊙ None of the above

b) Find and explain the meaning of the A-intercept. Which statement best explains its
significance?

⊙ The total area covered by glaciers decreased by 16.2 km2 from 1850 to 2000.
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1.4 Linear Functions

⊙ The area covered by glaciers in 2000 was 16.2 km2.

⊙ The total area covered by glaciers will decrease by 0.062 km2 from 2000 to 2001.

⊙ The area covered by glaciers is decreasing by 16.2 km2 every year.

⊙ The area covered by glaciers in 2000 was 0.062 km2 .

⊙ None of the above

c) For both expressions listed below, enter the letter A-E of the statement which best
explains their practical meaning. There are extra, unused statements.

(a) If f (t) � 9, then t is

(b) f (9) is

A. How much area (in km2) will be covered by glaciers in 9 years.

B. The number of years after 2000 that the amount of glacier area that has disap-
peared is 9 km2.

C. The amount of glacier area (in km2) that disappears in 9 years.

D. The number of years after 2000 that the total area covered by glacierswill be 9 km2.

E. How much area (in km2) will be covered by glaciers in 2009.

d) Evaluate f (9).
e) How much glacier area disappears in 9 years?

f) Solve f (t) � 9.

4. Find a formula p � f (h) for the linear equation graphed below. You can enlarge the
graph by clicking on it.
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5. Find the equation for the line L (graphed in red) in the figure below. Note the x-
coordinate of the point Q is 2, y-coordinate of the point P is 13, and the parabola
(graphed in blue) has equation y � x2 + 2.

6. An apartment manager keeps careful record of how the rent charged per unit corre-
sponds to the number of occupied units in a large complex. The collected data is shown
in Table 1.4.13.³

Monthly Rent $650 $700 $750 $800 $850 $900
Occupied Apartments 203 196 189 182 175 168

Table 1.4.13: Data relating occupied apartments to monthly rent.

a. Why is it reasonable to say that the number of occupied apartments is a linear
function of rent?

b. Let A be the number of occupied apartments and R the monthly rent charged (in
dollars). If we let A � f (R), what is the slope of the linear function f ? What is
the meaning of the slope in the context of this question?

c. Determine a formula for A � f (R). What do you think is a reasonable domain
for the function? Why?

d. If the rent were to be increased to $1000, how many occupied apartments should
the apartment manager expect? How much total revenue would the manager
collect in a given month when rent is set at $1000?

e. Why do you think the apartment manager is interested in the data that has been
collected?

7. Alicia and Dexter are each walking on a straight path. For a particular 10-second win-
dow of time, each has their velocity (in feet per second) measured and recorded as a
function of time. Their respective velocity functions are plotted in Figure 1.4.14.

³This problem is a slightly modified version of one found in Carroll College’s Chapter Zero resource for Active
Calculus.
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Figure 1.4.14: The velocity functions A � f (t) and D � 1(t) for Alicia and Damon,
respectively.

a. Determine formulas for both A � f (t) and D � 1(t).

b. What is the value and meaning of the slope of A? Write a complete sentence to
explain and be sure to include units in your response.

c. What is the value and meaning of the average rate of change of D on the interval
[4, 8]? Write a complete sentence to explain and be sure to include units in your
response.

d. Is there ever a time when Alicia and Damon are walking at the same velocity? If
yes, determine both the time and velocity; if not, explain why.

e. Is is possible to determine if there is ever a time when Alicia and Damon are
located at the same place on the path? If yes, determine the time and location; if
not, explain why not enough information is provided.

8. An inverted conical tank with depth 4 feet and radius 2 feet is completely full of water.
The tank is being drained by a pump in such a way that the amount of water in the tank
is decreasing at a constant rate of 1.5 cubic feet per minute. Let V � f (t) denote the
volume of water in the tank at time t and h � 1(t) the depth of the water in the tank at
time t, where t is measured in minutes.

a. How much water is in the tank at t � 0 when the tank is completely full?

b. Explain why volume, V , when viewed as a function of time, t, is a linear function.

c. Determine a formula for V � f (t).

d. At what exact time will the tank be empty?

e. What is a reasonable domain to use for the model f ? What is its corresponding
range?
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Figure 1.4.15: The inverted conical tank.
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1.5 Quadratic Functions

Motivating Questions

• What patterns can we observe in how a quadratic function changes?

• What are familiar and important properties of quadratic functions?

• How can quadratic functions be used to model objects falling under the influence of
gravity?

After linear functions, quadratic functions are arguably the next simplest functions in math-
ematics. A quadratic function is one that may be written in the form

q(x) � ax2
+ bx + c,

where a, b, and c are real numbers with a , 0. One of the reasons that quadratic functions
are especially important is that they model the height of an object falling under the force of
gravity.

Preview Activity 1.5.1. Awater balloon is tossed vertically from a fifth story window.
Its height, h, in meters, at time t, in seconds, is modeled by the function

h � q(t) � −5t2
+ 20t + 25.

a. Execute appropriate computations to complete both of the following tables.

t h � q(t)
0 q(0) � 25
1
2
3
4
5

Table 1.5.1: Function values for h at
select inputs.

[a , b] AV[a ,b]
[0, 1] AV[0,1] � 15 m/s
[1, 2]
[2, 3]
[3, 4]
[4, 5]

Table 1.5.2: Average rates of change
for h on select intervals.

b. What pattern(s) do you observe in Tables 1.5.1 and 1.5.2?

c. Explain why h � q(t) is not a linear function. Use Definition 1.4.3 in your re-
sponse.

d. What is the average velocity of the water balloon in the final second before it
lands? Howdoes this value compare to the average velocity on the time interval
[4.9, 5]?
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1.5.1 Properties of Quadratic Functions

Quadratic functions are likely familiar to you fromexperience in previous courses. Through-
out, we let y � q(x) � ax2 + bx + c where a, b, and c are real numbers with a , 0. From the
outset, it is important to note that when we write q(x) � ax2 + bx + c we are thinking of an
infinite family of functions where each member depends on the three paramaters a, b, and c.

Activity 1.5.2. Open a browser and point it to Desmos. In Desmos, enter q(x) = ax^2
+ bx + c; you will be prompted to add sliders for a, b, and c. Do so. Then begin
exploring with the sliders and respond to the following questions.

a. Describe how changing the value of a impacts the graph of q.

b. Describe how changing the value of b impacts the graph of q.

c. Describe how changing the value of c impacts the graph of q.

d. Which parameter seems to have the simplest effect? Which parameter seems to
have the most complicated effect? Why?

e. Is it possible to find a formula for a quadratic function that passes through the
points (0, 8), (1, 12), (2, 12)? If yes, do so; if not, explain why not.

Because quadratic functions are familiar to us, we will quickly restate some of their impor-
tant known properties.

Solutions to q(x) � 0.

Let a, b, and c be real numbers with a , 0. The equation ax2 + bx + c � 0 can have 0,
1, or 2 real solutions. These real solutions are given by the quadratic formula,

x �
−b ±

√
b2 − 4ac

2a
,

provided that b2 − 4ac ≥ 0.

As we can see in Figure 1.5.3, by shifting the graph of a quadratic function vertically, we can
make its graph cross the x-axis 0 times (as in the graph of p), exactly 1 time (q), or twice (r).
These points are the x-intercepts of the graph.

While the quadratic formula will always provide any real solutions to q(x) � 0, in practice
it is often easier to attempt to factor before using the formula. For instance, given q(x) �

x2 − 5x + 6, we can find its x-intercepts quickly by factoring. Since

x2 − 5x + 6 � (x − 2)(x − 3),

it follows that (2, 0) and (3, 0) are the x-intercepts of q. Note more generally that if we know
the x-intercepts of a quadratic function are (r, 0) and (s , 0), it follows that we can write the
quadratic function in the form q(x) � a(x − r)(x − s).
Every quadratic function has a y-intercept; for a function of form y � q(x) � ax2 + bx + c,
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x

y

p

q

r

Figure 1.5.3: Three examples of
quadratic functions that open up.

x

y

h

Figure 1.5.4: One example of a quadratic
function that opens down.

the y-intercept is the point (0, c), as demonstrated in Figure 1.5.4.

In addition, every quadratic function has a symmetric graph that either always curves up-
ward or always curves downward. The graph opens upward if and only if a > 0 and opens
downward if and only if a < 0. We often call the graph of a quadratic function a parabola.
Every parabola is symmetric about a vertical line that runs through its lowest or highest
point.

The vertex of a parabola.

The quadratic function y � q(x) � ax2+bx+c has its vertex at the point
(
− b

2a , q
(
− b

2a

))
.

When a > 0, the vertex is the lowest point on the graph of q, while if a < 0, the vertex
is the highest point. Moreover, the graph of q is symmetric about the vertical line
x � − b

2a .

Note particularly that due to symmetry, the vertex of a quadratic function lies halfway be-
tween its x-intercepts (provided the function has x-intercepts). In both Figures 1.5.5 and
1.5.6, we see how the parabola is symmetric about the vertical line that passes through the
vertex. One way to understand this symmetry can be seen by writing a given quadratic
function in a different algebraic form.

Example 1.5.7Consider the quadratic function in standard formgiven by y � q(x) � 0.25x2−
x + 3.5. Determine constants a, h, and k so that q(x) � a(x − h)2 + k, and hence determine
the vertex of q. How does this alternate form of q explain the symmetry in its graph?

Solution. We first observe that we can write q(x) � 0.25x2 − x + 3.5 in a form closer to
q(x) � a(x − h)2 + k by factoring 0.25 from the first two terms to get

q(x) � 0.25(x2 − 4x) + 3.5.
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Figure 1.5.5: The vertex of a quadratic
function that opens up.
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h

Figure 1.5.6: The vertex of a quadratic
function that opens down.

Next, we want to add a constant inside the parentheses to form a perfect square. Noting that
(x − 2)2 � x2 − 4x + 4, we need to add 4. Since we are adding 4 inside the parentheses, the 4
is being multiplied by 0.25, which has the net effect of adding 1 to the function. To keep the
function as given, we must also subtract 1, and thus we have

q(x) � 0.25(x2 − 4x + 4) + 3.5 − 1.

It follows that q(x) � 0.25(x − 2)2 + 2.5.

Next, observe that the vertex of q is (2, 2.5). This holds because (x − 2)2 is always greater
than or equal to 0, and thus its smallest possible value is 0 when x � 2. Moreover, when
x � 2, q(2) � 2.5.¹

Finally, the form q(x) � 0.25(x − 2)2 + 2.5 explains the symmetry of q about the line x � 2.
Consider the two points that lie equidistant from x � 2 on the x-axis, z units away: x � 2− z
and x � 2 + z. Observe that for these values,

q(2 − z) � 0.25(2 − z − 2)2 + 2.5 q(2 + z) � 0.25(2 + z − 2)2 + 2.5
� 0.25(−z)2 + 2.5 � 0.25(z)2 + 2.5
� 0.25z2

+ 2.5 � 0.25z2
+ 2.5

Since q(2 − z) � q(2 + z) for any choice of z, this shows the parabola is symmetric about the
vertical line through its vertex. □

In Example 1.5.7, we saw some of the advantages of writing a quadratic function in the form
q(x) � a(x − h)2 + k. We call this the vertex form of a quadratic function.

¹We can also verify this point is the vertex using standard form. From q(x) � 0.25x2−x+3.5, we see that a � 0.25
and b � −1, so x � − b

2a �
1

0.5 � 2. In addition, q(2) � 2.5.
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1.5 Quadratic Functions

Vertex form of a quadratic function.

A quadratic function with vertex (h , k) may be written in the form y � a(x − h)2 + k.
The constant a may be determined from one other function value for an input x , h.

Activity 1.5.3. Reason algebraically using appropriate properties of quadratic func-
tions to answer the following questions. Use Desmos to check your results graphically.

a. How many quadratic functions have x-intercepts at (−5, 0) and (10, 0) and a y-
intercept at (0,−1)? Can you determine an exact formula for such a function? If
yes, do so. If not, explain why.

b. Suppose that a quadratic function has vertex (−3,−4) and opens upward. How
many x-intercepts can you guarantee the function has? Why?

c. In addition to the information in (b), suppose you know that q(−1) � −3. Can
you determine an exact formula for q? If yes, do so. If not, explain why.

d. Does the quadratic function p(x) � −3(x + 1)2 + 9 have 0, 1, or 2 x-intercepts?
Reason algebraically to determine the exact values of any such intercepts or ex-
plain why none exist.

e. Does the quadratic function w(x) � −2x2 + 10x − 20 have 0, 1, or 2 x-intercepts?
Reason algebraically to determine the exact values of any such intercepts or ex-
plain why none exist.

1.5.2 Modeling falling objects

One of the reasons that quadratic functions are so important is because of a physical fact
of the universe we inhabit: for an object only being influenced by gravity, acceleration due to
gravity is constant. If we measure time in seconds and a rising or falling object’s height in
feet, the gravitational constant is 1 � −32 feet per second per second.

One of the fantastic consequences of calculus — which, like the realization that acceleration
due to gravity is constant, is largely due to Sir Isaac Newton in the late 1600s — is that the
height of a falling object at time t is modeled by a quadratic function.

Height of an object falling under the force of gravity.

For an object tossed vertically from an initial height of s0 feet with a velocity of v0
feet per second, the object’s height at time t (in seconds) is given by the formula

h(t) � −16t2
+ v0t + s0

If height is measured instead in meters and velocity in meters per second, the gravitational
constant is 1 � 9.8 and the function h has form h(t) � −4.9t2 + v0t + s0. (When height is
measured in feet, the gravitational constant is 1 � 32.)
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Activity 1.5.4. A water balloon is tossed vertically from a window at an initial height
of 37 feet and with an initial velocity of 41 feet per second.

a. Determine a formula, s(t), for the function that models the height of the water
balloon at time t.

b. Plot the function in Desmos in an appropriate window.

c. Use the graph to estimate the time the water balloon lands.

d. Use algebra to find the exact time the water balloon lands.

e. Determine the exact time the water balloon reaches its highest point and its
height at that time.

f. Compute the average rate of change of s on the intervals [1.5, 2], [2, 2.5], [2.5, 3].
Include units on your answers and write one sentence to explain the meaning
of the values you found. Sketch appropriate lines on the graph of s whose re-
spective slopes are the values of these average rates of change.

1.5.3 How quadratic functions change

So far, we’ve seen that quadratic functions have many interesting properties. In Preview
Activity 1.5.1, we discovered an additional pattern that is particularly noteworthy.

Recall that we considered a water balloon tossed vertically from a fifth story windowwhose
height, h, in meters, at time t, in seconds, is modeled² by the function

h � q(t) � −5t2
+ 20t + 25.

We then completed Table 1.5.8 and Table 1.5.9 to investigate how both function values and
averages rates of change varied as we changed the input to the function.

t h � q(t)
0 q(0) � 25
1 q(1) � 40
2 q(2) � 45
3 q(3) � 40
4 q(4) � 25
5 q(5) � 0

Table 1.5.8: Function values for h at select
inputs.

[a , b] AV[a ,b]
[0, 1] AV[0,1] � 15 m/s
[1, 2] AV[1,2] � 5 m/s
[2, 3] AV[2,3] � −5 m/s
[3, 4] AV[3,4] � −15 m/s
[4, 5] AV[4,5] � −25 m/s

Table 1.5.9: Average rates of change for h on
select intervals [a , b].

In Table 1.5.9, we see an interesting pattern in the average velocities of the ball. Indeed, if
we remove the “AV” notation and focus on the starting value of each interval, viewing the
resulting average rate of change, r, as a function of the starting value, we may consider the
related table seen in Table 1.5.10, where it is apparent that r is a linear function of a.

²Here we are using a � −5 rather than a � −4.9 for simplicity.
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1.5 Quadratic Functions

a r(a)
0 r(0) � 15 m/s
1 r(1) � 5 m/s
2 r(2) � −5 m/s
3 r(3) � −15 m/s
4 r(4) � −25 m/s

Table 1.5.10: Data fromTable 1.5.9, slightly re-
cast.

2 4

20

40

m = 15

m = 5 m =−5

m =−15

m =−25

t

h
h(t) =−5t

2 +20t +25

Figure 1.5.11: Plot of h(t) � −5t2 + 20t + 25
along with line segments whose slopes
correspond to average rates of change.

Indeed, viewing this data graphically as in Figure 1.5.11, we observe that the average rate
of change of h is itself changing in a way that seems to be represented by a linear function.
While it takes key ideas from calculus to formalize this observation, for now we will simply
note that for a quadratic function there seems to be a related linear function that tells us
something about how the quadratic function changes. Moreover, we can also say that on
the downward-opening quadratic function h that its average rate of change appears to be
decreasing as we move from left to right³.

A key closing observation here is that the fact the parabola “bends down” is apparently con-
nected to the fact that its average rate of change decreases as we move left to right. By con-
trast, for a quadratic function that “bends up”, we can show that its average rate of change
increases as we move left to right (see Exercise 1.5.5.7). Moreover, we also see that it’s possi-
ble to view the average rate of change of a function on 1-unit intervals as itself being a func-
tion: a process that relates an input (the starting value of the interval) to a corresponding
output (the average rate of change of the original function on the resulting 1-unit interval).

For any function that consistently bends either exclusively upward or exclusively downward
on a given interval (a , b), we use the following formal language⁴ to describe it.

Definition 1.5.12 If a function f always bends upward on an interval (a , b), we say that f
is concave up on (a , b). Similarly, if f always bends downward on an interval (a , b), we say
that f is concave down on (a , b). ♢

Thus, we now call a quadratic function q(x) � ax2 + bx + c with a > 0 “concave up”, while
if a < 0 we say q is “concave down”.

³Provided that we consider the average rate of change on intervals of the same length. Again, it takes ideas from
calculus to make this observation completely precise.

⁴Calculus is needed to make Definition 1.5.12 rigorous and precise.
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1.5.4 Summary

• Quadratic functions (of the form q(x) � ax2 + bx + c with a , 0) are emphatically not
linear: their average rate of change is not constant, but rather depends on the interval
chosen. At the same time, quadratic functions appear to change in a very regimented
way: if we compute the average rate of change on several consecutive 1-unit intervals,
it appears that the average rate of change itself changes at a constant rate. Quadratic
functions either bend upward (a > 0) or bend downward (a < 0) and these shapes
are connected to whether the average rate of change on consecutive 1-unit intervals
decreases or increases as we move left to right.

• For an object with height h measured in feet at time t in seconds, if the object was
launched vertically at an initial velocity of v0 feet per second and from an initial height
of s0 feet, the object’s height is given by

h � q(t) � −16t2
+ v0t + s0.

That is, the object’s height is completely determined by the initial height and initial
velocity from which it was launched. The model is valid for the entire time until the
object lands. If h is instead measured in meters and v0 in meters per second, −16 is
replaced with −4.9.

• A quadratic function q can be written in one of three familiar forms: standard, vertex,
or factored⁵. Table 1.5.13 shows how, depending on the algebraic form of the function,
various properties may be (easily) read from the formula. In every case, the sign of a
determines whether the function opens up or opens down.

standard vertex factored⁶
form q(x) � ax2 + bx + c q(x) � a(x − h)2 + k q(x) � a(x − r)(x − s)
y-int (0, c) (0, ah2 + k) (0, ars)

x-int⁷
(
−b±

√
b2−4ac
2a , 0

) (
h ±

√
− k

a , 0
)

(r, 0), (s , 0)

vertex
(
− b

2a , q
(
− b

2a

))
(h , k)

( r+s
2 , q

( r+s
2

) )
Table 1.5.13: A summary of the information that can be read from the various algebraic
forms of a quadratic function

1.5.5 Exercises

1. Consider the Quadratic function f (x) � x2 − 5x − 24. Find its vertex, x-intercepts, and
y-intercept.

⁵It’s not always possible to write a quadratic function in factored form involving only real numbers; this can
only be done if it has 1 or 2 x-intercepts.

⁶Provided q has 1 or 2 x-intercepts. In the case of just one, we take r � s.
⁷Provided b2 − 4ac ≥ 0 for standard form; provided − k

a ≥ 0 for vertex form.
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1.5 Quadratic Functions

2. Identify the graphs A (blue), B (red) and C (green):

is the graph of the function f (x) � (x − 3)2

is the graph of the function 1(x) � (x + 4)2

is the graph of the function h(x) � x2 − 2

3. Find the zeros, if any, of the function y � 4(x + 8)2 − 8.

4. Find the zero(s) (if any) of the function y � x2 − 15x + 50

5. If a ball is thrown straight up into the air with an initial velocity of 100 ft/s, its height in
feet after t second is given by y � 100t − 16t2. Find the average velocity (include units,
) for the time period begining when t � 2 seconds and lasting

(i) 0.5 seconds

(ii) 0.1 seconds

(iii) 0.01 seconds

Finally based on the above results, guess what the instantaneous velocity of the ball is
when t � 2.

6. Two quadratic functions, f and 1, are determined by their respective graphs in Fig-
ure 1.5.14.

a. How does the information provided enable you to find a formula for f ? Explain,
and determine the formula.

b. How does the information provided enable you to find a formula for 1? Explain,
and determine the formula.

c. Consider an additional quadratic function h given by h(x) � 2x2 − 8x + 6. Does
the graph of h intersect the graph of f ? If yes, determine the exact points of
intersection, with justification. If not, explain why.

d. Does the graph of h intersect the graph of 1? If yes, determine the exact points of
intersection, with justification. If not, explain why.
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Figure 1.5.14: Two quadratic functions, f and 1.

7. Consider the quadratic function f given by f (x) � 1
2 (x − 2)2 + 1.

a. Determine the exact location of the vertex of f .

b. Does f have 0, 1, or 2 x-intercepts? Explain, and determine the location(s) of any
x-intercept(s) that exist.

c. Complete the following tables of function values and average rates of change of
f at the stated inputs and intervals.

x f (x)
0
1
2
3
4
5

Table 1.5.15: Function values for f at
select inputs.

[a , b] AV[a ,b]
[0, 1]
[1, 2]
[2, 3]
[3, 4]
[4, 5]

Table 1.5.16: Average rates of change
for f on select intervals.

d. What pattern(s) do you observe in Table 1.5.15 and 1.5.16?
8. A water balloon is tossed vertically from a window on the fourth floor of a dormitory

from an initial height of 56.3 feet. A person two floors above observes the balloon reach
its highest point 1.2 seconds after being launched.

a. What is the balloon’s exact height at t � 2.4? Why?

b. What is the exact maximum height the balloon reaches at t � 1.2?

c. What exact time did the balloon land?

d. At what initial velocity was the balloon launched?
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1.6 Composite Functions

1.6 Composite Functions

Motivating Questions

• How does the process of function composition produce a new function from two
other functions?

• In the composite function h(x) � f (1(x)), what do we mean by the “inner” and
“outer” function? What role do the domain and codomain of f and 1 play in de-
termining the domain and codomain of h?

• How does the expression for AV[a ,a+h] involve a composite function?

Recall that a function, by definition, is a process that takes a collection of inputs and pro-
duces a corresponding collection of outputs in such a way that the process produces one
and only one output value for any single input value. Because every function is a process,
it makes sense to think that it may be possible to take two function processes and do one of
the processes first, and then apply the second process to the result.

Example 1.6.1 Suppose we know that y is a function of x according to the process defined
by y � f (x) � x2 − 1 and, in turn, x is a function of t via x � 1(t) � 3t − 4. Is it possible to
combine these processes to generate a new function so that y is a function of t?

Solution. Since y depends on x and x depends on t, it follows that we can also think of y
depending directly on t. We can use substitution and the notation of functions to determine
this relationship.

First, it’s important to realize what the rule for f tells us. In words, f says “to generate the
output that corresponds to an input, take the input and square it, and then subtract 1.” In
symbols, we might express f more generally by writing “ f (□) � □2 − 1.”

Now, observing that y � f (x) � x2 − 1 and that x � 1(t) � 3t − 4, we can substitute the
expression 1(t) for x in f . Doing so,

y � f (x)
� f (1(t))
� f (3t − 4).

Applying the process defined by the function f to the input 3t − 4, we see that

y � (3t − 4)2 − 1,

which defines y as a function of t. □

When we have a situation such as in Example 1.6.1 where we use the output of one function
as the input of another, we often say that we have “composed two functions”. In addition,
we use the notation h(t) � f (1(t)) to denote that a new function, h, results from composing
the two functions f and 1.
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Preview Activity 1.6.1. Let y � p(x) � 3x − 4 and x � q(t) � t2 − 1.
a. Let r(t) � p(q(t)). Determine a formula for r that depends only on t and not on

p or q.

b. Recall Example 1.6.1, which involved functions similar to p and q. What is the
biggest difference between your work in (a) above and in Example 1.6.1?

c. Let t � s(z) � 1
z+4 and recall that x � q(t) � t2 − 1. Determine a formula for

x � q(s(z)) that depends only on z.

d. Suppose that h(t) �
√

2t2 + 5. Determine formulas for two related functions,
y � f (x) and x � 1(t), so that h(t) � f (1(t)).

1.6.1 Composing two functions

Whenever we have two functions, say 1 : A → B and f : B → C, where the codomain of
1 matches the domain of f , it is possible to link the two processes together to create a new
process that we call the composition of f and 1.

Definition 1.6.2 If f and 1 are functions such that 1 : A → B and f : B → C, we define the
composition of f and 1 to be the new function h : A → C given by

h(t) � f (1(t)).

We also sometimes use the notation h � f ◦ 1, where f ◦ 1 is the single function defined by
( f ◦ 1)(t) � f (1(t)). ♢

We sometimes call 1 the “inner function” and f the “outer function”. It is important to note
that the inner function is actually the first function that gets applied to a given input, and
then outer function is applied to the output of the inner function. In addition, in order for a
composite function tomake sense, we need to ensure that the range of the inner function lies
within the domain of the outer function so that the resulting composite function is defined
at every possible input.

In addition to the possibility that functions are given by formulas, functions can be given by
tables or graphs. We can think about composite functions in these settings as well, and the
following activities prompt us to consider functions given in this way.
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Activity 1.6.2. Let functions p and q be given by the graphs in Figure 1.6.4 (which are
each piecewise linear - that is, parts that look like straight lines are straight lines) and
let f and 1 be given by Table 1.6.3.

x 0 1 2 3 4
f (x) 6 4 3 4 6
1(x) 1 3 0 4 2

Table 1.6.3: Table that defines f and 1.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
p

q

Figure 1.6.4: The graphs of p and q.
Compute each of the following quantities or explain why they are not defined.

a. p(q(0))
b. q(p(0))
c. (p ◦ p)(−1)
d. ( f ◦ 1)(2)
e. (1 ◦ f )(3)

f. 1( f (0))

g. For what value(s) of x is f (1(x)) �

4?

h. For what value(s) of x is q(p(x)) �

1?

1.6.2 Composing functions in context

Recall Dolbear’s function, T � D(N) � 40 + 0.25N , that relates the number of chirps per
minute from a snowy cricket to the Fahrenheit temperature, T. We earlier established that
D has a domain of [40, 160] and a corresponding range of [50, 85]. In what follows, we
replace T with F to emphasize that temperature is measured in Fahrenheit degrees.

The Celcius and Fahrenheit temperature scales are connected by a linear function. Indeed,
the function that converts Fahrenheit to Celcius is

C � G(F) � 5
9 (F − 32).

For instance, a Fahrenheit temperature of 32 degrees corresponds to C � G(32) � 0 degrees
Celcius.
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Activity 1.6.3. Let F � D(N) � 40+0.25N beDolbear’s function that converts an input
of number of chirps per minute to degrees Fahrenheit, and let C � G(F) � 5

9 (F − 32)
be the function that converts an input of degrees Fahrenheit to an output of degrees
Celsius.

a. Determine a formula for the new function H � (G ◦ D) that depends only on
the variable N .

b. What is the meaning of the function you found in (a)?

c. How does a plot of the function H � (G ◦ D) compare to that of Dolbear’s func-
tion? Sketch a plot of y � H(N) � (G◦D)(N) on the blank axes to the right of the
plot of Dolbear’s function, and discuss the similarities and differences between
them. Be sure to label the vertical scale on your axes.

40 80 120 160

20

40

60

80

N (chirps/min)

T (degrees Fahrenheit)

(120,70)

Figure 1.6.5: Dolbear’s function.

40 80 120 160

N (chirps/min)

Figure 1.6.6: Blank axes to plot
H � (G ◦ D)(N).

d. What is the domain of the function H � G ◦ D? What is its range?

1.6.3 Function composition and average rate of change

Recall that the average rate of change of a function f on the interval [a , b] is given by

AV[a ,b] �
f (b) − f (a)

b − a
.

In Figure 1.6.7, we see the familiar representation of AV[a ,b] as the slope of the line joining
the points (a , f (a)) and (b , f (b)) on the graph of f . In the study of calculus, we progress
from the average rate of change on an interval to the instantaneous rate of change of a function at a
single value; the core idea that allows us to move from an average rate to an instantaneous one
is letting the interval [a , b] shrink in size.
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y

a b

x

(a, f (a))

(b, f (b))

Figure 1.6.7: AV[a ,b] is the slope of the line
joining the points (a , f (a)) and (b , f (b)) on
the graph of f .

y

a a+h

xh

(a, f (a))

(a+h, f (a+h))

Figure 1.6.8: AV[a ,a+h] is the slope of the line
joining the points (a , f (a)) and (a , f (a + h))
on the graph of f .

To think about the interval [a , b] shrinking while a stays fixed, we often change our perspec-
tive and think of b as b � a + h, where h measures the horizontal differene from b to a. This
allows us to eventually think about h getting closer and closer to 0, and in that context we
consider the equivalent expression

AV[a ,a+h] �
f (a + h) − f (a)

a + h − a
�

f (a + h) − f (a)
h

for the average rate of change of f on [a , a + h].
In this most recent expression for AV[a ,a+h], we see the important role that the composite
function “ f (a + h)” plays. In particular, to understand the expression for AV[a ,a+h] we need
to evaluate f at the quantity (a + h).

Example 1.6.9 Suppose that f (x) � x2. Determine the simplest possible expression you can
find for AV[3,3+h], the average rate of change of f on the interval [3, 3 + h].

Solution. By definition, we know that

AV[3,3+h] �
f (3 + h) − f (3)

h
.

Using the formula for f , we see that

AV[3,3+h] �
(3 + h)2 − (3)2

h
.

Expanding the numerator and combining like terms, it follows that

AV[3,3+h] �
(9 + 6h + h2) − 9

h
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�
6h + h2

h
.

Removing a factor of h in the numerator and observing that h , 0, we can simplify and find
that

AV[3,3+h] �
h(6 + h)

h
� 6 + h.

Hence, AV[3,3+h] � 6 + h, which is the average rate of change of f (x) � x2 on the interval
[3, 3 + h].¹ □

Activity 1.6.4. Let f (x) � 2x2 − 3x + 1 and 1(x) � 5
x .

a. Compute f (1 + h) and expand and simplify the result as much as possible by
combining like terms.

b. Determine themost simplified expression you can for the average rate of change
of f on the interval [1, 1+ h]. That is, determine AV[1,1+h] for f and simplify the
result as much as possible.

c. Compute 1(1 + h). Is there any valid algebra you can do to write 1(1 + h) more
simply?

d. Determine themost simplified expression you can for the average rate of change
of 1 on the interval [1, 1+ h]. That is, determine AV[1,1+h] for 1 and simplify the
result.

In Activity 1.6.4, we see an important setting where algebraic simplification plays a crucial
role in calculus. Because the expresssion

AV[a ,a+h] �
f (a + h) − f (a)

h

always begins with an h in the denominator, in order to precisely understand how this
quantity behaves when h gets close to 0, a simplified version of this expression is needed.
For instance, as we found in part (b) of Activity 1.6.4, it’s possible to show that for f (x) �
2x2 − 3x + 1,

AV[1,1+h] � 2h + 1,
which is a much simpler expression to investigate.

1.6.4 Summary

• When defined, the composition of two functions f and 1 produces a single new func-
tion f ◦ 1 according to the rule ( f ◦ 1)(x) � f (1(x)). We note that 1 is applied first to
the input x, and then f is applied to the output 1(x) that results from 1.

¹Note that 6+h is a linear function of h. This computation is connected to the observation wemade in Table 1.5.9
regarding how there’s a linear aspect to how the average rate of change of a quadratic function changes aswemodify
the interval.
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• In the composite function h(x) � f (1(x)), the “inner” function is 1 and the “outer”
function is f . Note that the inner function gets applied to x first, even though the
outer function appears first when we read from left to right. The composite function
is only defined provided that the codomain of 1 matches the domain of f : that is, we
need any possible outputs of 1 to be among the allowed inputs for f . In particular, we
can say that if 1 : A → B and f : B → C, then f ◦ 1 : A → C. Thus, the domain of
the composite function is the domain of the inner function, and the codomain of the
composite function is the codomain of the outer function.

• Because the expression AV[a ,a+h] is defined by

AV[a ,a+h] �
f (a + h) − f (a)

h

and this includes the quantity f (a + h), the average rate of change of a function on the
interval [a , a + h] always involves the evaluation of a composite function expression.
This idea plays a crucial role in the study of calculus.

1.6.5 Exercises

1. Suppose r � f (t) is the radius, in centimeters, of a circle at time t minutes, and A(r) is
the area, in square centimeters, of a circle of radius r centimeters.

Which of the following statements best explains the meaning of the composite function
A( f (t))?

⊙ The area of a circle, in square centimeters, of radius r centimeters.

⊙ The area of a circle, in square centimeters, at time t minutes.

⊙ The radius of a circle, in centimeters, at time t minutes.

⊙ The function f of the minutes and the area.

⊙ None of the above
2. A swinging pendulum is constructed from a piece of string with a weight attached

to the bottom. The length of the pendulum depends on how much string is let out.
Suppose L � f (t) is the length, in centimeters, of the pendulum at time t minutes, and
P(L) is the period, in seconds, of a pendulum of length L.

Which of the following statements best explains the meaning of the composite function
P( f (t))?

⊙ The period P of the pendulum, in minutes, after t minutes have elapsed.

⊙ The period P of the pendulum, in seconds, when the pendulum has length L
meters.

⊙ The period P of the pendulum, in minutes, when the pendulum has length L
meters.

⊙ The period P of the pendulum, in seconds, after t minutes have elapsed.
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⊙ None of the above
3. The formula for the volume of a cube with side length s is V � s3. The formula for the

surface area of a cube is A � 6s2.

(a) Find the formula for the function s � f (A).
Which of the statements best explains the meaning of s � f (A)?

⊙ The side length for a cube of surface area A

⊙ The side length for a cube of volume V

⊙ The volume of a cube of side length s

⊙ The surface area of a cube of side length s

(b) If V � 1(s), find a formula for 1( f (A)).
Which of the statements best explains the meaning of 1( f (A))?

⊙ The volume for a cube of side length s

⊙ The surface area for a cube of side length s

⊙ The volume for a cube with surface area A

⊙ The surface area for a cube of volume V
4. Given that f (x) � 5x − 6 and 1(x) � 2x − 2, calculate

(a) f ◦ 1(x)=
(b) 1 ◦ f (x)=
(c) f ◦ f (x)=
(d) 1 ◦ 1(x)=

5. This problem gives you some practice identifying howmore complicated functions can
be built from simpler functions.

Let f (x) � x3 − 27and let 1(x) � x − 3. Match the functions defined below with the
letters labeling their equivalent expressions.

1. f (x)/1(x)

2. f (x2)

3. ( f (x))2

4. 1( f (x))

A. −27 + x6

B. 9 + 3x + x2

C. 729 − 54x3 + x6

D. −30 + x3
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6. The number of bacteria in a refrigerated foodproduct is given by N(T) � 27T2−97T+51,
3 < T < 33 where T is the temperature of the food.

When the food is removed from the refrigerator, the temperature is given by T(t) �

4t + 1.7 , where t is the time in hours.Find the composite function N(T(t)).
Find the time when the bacteria count reaches 14225.

7. Let f (x) � 5x + 2 and 1(x) � 4x2 + 3x. Find ( f ◦ 1)(−2) and ( f ◦ 1)(x).
8. Use the given information about various functions to answer the following questions

involving composition.
a. Let functions f and 1 be given by the graphs in Figure 1.6.10 and 1.6.11. An

open circle means there is not a point at that location on the graph. For instance,
f (−1) � 1, but f (3) is not defined.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

f

Figure 1.6.10: Plot of y � f (x).

-2 -1 1 2 3

-1

1

2

3

g

Figure 1.6.11: Plot of y � 1(x).
Determine f (1(1)) and 1( f (−2)).

b. Again using the functions given in (a), can you determine a value of x for which
1( f (x)) is not defined? Why or why not?

c. Let functions r and s be defined by Table 1.6.12.

t −4 −3 −2 −1 0 1 2 3 4
r(t) 4 1 2 3 0 −3 2 −1 −4
s(t) −5 −6 −7 −8 0 8 7 6 5

Table 1.6.12: Table that defines r and s.

Determine (s ◦ r)(3), (s ◦ r)(−4), and (s ◦ r)(a) for one additional value of a of your
choice.

d. For the functions r and s defined in (c), state the domain and range of each func-
tion. For how many different values of b is it possible to determine (r ◦ s)(b)?
Explain.
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e. Let m(u) � u3 + 4u2 − 5u + 1. Determine expressions for m(x2), m(2 + h), and
m(a + h).

f. For the function F(x) � 4−3x − x2, determine the most simplified expression you
can find for AV[2,2+h]. Show your algebraic work and thinking fully.

9. Recall Dolbear’s function that defines temperature, F, in Fahrenheit degrees, as a func-
tion of the number of chirps per minute, N , is F � D(N) � 40 +

1
4 N .

a. Solve the equation F � 40 +
1
4 N for N in terms of F.

b. Say that N � 1(F) is the function you just found in (a). What is the meaning of
this function? What does it take as inputs and what does it produce as outputs?

c. How many chirps per minute do we expect when the outsidet temperature is 82
degrees F? How can we express this in the notation of the function 1?

d. Recall that the function that converts Fahrenheit toCelsius is C � G(F) � 5
9 (F−32).

Solve the equation C �
5
9 (F − 32) for F in terms of C. Call the resulting function

F � p(C). What is the meaning of this function?

e. Is it possible to write the chirp-rate N as a function of temperature C in Celsius?
That is, can we produce a function whose input is in degrees Celsius and whose
output is the number of chirps per minute? If yes, do so and explain your think-
ing. If not, explain why it’s not possible.

10. For each of the following functions, find two simpler functions f and 1 such that the
given function can be written as the composite function 1 ◦ f .

a. h(x) � (x2 + 7)3

b. r(x) �
√

5 − x3

c. m(x) � 1
x4+2x2+1

d. w(x) � 23−x2

11. A spherical tank has radius 4 feet. The tank is initially empty and then begins to be
filled in such a way that the height of the water rises at a constant rate of 0.4 feet per
minute. Let V be the volume of water in the tank at a given instant, and h the depth
of the water at the same instant; let t denote the time elapsed in minutes since the tank
started being filled.

a. Calculus can be used to show that the volume, V , is a function of the depth, h, of
the water in the tank according to the function

V � f (h) � π3 h2(12 − h). (1.6.1)

What is the domain of this model? Why? What is the corresponding range?

b. We are given the fact that the tank is being filled in such a way that the height
of the water rises at a constant rate of 0.4 feet per minute. Said differently, h is
a function of t whose average rate of change is constant. What kind of function
does this make h � p(t)? Determine a formula for p(t).

c. What are the domain and range of the function h � p(t)? How is this tied to the
dimensions of the tank?

d. In (a) we observed that V is a function of h, and in (b) we found that h is a function
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of t. Use these two facts and function composition appropriately to write V as a
function of t. Call the resulting function V � q(t).

e. What are the domain and range of the function q? Why?

f. On the provided axes, sketch accurate graphs of h � p(t) and V � q(t), labeling
the vertical and horizontal scale on each graph appropriately. Make your graphs
as precise as you can; use a computing device to assist as needed.

h

t

V

t

Why do each of the two graphs have their respective shapes? Write at least one
sentence to explain each graph; refer explicitly to the shape of the tank and other
information given in the problem.
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1.7 Inverse Functions

Motivating Questions

• What does it mean to say that a given function has an inverse function?

• How can we determine whether or not a given function has a corresponding inverse
function?

• When a function has an inverse function, what important properties does the inverse
function have in comparison to the original function?

Because every function is a process that converts a collection of inputs to a corresponding
collection of outputs, a natural question is: for a particular function, can we change perspec-
tive and think of the original function’s outputs as the inputs for a reverse process? If we
phrase this question algebraically, it is analogous to asking: given an equation that defines
y is a function of x, is it possible to find a corresponding equation where x is a function of
y?

Preview Activity 1.7.1. Recall that F � 1(C) �
9
5 C + 32 is the function that takes

Celsius temperature inputs and produces the corresponding Fahrenheit temperature
outputs.

a. Show that it is possible to solve the equation F �
9
5 C+32 for C in terms of F and

that doing so results in the equation C �
5
9 (F − 32).

b. Note that the equation C �
5
9 (F − 32) expresses C as a function of F. Call this

function h so that C � h(F) � 5
9 (F − 32).

Find the simplest expression that you can for the composite function j(C) �

h(1(C)).

c. Find the simplest expression that you can for the composite function k(F) �

1(h(F)).

d. Why are the functions j and k so simple? Explain by discussing how the func-
tions 1 and h process inputs to generate outputs and what happens when we
first execute one followed by the other.

1.7.1 When a function has an inverse function

In PreviewActivity 1.7.1, we found that for the function F � 1(C) � 9
5 C+32, it’s also possible

to solve for C in terms of F and write C � h(F) � 5
9 (C − 32). The first function, 1, converts

Celsius temperatures to Fahrenheit ones; the second function, h, converts Fahrenheit tem-
peratures to Celsius ones. Thus, the process h reverses the process of 1, and likewise the
process of 1 reverses the process of h. This is also why it makes sense that h(1(C)) � C and
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1(h(F)) � F. If, for instance, we take a Celsius temperature C, convert it to Fahrenheit, and
convert the result back to Celsius, we arrive back at the Celsius temperature we startedwith:
h(1(C)) � C.

Similar work is sometimes possible with other functions. When we can find a new function
that reverses the process of the original function, we say that the original function “has an
inverse function” and make the following formal definition.

Definition 1.7.1 Let f : A → B be a function. If there exists a function 1 : B → A such that

1( f (a)) � a and f (1(b)) � b

for each a in A and each b in B, then we say that f has an inverse function and that the
function 1 is the inverse of f . ♢

Note particularly what the equation 1( f (a)) � a says: for any input a in the domain of f , the
function 1 will reverse the process of f (which converts a to f (a)) because 1 converts f (a)
back to a.

When a given function f has a corresponding inverse function 1, we usually rename 1 as
f −1, whichwe read aloud as “ f -inverse”. The equation 1( f (a)) � a now reads f −1( f (a)) � a,
which we interpret as saying “ f -inverse converts f (a) back to a”. We similarly write that
f ( f −1(b)) � b.

Activity 1.7.2. Recall Dolbear’s function F � D(N) � 40 +
1
4 N that converts the num-

ber, N , of snowy tree cricket chirps per minute to a corresponding Fahrenheit tem-
perature. We have earlier established that the domain of D is [40, 180] and the range
of D is [50, 85], as seen in Figure 1.2.3.

a. Solve the equation F � 40 +
1
4 N for N in terms of F. Call the resulting function

N � E(F).

b. Explain in words the process or effect of the function N � E(F). What does it
take as input? What does it generate as output?

c. Use the function E that you found in (a.) to compute j(N) � E(D(N)). Simplify
your result as much as possible. Do likewise for k(F) � D(E(F)). What do you
notice about these two composite functions j and k?

d. Consider the equations F � 40 +
1
4 N and N � 4(F − 40). Do these equations

express different relationships between F and N , or do they express the same
relationship in two different ways? Explain.

When a given function has an inverse function, it allows us to express the same relationship
from two different points of view. For instance, if y � f (t) � 2t + 1, we can show¹ that the
function t � 1(y) �

y−1
2 reverses the effect of f (and vice versa), and thus 1 � f −1. We

observe that

y � f (t) � 2t + 1 and t � f −1(y) � y − 1
2

¹Observe that 1( f (t)) � 1(2t + 1) � (2t+1)−1
2 �

2t
2 � t. Similarly, f (1(y)) � f

(
y−1

2

)
� 2

(
y−1

2

)
+ 1 � y − 1+ 1 � y.
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are equivalent forms of the same equation, and thus they say the same thing from two dif-
ferent perspectives. The first version of the equation is solved for y in terms of t, while
the second equation is solved for t in terms of y. This important principle holds in general
whenever a function has an inverse function.

Two perspectives from a function and its inverse function.

If y � f (t) has an inverse function, then the equations

y � f (t) and t � f −1(y)

say the exact same thing but from two different perspectives.

1.7.2 Determining whether a function has an inverse function

It’s important to note in Definition 1.7.1 that we say “If there exists . . ..” That is, we don’t
guarantee that an inverse function exists for a given function. Thus, we might ask: how
can we determine whether or not a given function has a corresponding inverse function?
As with many questions about functions, there are often three different possible ways to
explore such a question: through a table, through a graph, or through an algebraic formula.

Example 1.7.2 Do the functions f and 1 defined by Table 1.7.3 and Table 1.7.4 have corre-
sponding inverse functions? Why or why not?

x 0 1 2 3 4
f (x) 6 4 3 4 6

Table 1.7.3: The table that defines the func-
tion f .

x 0 1 2 3 4
1(x) 3 1 4 2 0

Table 1.7.4: The table that defines the func-
tion 1.

Solution. For any function, the question of whether or not it has an inverse comes down
to whether or not the process of the function can be reliably reversed. For functions given in
table form such as f and 1, we essentially ask if it’s possible to swich the input and output
rows and have the new resulting table also represent a function.

The function f does not have an inverse function because there are two different inputs that
lead to the same output: f (0) � 6 and f (4) � 6. If we attempt to reverse this process, we
have a situation where the input 6 would correspond to two potential outputs, 4 and 6.

However, the function 1 does have an inverse function because when we reverse the rows in
Table 1.7.4, each input (in order, 3, 1, 4, 2, 0) indeed corresponds to one and only one output
(in order, 0, 1, 2, 3, 4). We can thus make observations such as 1−1(4) � 2, which is the same
as saying that 1(2) � 4, just from a different perspective. □

In Example 1.7.2, we see that if we can identify one pair of distinct inputs that lead to the
same output (such as f (0) � f (4) � 6 in Table 1.7.3), then the process of the function cannot
be reversed and the function does not have an inverse.

Example 1.7.5 Do the functions p and q defined by Figure 1.7.6 and Figure 1.7.7 have corre-
sponding inverse functions? Why or why not?
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x

y p
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c

Figure 1.7.6: The graph that defines function
p.

x

y q

a b

c

d

Figure 1.7.7: The graph that defines function
p.

Solution. Recall that when a point such as (a , c) lies on the graph of a function p, this
means that the input x � a, which represents to a value on the horizontal axis, corresponds
with the output y � c that is represented by a value on the vertical axis. In this situation, we
write p(a) � c. We note explicitly that p is a function because its graph passes the Vertical
Line Test: any vertical line intersects the graph of p exactly, and thus each input from the
domain corresponds to one and only one output.

If we attempt to change perspective and use the graph of p to view x as a function of y, we
see that this fails because the output value c is associated with two different inputs, a and
b. Said differently, because the horizontal line y � c intersects the graph of p at both (a , c)
and (b , c) (as shown in Figure 1.7.6), we cannot view y as the input to a function process that
produces the corresonding x-value. Therefore, p does not have an inverse function.

On the other hand, provided that the behavior seen in the figure continues, the function
q does have an inverse because we can view x as a function of y via the graph given in
Figure 1.7.7. This is because for any choice of y, there corresponds one and only one x that
results from y. We can think of this visually by starting at a value such as y � c on the y-
axis, moving horizontally to where the line intersects the graph of p, and thenmoving down
to the corresonding location (here x � a) on the horizontal axis. From the behavior of the
graph of q (a straight line that is always increasing), we see that this correspondence will
hold for any choice of y, and thus indeed x is a function of y. From this, we can say that q
indeed has an inverse function. We thus can write that q−1(c) � a, which is a different way
to express the equivalent fact that q(a) � c. □

The graphical observations that we made for the function q in Example 1.7.5 provide a gen-
eral test for whether or not a function given by a graph has a corresponding inverse function.
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Horizontal Line Test.
A function whose graph lies in the x-y plane has a corresponding inverse function if
and only if every horizontal line intersects the graph at most once. When the graph
passes this test, the horizontal coordinate of each point on the graph can be viewed
as a function of the vertical coordinate of the point.

Example 1.7.8 Do the functions r and s defined by

y � r(t) � 3 − 1
5 (t − 1)3 and y � s(t) � 3 − 1

5 (t − 1)2

have corresponding inverse functions? If not, use algebraic reasoning to explain why; if so,
demonstrate by using algebra to find a formula for the inverse function.

Solution. For any function of the form y � f (t), one way to determine if we can view the
original input variable t as a function of the original output variable y is to attempt to solve
the equation y � f (t) for t in terms of y.

Taking y � 3 − 1
5 (t − 1)3, we try to solve for t by first subtracting 3 from both sides to get

y − 3 � −1
5 (t − 1)3.

Next, multiplying both sides by −5, it follows that

(t − 1)3 � −5(y − 3).

Because the cube root function has the property that 3√z3 � z for every real number z (since
the cube root function is the inverse function for the cubing function, and each function has
both a domain and range of all real numbers), we can take the cube root of both sides of the
preceding equation to get

t − 1 �
3
√
−5(y − 3).

Finally, adding 1 to both sides, we have determined that

t � 1 +
3
√
−5(y − 3).

Because we have been able to express t as a single function of y for every possible value of
y, this shows that r indeed has an inverse and that t � r−1(y) � 1 +

3
√
−5(y − 3).

We attempt similar reasoning for the second function, y � 3 − 1
5 (t − 1)2. To solve for t, we

first subtract 3 from both sides, so that

y − 3 � −1
5 (t − 1)2.

After multiplying both sides by −5, we have

(t − 1)2 � −5(y − 3).

Next, it’s necessary to take the square root of both sides in an effort to isolate t. Here, how-
ever, we encounter a crucial issue. Because the function 1(x) � x2 takes any nonzero number
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and its opposite to the same output (e.g. (−5)2 � 25 � (5)2), this means that we have to ac-
count for both possible inputs that result in the same output. Based on our last equation, this
means that either

t − 1 �
√
−5(y − 3) or t − 1 � −

√
−5(y − 3).

As such, we find not a single equation that expresses t as a function of y, but rather two:

t � 1 +
√
−5(y − 3) or t � 1 −

√
−5(y − 3).

Since it appears that t can’t be expressed as a single function of y, it seems to follow that
y � s(t) � 3 − 1

5 (t − 1)2 does not have an inverse function. □

The graphs of y � r(t) � 3 − 1
5 (t − 1)3 and y � s(t) � 3 − 1

5 (t − 1)2 provide a different
perspective to confirm the results of Example 1.7.8. Indeed, in Figure 1.7.9, we see that r
appears to pass the horizontal line test because it is decreasing², and thus has an inverse
function. On the other hand, the graph of s fails the horizontal line test (picture the line
y � 2 in Figure 1.7.10) and therefore s does not have an inverse function.
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Figure 1.7.9: A plot of
y � r(t) � 3 − 1

5 (t − 1)3.
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Figure 1.7.10: A plot of
y � s(t) � 3 − 1

5 (t − 1)2.

Activity 1.7.3. Determine, with justification, whether each of the following functions
has an inverse function. For each function that has an inverse function, give two ex-
amples of values of the inverse function by writing statements such as “s−1(3) � 1”.

a. The function f : S → S given by Table 1.7.11, where S � {0, 1, 2, 3, 4}.

x 0 1 2 3 4
f (x) 1 2 4 3 2

Table 1.7.11: Values of y � f (x).

²Calculus provides one way to fully justify that the graph of s is indeed always decreasing.
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b. The function 1 : S → S given by Table 1.7.12, where S � {0, 1, 2, 3, 4}.

x 0 1 2 3 4
f (x) 4 0 3 1 2

Table 1.7.12: Values of y � 1(x).

c. The function p given by p(t) � 7 − 3
5 t. Assume that the domain and codomain

of p are both “all real numbers”.

d. The function q given by q(t) � 7 − 3
5 t4. Assume that the domain and codomain

of q are both “all real numbers”.

e. The functions r and s given by the graphs in Figure 1.7.13 and Figure 1.7.14.
Assume that the graphs show all of the important behavior of the functions and
that the apparent trends continue beyond what is pictured.
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2

4
y = r(t)

Figure 1.7.13: The graph of y � r(t).
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2

4
y = s(t)

Figure 1.7.14: The graph of y � s(t).

1.7.3 Properties of an inverse function

When a function has an inverse function, we have observed several important relationships
that hold between the original function and the corresponding inverse function.

Properties of an inverse function.

Let f : A → B be a function whose domain is A and whose range is B be such that f
has an inverse function, f −1. Then:

• f −1 : B → A, so the domain of f −1 is B and its range is A.

• The functions f and f −1 reverse one anothers’ processes. Symbolically,
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1.7 Inverse Functions

f −1( f (a)) � a for every input a in the domain of f , and similarly, f ( f −1(b)) � b
for every input b in the domain of f −1.

• If y � f (t), then we can express the exact same relationship from a different
perspective by writing t � f −1(y).

• Consider the setting where A and B are collections of real numbers. If a point
(x , y) lies on the graph of f , then it follows y � f (x). From this, we can
equivalently say that x � f −1(y). Hence, the point (y , x) lies on the graph
of x � f −1(y).

The last item above leads to a special relationship between the graphs of f and f −1 when
viewed on the same coordinate axes. In that setting, we need to view x as the input of each
function (since it’s the horizontal coordinate) and y as the output. If we know a particular
input-output relationship for f , say f (−1) � 1

2 , then it follows that f −1 ( 1
2
)
� −1. We observe

that the points
(
−1, 1

2
)
and

( 1
2 ,−1

)
are reflections of each other across the line y � x. Because

such a relationship holds for every point (x , y) on the graph of f , this means that the graphs
of f and f −1 are reflections of one another across the line y � x, as seen in Figure 1.7.15.

-2 2

-2

2

y = f (x)

y = f−1(x)

(−1,
1

2
)

( 1

2
,−1)

y = x

Figure 1.7.15: The graph of a function f along with its inverse, f −1.

Activity 1.7.4. During a major rainstorm, the rainfall at Gerald R. Ford Airport is
measured on a frequent basis for a 10-hour period of time. The following function
1 models the rate, R, at which the rain falls (in cm/hr) on the time interval t � 0 to
t � 10:

R � 1(t) � 4
t + 2 + 1

a. Compute 1(3) andwrite a complete sentence to explain its meaning in the given
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context, including units.

b. Compute the average rate of change of 1 on the time interval [3, 5] andwrite two
careful complete sentences to explain the meaning of this value in the context
of the problem, including units. Explicitly address what the value you compute
tells you about how rain is falling over a certain time interval, and what you
should expect as time goes on.

c. Plot the function y � 1(t) using a computational device. On the domain [1, 10],
what is the corresponding range of 1? Why does the function 1 have an inverse
function?

d. Determine 1−1 ( 9
5
)
and write a complete sentence to explain its meaning in the

given context.

e. According to the model 1, is there ever a time during the storm that the rain
falls at a rate of exactly 1 centimeter per hour? Why or why not? Provide an
algebraic justification for your answer.

1.7.4 Summary

• A given function f : A → B has an inverse function whenever there exists a related
function 1 : B → A that reverses the process of f . Formally, this means that 1 must
satisfy 1( f (a)) � a for every a in the domain of f , and f (1(b)) � b for every b in the
range of f .

• We determine whether or not a given function f has a corresponding inverse function
by determining if the process that defines f can be reversed so that we can also think of
the outputs as a function of the inputs. If we have a graph of the function f , we know
f has an inverse function if the graph passes the Horizontal Line Test. If we have a
formula for the function f , say y � f (t), we know f has an inverse function if we can
solve for t and write t � f −1(y).

• A good summary of the properties of an inverse function is provided in the Properties
of an inverse function.

1.7.5 Exercises

1. Suppose P � f (t) is the population in millions in year t.

Which of the statements below best explains the meaning of the INVERSE function
f −1?

⊙ The population change over time

⊙ The year t in which the population is P million

⊙ The population P in millions in year t
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⊙ How long it takes to reach P million

⊙ None of the above

2. Suppose N � f (t) is the total number of inches of snow that fall in the first t days of
January.

Which of the statements below best explains the meaning of the INVERSE function
f −1?

⊙ The days for which there are N inches of snow on the ground

⊙ The number of days it takes to accumulate N inches of snow

⊙ The number of inches of snow accumulated in t days

⊙ The number of inches of snow on the ground after t days

⊙ None of the above

3. The cost (in dollars) of producing x air conditioners is C � 1(x) � 560 + 40x. Find a
formula for the inverse function 1−1(C).

4. (a) Find a formula for the perimeter P � f (s) of a square of side length s.

(b) Find f (4).
Which of the statements best explains the meaning of f (4)?

⊙ The side length of a square of perimeter P

⊙ The area of a square of side length 4

⊙ The side length of a square of area 4

⊙ The perimeter of a square of side length 4

(c) Find f −1(32).
Which of the statements best explains the meaning of f −1(32)?

⊙ The side length of a square of perimeter 32

⊙ The area of a square of side length 32

⊙ The side length of a square of area 32

⊙ The perimeter of a square of side length 32

(d) Find a formula for the inverse function f −1(P).

5. Suppose V � f (t) is the speed in km/hr of an accelerating car t seconds after starting.

Which of the statements best explains the meaning of the INVERSE function f −1 ?
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⊙ The acceleration of a car which is going V km/hr.

⊙ The number of seconds it takes a car to reach a speed of V km/hr.

⊙ How long after leaving the car has an acceleration of V km per second squared.

⊙ The velocity of a car t seconds after accelerating.

⊙ None of the above
6. The gross domestic product (GDP) of the US is given by G(t) where t is the number of

years since 1990, and the units of G are billions of dollars. Match the meaning of each
of the mathematical expressions below with the correct description below.

(a) G−1(9873)

(b) G(11)

A. How many years after 1990 it was when the GDP was 9,873 dollars.

B. How many billions of dollars the GDP was in 2001.

C. The year the GDP was 9,873 billion dollars.

D. How many dollars the GDP is expected to be in 11 years.

E. How many billions of dollars the GDP was in 1991.

F. How many years after 1990 it was when the GDP was 9,873 billion dollars.
7. Consider the functions p and q whose graphs are given by Figure 1.7.16
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qp

Figure 1.7.16: Plots of the graphs of p and q.

a. Compute each of the following values exactly, or explain why they are not de-
fined: p−1(2.5), p−1(−2), p−1(0), and q−1(2).
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1.7 Inverse Functions

b. From your work in (a), you know that the point (2.5,−3.5) lies on the graph of
p−1. In addition to the other two points you know from (a), find three additional
points that lie on the graph of p−1.

c. On Figure 1.7.16, plot the 6 points you have determined in (a) and (b) that lie on
the graph of y � p−1(x). Then, sketch the complete graph of y � p−1(x). How are
the graphs of p and p−1 related to each other?

8. Consider an inverted conical tank that is being filled with water. The tank’s radius is 2
m and its depth is 4 m. Suppose the tank is initially empty and is being filled in such a
way that the height of the water is always rising at a rate of 0.25 meters per minute.

r

h

2

4

Figure 1.7.17: The conical tank.

V

t

Figure 1.7.18: Axes to plot V � 1(t).

a. Explain why the height, h, of the water can be viewed as a function of t according
to the formula h � f (t) � 0.25t.

b. At what time is the water in the tank 2.5 m deep? At what time is the tank com-
pletely full?

c. Suppose we think of the volume, V , of water in the tank as a function of t and
name the function V � 1(t). Do you expect that the function 1 has an inverse
function? Why or why not?

d. Recall that the volume of a cone of radius r and height h is V �
π
3 r2h. Due to

the shape of the tank, similar triangles tell us that r and h satisfy the proportion
r �

1
2 h, and thus

V �
π
3

(
1
2 h

)2

h �
π
12 h3. (1.7.1)

Use the fact that h � f (t) � 0.25t along with Equation (1.7.1) to find a formula for
V � 1(t). Sketch a plot of V � 1(t) on the blank axes provided in Figure 1.7.18.
Write at least one sentence to explain why V � 1(t) has the shape that it does.
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e. Take the formula for V � 1(t) that you determined in (d) and solve for t to deter-
mine a formula for t � 1−1(V). What is the meaning of the formula you find?

f. Find the exact time that there is 8
3π cubic meters of volume in the tank.

9. Recall that in Activity 1.6.3, we showed that Celsius temperature is a function of the
number of chirps per minute from a snowy tree cricket according to the formula

C � H(N) � 40
9 +

5
36 N . (1.7.2)

a. What familiar type of function is H? Why must H have an inverse function?

b. Determine an algebraic formula for N � H−1(C). Clearly show your work and
thinking.

c. What is the meaning of the statement 72 � H−1 ( 130
9

)
?

d. Determine the average rate of change of H on the interval [40, 50]. Write a com-
plete sentence to explain the meaning of the value you find, including units on
the value. Explain clearly how this number describes how the temperature is
changing.

e. Determine the average rate of change of H−1 on the interval [15, 20]. Write a com-
plete sentence to explain the meaning of the value you find, including units on
the value. Explain clearly how this number describes how the number of chirps
per minute is changing.
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1.8 Transformations of Functions

1.8 Transformations of Functions

Motivating Questions

• How is the graph of y � 1(x) � a f (x − b) + c related to the graph of y � f (x)?

• What do we mean by “transformations” of a given function f ? How are translations
and vertical stretches of a function examples of transformations?

In our preparation for calculus, we aspire to understand functions from awide range of per-
spectives and to become familiar with a library of basic functions. So far, two basic families
functions we have considered are linear functions and quadratic functions, the simplest of
which are L(x) � x and Q(x) � x2. As we progress further, we will endeavor to understand
a “parent” function as the most fundamental member of a family of functions, as well as
how other similar but more complicated functions are the result of transforming the parent
function.

Informally, a transformation of a given function is an algebraic process by which we change
the function to a related function that has the same fundamental shape, but may be shifted,
reflected, and/or stretched in a systematic way. For example, among all quadratic functions,
the simplest is the parent function Q(x) � x2, but any other quadratic function such as
1(x) � −3(x − 5)2 + 4 can also be understood in relation to the parent function. We say that
“1 is a transformation of f .”

In Preview Activity 1.8.1, we investigate the effects of the constants a, b, and c in generating
the function 1(x) � a f (x − b) + c in the context of already knowing the function f .

Preview Activity 1.8.1. Open a new Desmos graph and define the function f (x) � x2.
Adjust the window so that the range is for −4 ≤ x ≤ 4 and −10 ≤ y ≤ 10.

a. In Desmos, define the function 1(x) � f (x)+a. (That is, in Desmos on line 2, enter
g(x) = f(x) + a.) You will get prompted to add a slider for a. Do so.
Explore by moving the slider for a and write at least one sentence to describe
the effect that changing the value of a has on the graph of 1.

b. Next, define the function h(x) � f (x − b). (That is, in Desmos on line 4, enter
h(x) = f(x-b) and add the slider for b.)
Move the slider for b and write at least one sentence to describe the effect that
changing the value of b has on the graph of h.

c. Now define the function p(x) � c f (x). (That is, in Desmos on line 6, enter p(x)
= cf(x) and add the slider for c.)
Move the slider for c and write at least one sentence to describe the effect that
changing the value of c has on the graph of p. In particular, when c � −1, how
is the graph of p related to the graph of f ?

d. Finally, click on the icons next to 1, h, and p to temporarily hide them, and
go back to Line 1 and change your formula for f . You can make it whatever
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you’d like, but try something like f (x) � x2 + 2x + 3 or f (x) � x3 − 1. Then,
investigate with the sliders a, b, and c to see the effects on 1, h, and p (unhiding
them appropriately). Write a couple of sentences to describe your observations
of your explorations.

1.8.1 Translations of Functions

We begin by summarizing two of our findings in Preview Activity 1.8.1.

Vertical Translation of a Function.
Given a function y � f (x) and a real number a, the transformed function y � 1(x) �
f (x) + a is a vertical translation of the graph of f . That is, every point (x , f (x)) on the
graph of f gets shifted vertically to the corresponding point (x , f (x)+a) on the graph
of 1.

As we found in our Desmos explorations in the preview activity, is especially helpful to see
the effects of vertical translation dynamically.

Figure 1.8.1: Interactive vertical translations demonstration (in the HTML version only).

In a vertical translation, the graph of 1 lies above the graph of f whenever a > 0, while the
graph of 1 lies below the graph of f whenever a < 0. In Figure 1.8.2, we see the original
parent function f (x) � |x | along with the resulting transformation 1(x) � f (x) − 3, which is
a downward vertical shift of 3 units. Note particularly that every point on the original graph
of f is moved 3 units down; we often indicate this by an arrow and labeling at least one key
point on each graph.

In Figure 1.8.3, we see a horizontal translation of the original function f that shifts its graph
2 units to the right to form the function h. Observe that f is not a familiar basic function;
transformations may be applied to any original function we desire.

From an algebraic point of view, horizontal translations are slightly more complicated than
vertical ones. Given y � f (x), if we define the transformed function y � h(x) � f (x − b),
observe that

h(x + b) � f ((x + b) − b) � f (x).
¹Huge thanks to the amazing David Austin for making these interactive javascript graphics for the text.
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Figure 1.8.2: A vertical translation, 1, of the
function y � f (x) � |x |.
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Figure 1.8.3: A horizontal translation, h, of a
different function y � f (x).

This shows that for an input of x + b in h, the output of h is the same as the output of f that
corresponds to an input of simply x. Hence, in Figure 1.8.3, the formula for h in terms of f
is h(x) � f (x − 2), since an input of x + 2 in h will result in the same output as an input of x
in f . For example, h(2) � f (0), which aligns with the graph of h being a shift of the graph
of f to the right by 2 units.

Again, it’s instructive to see the effects of horizontal translation dynamically.

Figure 1.8.4: Interactive horizontal translations demonstration (in the HTML version only).

Overall, we have the following general principle.

Horizontal Translation of a Function.
Given a function y � f (x) and a real number b, the transformed function y � h(x) �
f (x − b) is a horizontal translation of the graph of f . That is, every point (x , f (x)) on
the graph of f gets shifted horizontally to the corresponding point (x + b , f (x)) on
the graph of 1.
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We emphasize that in the horizontal translation h(x) � f (x − b), if b > 0 the graph of h lies
b units to the right of f , while if b < 0, h lies b units to the left of f .

Activity 1.8.2. Consider the functions r and s given in Figure 1.8.5 and Figure 1.8.6.
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Figure 1.8.5: A parent function r.
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Figure 1.8.6: A parent function s.

a. On the same axes as the plot of y � r(x), sketch the following graphs: y � 1(x) �
r(x) + 2, y � h(x) � r(x + 1), and y � f (x) � r(x + 1) + 2. Be sure to label the
point on each of 1, h, and f that corresponds to (−2,−1) on the original graph
of r. In addition, write one sentence to explain the overall transformations that
have resulted in 1, h, and f .

b. Is it possible to view the function f in (a) as the result of composition of 1 and
h? If so, in what order should 1 and h be composed in order to produce f ?

c. On the same axes as the plot of y � s(x), sketch the following graphs: y � k(x) �
s(x) − 1, y � j(x) � s(x − 2), and y � m(x) � s(x − 2) − 1. Be sure to label the
point on each of k, j, and m that corresponds to (−2,−3) on the original graph
of r. In addition, write one sentence to explain the overall transformations that
have resulted in k, j, and m.

d. Now consider the function q(x) � x2. Determine a formula for the function that
is given by p(x) � q(x + 3) − 4. How is p a transformation of q?

1.8.2 Vertical stretches and reflections

So far, wehave seen the possible effects of adding a constant value to function output— f (x)+
a—and adding a constant value to function input— f (x+b). Each of these actions results in
a translation of the function’s graph (either vertically or horizontally), but otherwise leaving
the graph the same. Next, we investigate the effects of multiplication the function’s output
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by a constant.

Example 1.8.7 Given the parent function y � f (x) pictured in Figure 1.8.8, what are the
effects of the transformation y � v(x) � c f (x) for various values of c?

Solution. We first investigate the effects of c � 2 and c �
1
2 . For v(x) � 2 f (x), the algebraic

impact of this transformation is that every output of f is multiplied by 2. This means that
the only output that is unchanged is when f (x) � 0, while any other point on the graph of
the original function f will be stretched vertically away from the x-axis by a factor of 2. We
can see this in Figure 1.8.8 where each point on the original dark blue graph is transformed
to a corresponding point whose y-coordinate is twice as large, as partially indicated by the
red arrows.
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Figure 1.8.8: The parent function y � f (x)
along with two different vertical stretches, v
and u.

-2 2

-2

2

x

y

f

w

z

(0,−2)

Figure 1.8.9: The parent function y � f (x)
along with a vertical reflection, z, and a
corresponding stretch, w.

In contrast, the transformation u(x) � 1
2 f (x) is stretched vertically by a factor of 1

2 , which has
the effect of compressing the graph of f towards the x-axis, as all function outputs of f are
multiplied by 1

2 . For instance, the point (0,−2) on the graph of f is transformed to the graph
of (0,−1) on the graph of u, and others are transformed as indicated by the purple arrows.

To consider the situation where c < 0, we first consider the simplest case where c � −1 in
the transformation z(x) � − f (x). Here the impact of the transformation is to multiply every
output of the parent function f by −1; this takes any point of form (x , y) and transforms it
to (x ,−y), which means we are reflecting each point on the original function’s graph across
the x-axis to generate the resulting function’s graph. This is demonstrated in Figure 1.8.9
where y � z(x) is the reflection of y � f (x) across the x-axis.

Finally, we also investigate the case where c � −2, which generates y � w(x) � −2 f (x). Here
we can think of −2 as −2 � 2(−1): the effect of multiplying by −1 first reflects the graph
of f across the x-axis (resulting in w), and then multiplying by 2 stretches the graph of z
vertically to result in w, as shown in Figure 1.8.9. □
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As with vertical and horizontal translation, it’s particularly instructive to see the effects of
vertical scaling in a dynamic way.

Figure 1.8.10: Interactive vertical scaling demonstration (in the HTML version only).

We summarize and generalize our observations from Example 1.8.7 and Figure 1.8.10 as
follows.

Vertical Scaling of a Function.

Given a function y � f (x) and a real number c > 0, the transformed function y �

v(x) � c f (x) is a vertical stretch of the graph of f . Every point (x , f (x)) on the graph
of f gets stretched vertically to the corresponding point (x , c f (x)) on the graph of v.
If 0 < c < 1, the graph of v is a compression of f toward the x-axis; if c > 1, the graph
of v is a stretch of f away from the x-axis. Points where f (x) � 0 are unchanged by
the transformation.

Given a function y � f (x) and a real number c < 0, the transformed function y �

v(x) � c f (x) is a reflection of the graph of f across the x-axis followed by a vertical
stretch by a factor of |c |.

Activity 1.8.3. Consider the functions r and s given in Figure 1.8.11 and Figure 1.8.12.
a. On the same axes as the plot of y � r(x), sketch the following graphs: y � 1(x) �

3r(x) and y � h(x) � 1
3 r(x). Be sure to label several points on each of r, 1, and

h with arrows to indicate their correspondence. In addition, write one sentence
to explain the overall transformations that have resulted in 1 and h from r.

b. On the same axes as the plot of y � s(x), sketch the following graphs: y � k(x) �
−s(x) and y � j(x) � − 1

2 s(x). Be sure to label several points on each of s, k, and
j with arrows to indicate their correspondence. In addition, write one sentence
to explain the overall transformations that have resulted in k and j from s.
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Figure 1.8.11: A parent function r.
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Figure 1.8.12: A parent function s.

c. On the additional copies of the two figures below, sketch the graphs of the fol-
lowing transformed functions: y � m(x) � 2r(x + 1) − 1 (at left) and y � n(x) �
1
2 s(x−2)+2. As above, be sure to label several points on each graph and indicate
their correspondence to points on the original parent function.
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d. Describe in words how the function y � m(x) � 2r(x + 1) − 1 is the result of
three elementary transformations of y � r(x). Does the order in which these
transformations occur matter? Why or why not?

1.8.3 Combining shifts and stretches: why order sometimes matters

In the final question of Activity 1.8.3, we considered the transformation y � m(x) � 2r(x +

1) − 1 of the original function r. There are three different basic transformations involved: a
vertical shift of 1 unit down, a horizontal shift of 1 unit left, and a vertical stretch by a factor
of 2. To understand the order in which these transformations are applied, it’s essential to
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remember that a function is a process that converts inputs to outputs.

By the algebraic rule for m, m(x) � 2r(x + 1) − 1. In words, this means that given an input x
for m, we do the following processes in this particular order:

1. add 1 to x and then apply the function r to the quantity x + 1;

2. multiply the output of r(x + 1) by 2;

3. subtract 1 from the output of 2r(x + 1).

These three steps correspond to three basic transformations: (1) shift the graph of r to the
left by 1 unit; (2) stretch the resulting graph vertically by a factor of 2; (3) shift the resulting
graph vertically by −1 units. We can see the graphical impact of these algebraic steps by
taking them one at a time. In Figure 1.8.14, we see the function p that results from a shift 1
unit left of the parent function in Figure 1.8.13. (Each time we take an additional step, we
will de-emphasize the preceding function by having it appear in lighter color and dashed.)
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Figure 1.8.13: The parent function y � r(x).
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Figure 1.8.14: The parent function y � r(x)
along with the horizontal shift
y � p(x) � r(x + 1).

Continuing, we now consider the function q(x) � 2p(x) � 2r(x+1), which results in a vertical
stretch of p away from the x-axis by a factor of 2, as seen in Figure 1.8.15.

Finally, we arrive at y � m(x) � 2r(x + 1) − 1 by subtracting 1 from q(x) � 2r(x + 1);
this of course is a vertical shift of −1 units, and produces the graph of m shown in red in
Figure 1.8.16. We can also track the point (2,−1) on the original parent function: it first
moves left 1 unit to (1,−1), then it is stretched vertically by a factor of 2 away from the x-axis
to (1,−2), and lastly is shifted 1 unit down to the point (1,−3), which we see on the graph of
m.

While there are some transformations that can be executed in either order (such as a com-
bination of a horizontal translation and a vertical translation, as seen in part (b) of Activ-
ity 1.8.2), in other situations order matters. For instance, in our preceding discussion, we
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Figure 1.8.15: The function
y � q(x) � 2p(x) � 2r(x + 1) along with
graphs of p and r.
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Figure 1.8.16: The function
y � m(x) � q(x) − 1 � 2r(x + 1) − 1 along
with graphs of q, p and r.

have to apply the vertical stretch before applying the vertical shift. Algebraically, this is be-
cause

2r(x + 1) − 1 , 2[r(x + 1) − 1].

The quantity 2r(x + 1) − 1 multiplies the function r(x + 1) by 2 first (the stretch) and then the
vertical shift follows; the quantity 2[r(x+1)−1] shifts the function r(x+1) down 1 unit first,
and then executes a vertical stretch by a factor of 2. In the latter scenario, the point (1,−1)
that lies on r(x+1) gets transformed first to (1,−2) and then to (1,−4), which is not the same
as the point (1,−3) that lies on m(x) � 2r(x + 1) − 1.

Activity 1.8.4. Consider the functions f and 1 given in Figure 1.8.17 and Figure 1.8.18.
a. Sketch an accurate graph of the transformation y � p(x) � − 1

2 f (x−1)+2. Write
at least one sentence to explain how you developed the graph of p, and identify
the point on p that corresponds to the original point (−2, 2) on the graph of f .

b. Sketch an accurate graph of the transformation y � q(x) � 21(x + 0.5) − 0.75.
Write at least one sentence to explain how you developed the graph of p, and
identify the point on q that corresponds to the original point (1.5, 1.5) on the
graph of 1.
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Figure 1.8.17: A parent function f .
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Figure 1.8.18: A parent function 1.

c. Is the function y � r(x) �
1
2 (− f (x − 1) − 4) the same function as p or differ-

ent? Why? Explain in two different ways: discuss the algebraic similarities and
differences between p and r, and also discuss how each is a transformation of
f .

d. Find a formula for a function y � s(x) (in terms of 1) that represents this trans-
formation of 1: a horizontal shift of 1.25units left, followed by a reflection across
the x-axis and a vertical stretch of 2.5 units, followed by a vertical shift of 1.75
units. Sketch an accurate, labeled graph of s on the following axes along with
the given parent function 1.
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1.8.4 Summary

• The graph of y � 1(x) � a f (x − b)+ c is related to the graph of y � f (x) by a sequence
of transformations. First, there is horizontal shift of |b | units to the right (b > 0) or left
(b < 0). Next, there is a vertical stretch by a factor of |a | (along with a reflection across
y � 0 in the case where a < 0). Finally, there’s a vertical shift of c units.

• A transformation of a given function f is a process by which the graph may be shifted
or stretched to generate a new, related function with fundamentally the same shape.
In this section we considered four different ways this can occur: through a horizontal
translation (shift), through a reflection across the line y � 0 (the x-axis), through a ver-
tical scaling (stretch) that multiplies every output of a function by the same constant,
and through a vertical translation (shift). Each of these individual processes is itself a
transformation, and theymay be combined in variousways to createmore complicated
transformations.

1.8.5 Exercises

1. The graph of y � x2 is given below:

Find a formula for each of the transformations whose graphs are given below.

a)

b)
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2. To obtain a new graph, stretch the graph of a function f (x) vertically by a factor of 6.
Then shift the new graph 4 units to the right and 2 units up. The result is the graph of
a function

1(x) � A f (x + B) + C

where A, B, C are certain numbers. What are A, B, and C?

3. Identify the graphs A (blue), B (red) and C (green):

is the graph of the function f (x) � (x − 6)2

is the graph of the function 1(x) � (x + 3)2

is the graph of the function h(x) � x2 − 5

4.

96



1.8 Transformations of Functions

The figure above is the graph of the function m(t). Let n(t) � m(t) + 2, k(t) � m(t +
1.5),w(t) � m(t − 0.5) − 2.5 and p(t) � m(t − 1). Find the values of the following:

1. n(−3)
2. n(1)
3. k(2)
4. w(1.5)
5. w(−1.5)
6. p(2)

5. The graph of f (x) contains the point (9, 4). What point must be on each of the following
transformed graphs?

(a) The graph of f (x − 6) must contain the point

(b) The graph of f (x) − 5 must contain the point

(c) The graph of f (x + 2) + 7 must contain the point

6. Let f (x) � x2.
a. Let 1(x) � f (x) + 5. Determine AV[−3,−1] and AV[2,5] for both f and 1. What do

you observe? Why does this phenomenon occur?

b. Let h(x) � f (x − 2). For f , recall that you determined AV[−3,−1] and AV[2,5] in (a).
In addition, determine AV[−1,−1] and AV[4,7] for h. What do you observe? Why
does this phenomenon occur?

c. Let k(x) � 3 f (x). Determine AV[−3,−1] and AV[2,5] for k, and compare the results
to your earlier computations of AV[−3,−1] and AV[2,5] for f . What do you observe?
Why does this phenomenon occur?

d. Finally, let m(x) � 3 f (x − 2) + 5. Without doing any computations, what do you
think will be true about the relationship between AV[−3,−1] for f and AV[−1,1] for
m? Why? After making your conjecture, execute appropriate computations to
see if your intuition is correct.

7. Consider the parent function y � f (x) � x.
a. Consider the linear function in point-slope form given by y � L(x) � −4(x−3)+5.

What is the slope of this line? What is themost obvious point that lies on the line?

b. How can the function L given in (a) be viewed as a transformation of the parent
function f ? Explain the roles of 3, −4, and 5, respectively.

c. Explainwhy any non-vertical line of the form P(x) � m(x−x0)+y0 can be thought
of as a transformation of the parent function f (x) � x. Specifically discuss the
transformation(s) involved.

d. Find a formula for the transformation of f (x) � x that corresponds to a horizontal
shift of 7 units left, a reflection across y � 0 and vertical stretch of 3 units away
from the x-axis, and a vertical shift of −11 units.
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8. We have explored the effects of adding a constant to the output of a function, y �

f (x) + a, adding a constant to the input, y � f (x + a), and multiplying the output of
a function by a constant, y � a f (x). There is one remaining natural transformation to
explore: multiplying the input to a function by a constant. In this exercise, we consider
the effects of the constant a in transforming a parent function f by the rule y � f (ax).
Let f (x) � (x − 2)2 + 1.

a. Let 1(x) � f (4x), h(x) � f (2x), k(x) � f (0.5x), and m(x) � f (0.25x). Use Desmos
to plot these functions. Then, sketch and label 1, h, k, and m on the provided axes
in Figure 1.8.19 along with the graph of f . For each of the functions, label and
identify its vertex, its y-intercept, and its x-intercepts.

y

x

Figure 1.8.19: Axes for plotting f , 1, h,
k, and m in part (a).

y

x

Figure 1.8.20: Axes for plotting f , r, and
s from parts (c) and (d).

b. Based on your work in (a), how would you describe the effect(s) of the transfor-
mation y � f (ax) where a > 0? What is the impact on the graph of f ? Are any
parts of the graph of f unchanged?

c. Now consider the function r(x) � f (−x). Observe that r(−1) � f (1), r(2) � f (−2),
and so on. Without using a graphing utility, how do you expect the graph of y �

r(x) to compare to the graph of y � f (x)? Explain. Then test your conjecture by
using a graphing utility and record the plots of f and r on the axes in Figure 1.8.20.

d. How do you expect the graph of s(x) � f (−2x) to appear? Why? More generally,
howdoes the graph of y � f (ax) compare to the graph of y � f (x) in the situation
where a < 0?
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1.9 Combining Functions

Motivating Questions

• How can we create new functions by adding, subtracting, multiplying, or dividing
given functions?

• What are piecewise functions and what are different ways we can represent them?

In arithmetic, we execute processes where we take two numbers to generate a new number.
For example, 2+3 � 5: the number 5 results from adding 2 and 3. Similarly, we canmultiply
two numbers to generate a new one: 2 · 3 � 6.

We can work similarly with functions. Indeed, we have already seen a sophisticated way to
combine two functions to generate a new, related function through composition. If 1 : A →
B and f : B → C, then we know there’s a new, related function f ◦ 1 : A → C defined by the
process ( f ◦ 1)(x) � f (1(x)). Said differently, the new function f ◦ 1 results from executing
1 first, followed by f .

Just as we can add, subtract, multiply, and divide numbers, we can also add, subtract, mul-
tiply, and divide functions to create a new function from two or more given functions.

Preview Activity 1.9.1. Consider the functions f and 1 defined by Table 1.9.1 and
functions p and q defined by Figure 1.9.2.

x 0 1 2 3 4
f (x) 5 10 15 20 25
1(x) 9 5 3 2 3

Table 1.9.1: Table defining functions f and
1.
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Figure 1.9.2: Graphs defining functions p
and q.

a. Let h(x) � f (x) + 1(x). Determine h(3).

b. Let r(x) � p(x) − q(x). Determine r(−1) exactly.
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c. Are there any values of x forwhich r(x) � 0? If not, explainwhy; if so, determine
all such values, with justification.

d. Let k(x) � f (x) · 1(x). Determine k(0).

e. Let s(x) � p(x)
q(x) . Determine s(1) exactly.

f. Are there any values of x in the interval−4 ≤ x ≤ 4 forwhich s(x) is not defined?
If not, explain why; if so, determine all such values, with justification.

1.9.1 Arithmetic with functions

In most mathematics up until calculus, the main object we study is numbers. We ask ques-
tions such as

• “what number(s) form solutions to the equation x2 − 4x − 5 � 0?”

• “what number is the slope of the line 3x − 4y � 7?”

• “what number is generated as output by the function f (x) �
√

x2 + 1 by the input
x � −2?”

Certainly we also study overall patterns as seen in functions and equations, but this usually
occurs through an examination of numbers themselves, and we think of numbers as the
main objects being acted upon.

This changes in calculus. In calculus, the fundamental objects being studied are functions
themselves. A function is a muchmore sophisticated mathematical object than a number, in
part because a function can be thought of in terms of its graph, which is an infinite collection
of ordered pairs of the form (x , f (x)).
It is often helpful to look at a function’s formula and observe algebraic structure. For in-
stance, given the quadratic function

q(x) � −3x2
+ 5x − 7

we might benefit from thinking of this as the sum of three simpler functions: the constant
function c(x) � −7, the linear function s(x) � 5x that passes through (0, 0)with slope m � 5,
and the concave down basic quadratic function w(x) � −3x2. Indeed, each of the simpler
functions c, s, and w contribute to making q be the function that it is. Likewise, if we were
interested in the function p(x) � (3x2 +4)(9−2x2), it might be natural to think about the two
simpler functions f (x) � 3x2 + 4 and 1(x) � 9 − 2x2 that are being multiplied to produce p.

We thus naturally arrive at the ideas of adding, subtracting, multiplying, or dividing two or
more functions, and hence introduce the following definitions and notation.

Definition 1.9.3 Let f and 1 be functions that share the same domain. Then,
• The sum of f and 1 is the function f + 1 defined by ( f + 1)(x) � f (x) + 1(x).
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1.9 Combining Functions

• The difference of f and 1 is the function f − 1 defined by ( f − 1)(x) � f (x) − 1(x).

• The product of f and 1 is the function f · 1 defined by ( f · 1)(x) � f (x) · 1(x).

• The quotient of f and 1 is the function f
1
defined by

(
f
1

)
(x) � f (x)

1(x) for all x such that
1(x) , 0.

♢

Activity 1.9.2. Consider the functions f and 1 defined by Figure 1.9.4 and Figure 1.9.5.
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Figure 1.9.4: The function f .
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Figure 1.9.5: The function 1.

a. Determine the exact value of ( f + 1)(0).

b. Determine the exact value of (1 − f )(1).

c. Determine the exact value of ( f · 1)(−1).

d. Are there any values of x for which
(

f
1

)
(x) is undefined? If not, explain why. If

so, determine the values and justify your answer.

e. For what values of x is ( f · 1)(x) � 0? Why?

f. Are there any values of x for which ( f − 1)(x) � 0? Why or why not?

1.9.2 Combining functions in context

Whenwework in applied settingswith functions thatmodel phenomena in theworld around
us, it is often useful to think carefully about the units of various quantities. Analyzing units
can help us both understand the algebraic structure of functions and the variables involved,
as well as assist us in assigning meaning to quantities we compute. We have already seen
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this with the notion of average rate of change: if a function P(t) measures the population
in a city in year t and we compute AV[5,11], then the units on AV[5,11] are “people per year,”
and the value of AV[5,11] is telling us the average rate at which the population changes in
people per year on the time interval from year 5 to year 11.

Example 1.9.6 Say that an investor is regularly purchasing stock in a particular company.¹
Let N(t) represent the number of shares owned on day t, where t � 0 represents the first
day on which shares were purchased. Let S(t) give the value of one share of the stock on
day t; note that the units on S(t) are dollars per share. How is the total value, V(t), of the
held stock on day t determined?

Solution. Observe that the units on N(t) are “shares” and the units on S(t) are “dollars per
share”. Thus when we compute the product

N(t) shares · S(t)dollars per share,

it follows that the resulting units are “dollars”, which is the total value of held stock. Hence,

V(t) � N(t) · S(t).

□

Activity 1.9.3. Let f be a function that measures a car’s fuel economy in the following
way. Given an input velocity v in miles per hour, f (v) is the number of gallons of fuel
that the car consumes per mile (i.e., “gallons per mile”). We know that f (60) � 0.04.

a. What is the meaning of the statement “ f (60) � 0.04” in the context of the prob-
lem? That is, what does this say about the car’s fuel economy? Write a complete
sentence.

b. Consider the function 1(v) �
1

f (v) . What is the value of 1(60)? What are the
units on 1? What does 1 measure?

c. Consider the function h(v) � v · f (v). What is the value of h(60)? What are the
units on h? What does h measure?

d. Do f (60), 1(60), and h(60) tell us fundamentally different information, or are
they all essentially saying the same thing? Explain.

e. Suppose we also know that f (70) � 0.045. Find the average rate of change of f
on the interval [60, 70]. What are the units on the average rate of change of f ?
What does this quantity measure? Write a complete sentence to explain.

1.9.3 Piecewise functions

In both abstract and applied settings, we sometimes have to use different formulas on dif-
ferent intervals in order to define a function of interest.

¹This example is taken from Section 2.3 of Active Calculus.
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1.9 Combining Functions

A familiar and important function that is de-
fined piecewise is the absolute value function:
A(x) � |x |. We know that if x ≥ 0, |x | � x,
whereas if x < 0, |x | � −x.

Definition 1.9.7 The absolute value of a real
number, denoted by A(x) � |x |, is defined by
the rule

A(x) �
{
−x , x < 0
x , x ≥ 0

♢

-3 -1 1 3

-3

-1

1

3

x

y
A

y = xy =−x

Figure 1.9.8: A plot of the absolute value
function, A(x) � |x |.

The absolute value function is one example of a piecewise-defined function. The “bracket”
notation in Definition 1.9.7 is how we express which piece of the function applies on which
interval. As we can see in Figure 1.9.8, for x values less than 0, the function y � −x applies,
whereas for x greater than or equal to 0, the rule is determined by y � x.

As long as we are careful to make sure that each potential input has one and only one corre-
sponding output, we can define a piecewise function using as many different functions on
different intervals as we desire.

Activity 1.9.4. In what follows, we work to understand two different piecewise func-
tions entirely by hand based on familiar properties of linear and quadratic functions.

a. Consider the function p defined by the following rule:

p(x) �
{
−(x + 2)2 + 2, x < 0
1
2 (x − 2)2 + 1, x ≥ 0

What are the values of p(−4), p(−2), p(0), p(2), and p(4)?

b. What point is the vertex of the quadratic part of p that is valid for x < 0? What
point is the vertex of the quadratic part of p that is valid for x ≥ 0?

c. For what values of x is p(x) � 0? In addition, what is the y-intercept of p?

d. Sketch an accurate, labeled graph of y � p(x) on the axes provided in Fig-
ure 1.9.9.
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y

x

Figure 1.9.9: Axes to plot y � p(x).
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Figure 1.9.10: Graph of y � f (x).
e. For the function f defined by Figure 1.9.10, determine a piecewise-defined for-

mula for f that is expressed in bracket notation similar to the definition of
y � p(x) above.

1.9.4 Summary

• Just as we can generate a new number by adding, subtracting, multiplying, or dividing
two given numbers, we can generate a new function by adding, subtracting, multiply-
ing, or dividing two given functions. For instance, if we know formulas, graphs, or
tables for functions f and 1 that share the same domain, we can create their product
p according to the rule p(x) � ( f · 1)(x) � f (x) · 1(x).

• A piecewise function is a function whose formula consists of at least two different
formulas in such a way that which formula applies depends on where the input falls
in the domain. For example, given two functions f and 1 each defined on all real
numbers, we can define a new piecewise function P according to the rule

P(x) �
{

f (x), x < a

1(x), x ≥ a

This tells us that for any x to the left of a, we use the rule for f , whereas for any x to
the right of or equal to a, we use the rule for 1. We can use as many different functions
as we want on different intervals, provided the intervals don’t overlap.

1.9.5 Exercises

1. For f (x) � 2x + 4 and 1(x) � 5x − 4, find ( f − 1)(x) and ( f − 1)(−4).
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2. For f (t) � t − 2 and 1(t) � t − 3, find
(

f
1

)
(t) and

(
f
1

)
(−4).

3. For f (x) � 2 + x2 and 1(x) � 2x − 1, find ( f · 1)(x) and ( f · 1)(−3).

4.
The graph of f is shown in red, and the
graph of 1 is shown in blue. Use the
graphs to evaluate each quantity given
below.
a) f (3)
b) 1(3)
c) f (3) + 1(3)
d) ( f − 1)(3)

5.
The graph of f is shown in red, and the
graph of 1 is shown in blue. Use the
graphs to evaluate each quantity given
below.
a) f (−2)
b) 1(−2)
c) ( f + 1)(−2)
d) (1 − f )(−2)

6.

x f (x) 1(x)
1 −3 2
2 3 4
3 1 −4
4 −4 −1
5 2 5

Use the table defining f and 1 to solve:
a) ( f − 1)(4)
b) ( f + 1)(4) − (1 − f )(5)

c)
(

f
1

)
(4)
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7. Let r(t) � 2t − 3 and s(t) � 5 − 3t. Determine a formula for each of the following new
functions and simplify your result as much as possible.

a. f (t) � (r + s)(t)
b. 1(t) � ( s

r )(t)
c. h(t) � (r · s)(t)

d. q(t) � (s ◦ r)(t)

e. w(t) � r(t − 4) + 7
8. Consider the functions s and 1 defined by the graphs in Figure 1.9.11 and Figure 1.9.12.

Assume that to the left and right of the pictured domains, each function continues
behaving according to the trends seen in the figures.
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Figure 1.9.11: The graph of a piecewise
function, s.
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Figure 1.9.12: The graph of a piecewise
function, 1.

a. Determine a piecewise formula for the function y � s(t) that is valid for all real
numbers t.

b. Determine a piecewise formula for the function y � 1(x) that is valid for all real
numbers x.

c. Determine each of the following quantities or explain why they are not defined.

i. (s · 1)(1)
ii. (1 − s)(3)

iii. (s ◦ 1)(1.5)
iv. (1 ◦ s)(−4)

9. One of themost important principles in the study of changing quantities is found in the
relationship between distance, average velocity, and time. For a moving body traveling
on a straight-line path at an average rate of v for a period of time t, the distance traveled,
d, is given by

d � v · t

In the Ironman Triathlon, competitors swim 2.4 miles, bike 112 miles, and then run
a 26.2 mile marathon. In the following sequence of questions, we build a piecewise
function that models a competitor’s location in the race at a given time t. To start, we
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have the following known information.

• She swims at an average rate of 2.5 miles per hour throughout the 2.4 miles in the
water.

• Her transition from swim to bike takes 3 minutes (0.05 hours), during which time
she doesn’t travel any additional distance.

• She bikes at an average rate of 21 miles per hour throughout the 112 miles of
biking.

• Her transition from bike to run takes just over 2 minutes (0.03 hours), during
which time she doesn’t travel any additional distance.

• She runs at an average rate of 8.5 miles per hour throughout the marathon.

• In the questions that follow, assume for the purposes of the model that the triath-
lete swims, bikes, and runs at essentially constant rates (given by the average rates
stated above).

a. Determine the time the swimmer exits the water. Report your result in hours.

b. Likewise, determine the time the athlete gets off her bike, as well as the time she
finishes the race.

c. List 5 key points in the form (time, distance): when exiting the water, when start-
ing the bike, when finishing the bike, when starting the run, and when finishing
the run.

d. What is the triathlete’s average velocity over the course of the entire race? Is this
velocity the average of her swim velocity, bike velocity, and run velocity? Why or
why not?

e. Determine a piecewise function s(t) whose value at any given time (in hours) is
the triathlete’s total distance traveled.

f. Sketch a carefully labeled graph of the triathlete’s distance traveled as a function
of time on the axes provided. Provide clear scale andnote keypoints on the graph.

s

t

V

t
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Chapter 1 Relating Changing Quantities

g. Sketch a possible graph of the triathete’s velocity, V , as a function of time on the
righthand axes. Here, too, label key points and provide clear scale. Write several
sentences to explain and justify your graph.

108



CHAPTER 2
Circular Functions

2.1 Traversing Circles

Motivating Questions

• How does a point traversing a circle naturally generate a function?

• What are some important properties that characterize a function generated by a point
traversing a circle?

• How does a circular function change in ways that are different from linear and qua-
dratic functions?

Certain naturally occurring phenomena eventually repeat themselves, especially when the
phenomenon is somehow connected to a circle. For example, suppose that you are taking
a ride on a ferris wheel and we consider your height, h, above the ground and how your
height changes in tandem with the distance, d, that you have traveled around the wheel.
In Figure 2.1.1 we see a snapshot of this situation, which is available as a full animation¹ at
http://gvsu.edu/s/0Dt.

Figure 2.1.1: A snapshot of the motion of a cab moving around a ferris wheel. Reprinted
with permission from Illuminations by the National Council of Teachers of Mathematics.
All rights reserved.

¹Used with permission from Illuminations by the National Council of Teachers of Mathematics. All rights re-
served.

http://gvsu.edu/s/0Dt


Chapter 2 Circular Functions

Because we have two quantities changing in tandem, it is natural to wonder if it is possible
to represent one as a function of the other.

Preview Activity 2.1.1. In the context of the ferris wheel pictured in Figure 2.1.1,
assume that the height, h, of the moving point (the cab in which you are riding),
and the distance, d, that the point has traveled around the circumference of the ferris
wheel are both measured in meters.

Further, assume that the circumference of the ferris wheel is 150 meters. In addition,
suppose that after getting in your cab at the lowest point on the wheel, you traverse
the full circle several times.

a. Recall that the circumference, C, of a circle is connected to the circle’s radius, r,
by the formula C � 2πr. What is the radius of the ferris wheel? How high is
the highest point on the ferris wheel?

b. How high is the cab after it has traveled 1/4 of the circumference of the circle?

c. How much distance along the circle has the cab traversed at the moment it first
reaches a height of 150

π ≈ 47.75 meters?

d. Can h be thought of as a function of d? Why or why not?

e. Can d be thought of as a function of h? Why or why not?

f. Why do you think the curve shown at right in Figure 2.1.1 has the shape that it
does? Write several sentences to explain.

2.1.1 Circular Functions

The natural phenomenon of a point moving around a circle leads to interesting relation-
ships. For easier arithmetic, let’s consider a point traversing a circle of circumference 24 and
examine how the point’s height, h, changes as the distance traversed, d, changes. Note par-
ticularly that each time the point traverses 1

8 of the circumference of the circle, it travels a
distance of 24 · 1

8 � 3 units, as seen in Figure 2.1.2 where each noted point lies 3 additional
units along the circle beyond the preceding one. Note that we know the exact heights of
certain points. Since the circle has circumference C � 24, we know that 24 � 2πr and there-
fore r �

12
π ≈ 3.82. Hence, the point where d � 6 (located 1/4 of the way along the circle)

is at a height of h �
12
π ≈ 3.82. Doubling this value, the point where d � 12 has height

h �
24
π ≈ 7.64. Other heights, such as those that correspond to d � 3 and d � 15 (identified

on the figure by the green line segments) are not obvious from the circle’s radius, but can be
estimated from the grid in Figure 2.1.2 as h ≈ 1.1 (for d � 3) and h ≈ 6.5 (for d � 15). Using
all of these observations along with the symmetry of the circle, we can determine the other
entries in Table 2.1.3. Moreover, if we now let the point continue traversing the circle, we
observe that the d-values will increase accordingly, but the h-values will repeat according
to the already-established pattern, resulting in the data in Table 2.1.4. It is apparent that
each point on the circle corresponds to one and only one height, and thus we can view the
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-4 4

2

4

6

d = 0

d = 3

d = 6

d = 9

d = 12

d = 15

d = 18

Figure 2.1.2: A point traversing a circle with circumference C � 24.

d 0 3 6 9 12 15 18 21 24
h 0 1.1 3.82 6.5 7.64 6.5 3.82 1.1 0

Table 2.1.3: Data for height, h, as a function of distance traversed, d.

height of a point as a function of the distance the point has traversed around the circle, say
h � f (d). Using the data from the two tables and connecting the points in an intuitive way,
we get the graph shown in Figure 2.1.5. The function h � f (d) we have been discussing is
an example of what we will call a circular function. Indeed, it is apparent that if we

• take any circle in the plane,

• choose a starting location for a point on the circle,

• let the point traverse the circle continuously,

• and track the height of the point as it traverses the circle,

the height of the point is a function of distance traversed and the resulting graph will have
the same basic shape as the curve shown in Figure 2.1.5. It also turns out that if we track the
location of the x-coordinate of the point on the circle, the x-coordinate is also a function of
distance traversed and its curve has a similar shape to the graph of the height of the point
(the y-coordinate). Both of these functions are circular functions because they are generated
by motion around a circle.

Activity 2.1.2. Consider the circle pictured in Figure 2.1.6 that is centered at the point
(2, 2) and that has circumference 8. Assume that we track the y-coordinate (that is,
the height, h) of a point that is traversing the circle counterclockwise and that it starts
at P0 as pictured.
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Chapter 2 Circular Functions

d 24 27 30 33 36 39 42 45 48
h 0 1.1 3.82 6.5 7.64 6.5 3.82 1.1 0

Table 2.1.4: Additional data for height, h, as a function of distance traversed, d.

6 12 18 24 30 36 42

2

4

6

h

d

(3, f (3))

(15, f (15))

h = f (d)

Figure 2.1.5: The height, h, of a point traversing a circle of radius 24 as a function of
distance, d, traversed around the circle.

1 2 3

1

2

3

P0

P1

(2,2)

Figure 2.1.6: A point
traversing the circle.

h

d

Figure 2.1.7: Axes for plotting h as a function of d.

a. How far along the circle is the point P1 from P0? Why?

b. Label the subsequent points in the figure P2, P3, . . . as we move counterclock-
wise around the circle. What is the exact y-coordinate of the point P2? of P4?
Why?

c. Determine the y-coordinates of the remainingpoints on the circle (exactlywhere
possible, otherwise approximately) and hence complete the entries in Table 2.1.8
that track the height, h, of the point traversing the circle as a function of distance
traveled, d. Note that the d-values in the table correspond to the point traversing
the circle more than once.
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2.1 Traversing Circles

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
h 2

Table 2.1.8: Data for h as a function of d.

d. By plotting the points in Table 2.1.8 and connecting them in an intuitive way,
sketch a graph of h as a function of d on the axes provided in Figure 2.1.7 over
the interval 0 ≤ d ≤ 16. Clearly label the scale of your axes and the coordinates
of several important points on the curve.

e. What is similar about your graph in comparison to the one in Figure 2.1.5? What
is different?

f. What will be the value of h when d � 51? How about when d � 102?

2.1.2 Properties of Circular Functions

Every circular function has several important features that are connected to the circle that
defines the function. For the discussion that follows, we focus on circular functions that
result from tracking the y-coordinate of a point traversing counterclockwise a circle of radius
a centered at the point (k ,m). Further, we will denote the circumference of the circle by the
letter p.

k

m

a

R

S

P

Q

Figure 2.1.9: A point
traversing the circle.

m

p

h

d

a

a

(1.5p,m−a)

(p,m+a)

Figure 2.1.10: Plotting h as a function of d.

We assume that the point traversing the circle starts at P in Figure 2.1.9. Its height is initially
y � m + a, and then its height decreases to y � m as we traverse to Q. Continuing, the
point’s height falls to y � m − a at R, and then rises back to y � m at S, and eventually back
up to y � m + a at the top of the circle. If we plot these heights continuously as a function
of distance, d, traversed around the circle, we get the curve shown at right in Figure 2.1.10.
This curve has several important features for which we introduce important terminology.

The midline of a circular function is the horizontal line y � m for which half the curve lies
above the line and half the curve lies below. If the circular function results from tracking
the y-coordinate of a point traversing a circle, y � m corresponds to the y-coordinate of
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Chapter 2 Circular Functions

the center of the circle. In addition, the amplitude of a circular function is the maximum
deviation of the curve from the midline. Note particularly that the value of the amplitude,
a, corresponds to the radius of the circle that generates the curve.

Because we can traverse the circle in either direction and for as far as we wish, the domain
of any circular function is the set of all real numbers. From our observations about the
midline and amplitude, it follows that the range of a circular function with midline y � m
and amplitude a is the interval [m − a ,m + a].
Finally, we introduce the formal definition of a periodic function.

Definition 2.1.11 Let f be a function whose domain and codomain are each the set of all
real numbers. We say that f is periodic provided that there exists a real number k such that
f (x+ k) � f (x) for every possible choice of x. The smallest value p for which f (x+ p) � f (x)
for every choice of x is called the period of f . ♢

For a circular function, the period is always the circumference of the circle that generates
the curve. In Figure 2.1.10, we see how the curve has completed one full cycle of behavior
every p units, regardless of where we start on the curve.

Circular functions arise as models for important phenomena in the world around us, such
as in a harmonic oscillator. Consider a mass attached to a spring where the mass sits on
a frictionless surface. After setting the mass in motion by stretching or compressing the
spring, the mass will oscillate indefinitely back and forth, and its distance from a fixed point
on the surface turns out to be given by a circular function.

Activity 2.1.3. A weight is placed on a frictionless table next to a wall and attached
to a spring that is fixed to the wall. From its natural position of rest, the weight is
imparted an initial velocity that sets it in motion. The weight then oscillates back and
forth, and we can measure its distance, h � f (t) (in inches) from the wall at any given
time, t (in seconds). A graph of f and a table of select values are given below.

t f (t)
0.25 6.807
0.5 4.464
0.75 3.381

1 3.000
1.25 3.381
1.5 4.464
1.75 6.087

2 8.000

t f (t)
2.25 9.913
2.5 11.536
2.75 12.619

3 13.000
3.25 12.619
3.5 11.536
3.75 9.913

4 8.000

2 4 6 8 10 12

2

4

6

8

10

12
h

t

h = f (t)

a. Determine the period p, midline y � m, and amplitude a of the function f .
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2.1 Traversing Circles

b. What is the furthest distance the weight is displaced from the wall? What is the
least distance the weight is displaced from the wall? What is the range of f ?

c. Determine the average rate of change of f on the intervals [4, 4.25] and [4.75, 5].
Write one careful sentence to explain the meaning of each (including units). In
addition, write a sentence to compare the twodifferent values youfind andwhat
they together say about the motion of the weight.

d. Based on the periodicity of the function, what is the value of f (6.75)? of f (11.25)?

2.1.3 The average rate of change of a circular function

Just as there are important trends in the values of a circular function, there are also interest-
ing patterns in the average rate of change of the function. These patterns are closely tied to
the geometry of the circle.

For the next part of our discussion, we consider a circle of radius 1 centered at (0, 0), and
consider a point that travels a distance d counterclockwise around the circle with its starting
point viewed as (1, 0). We use this circle to generate the circular function h � f (d) that tracks
the height of the point at the moment the point has traversed d units around the circle from
(1, 0). Let’s consider the average rate of change of f on several intervals that are connected
to certain fractions of the circumference.

Remembering that h is a function of distance traversed along the circle, it follows that the
average rate of change of h on any interval of distance between two points P and Q on the
circle is given by

AV[P,Q] �
change in height

distance along the circle ,

where both quantities are measured from point P to point Q.

First, in Figure 2.1.12, we consider points P, Q, and R where Q results from traversing 1/8
of the circumference from P, and R 1/8 of the circumference from Q. In particular, we note
that the distance d1 along the circle from P to Q is the same as the distance d2 along the circle
from Q to R, and thus d1 � d2. At the same time, it is apparent from the geometry of the
circle that the change in height h1 from P to Q is greater than the change in height h2 from
Q to R, so h1 > h2. Thus, we can say that

AV[P,Q] �
h1
d1
>

h2
d2

� AV[Q ,R].
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P

Q

R

d1

d2

h1

h2

Figure 2.1.12: Comparing the average rate of
change over 1/8 the circumference.

P

Q

R
S

d1

d5

h1

h5

Figure 2.1.13: Comparing the average rate of
change over 1/20 the circumference.

The differences in certain average rates of change appear to become more extreme if we
consider shorter arcs along the circle. Next we consider traveling 1/20 of the circumference
along the circle. In Figure 2.1.13, points P and Q lie 1/20 of the circumference apart, as do
R and S, so here d1 � d5. In this situation, it is the case that h1 > h5 for the same reasons as
above, butwe can say evenmore. From the green triangle in Figure 2.1.13, we see that h1 ≈ d1
(while h1 < d1), so that AV[P,Q] �

h1
d1

≈ 1. At the same time, in the magenta triangle in the
figure we see that h5 is very small, especially in comparison to d5, and thus AV[R,S] �

h5
d5

≈ 0.
Hence, in Figure 2.1.13,

AV[P,Q] ≈ 1 and AV[R,S] ≈ 0.

This information tells us that a circular function appears to change most rapidly for points
near its midline and to change least rapidly for points near its highest and lowest values.

We can study the average rate of change not only on the circle itself, but also on a graph
such as Figure 2.1.10, and thus make conclusions about where the function is increasing,
decreasing, concave up, and concave down.

Activity 2.1.4. Consider the same setting as Activity 2.1.3: a weight oscillates back
and forth on a frictionless table with distance from the wall given by, h � f (t) (in
inches) at any given time, t (in seconds). A graph of f and a table of select values are
given below.
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t f (t)
0.25 6.807
0.5 4.464
0.75 3.381

1 3.000
1.25 3.381
1.5 4.464
1.75 6.087

2 8.000

t f (t)
2.25 9.913
2.5 11.536
2.75 12.619

3 13.000
3.25 12.619
3.5 11.536
3.75 9.913

4 8.000

2 4 6 8 10 12

2

4

6

8

10

12
h

t

h = f (t)

a. Determine AV[2,2.25], AV[2.25,2.5], AV[2.5,2.75], and AV[2.75,3]. What do these four
values tell us about how the weight is moving on the interval [2, 3]?

b. Give an example of an interval of length 0.25 units on which f has its most
negative average rate of change. Justify your choice.

c. Give an example of the longest interval you can find on which f is decreasing.

d. Give an example of an interval on which f is concave up.²

e. On an interval where f is both decreasing and concave down, what does this tell
us about how the weight is moving on that interval? For instance, is the weight
moving toward or away from the wall? is it speeding up or slowing down?

f. What general conclusions can you make about the average rate of change of a
circular function on intervals near its highest or lowest points? about its average
rate of change on intervals near the function’s midline?

2.1.4 Summary

• When a point traverses a circle, a corresponding function can be generated by tracking
the height of the point as it moves around the circle, where height is viewed as a func-
tion of distance traveled around the circle. We call such a function a circular function.
An image that shows how a circular function’s graph is generated from the circle can
be seen in Figure 2.1.10.

• Circular functions have several standard features. The function has a midline that is
the line for which half the points on the curve lie above the line and half the points on
the curve lie below. A circular function’s amplitude is the maximum deviation of the

²Recall that a function is concave up on an interval provided that throughout the interval, the curve bends
upward, similar to a parabola that opens up.
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function value from the midline; the amplitude corresponds to the radius of the circle
that generates the function. Circular functions also repeat themselves, and we call
the smallest value of p for which f (x + p) � f (x) for all x the period of the function.
The period of a circular function corresponds to the circumference of the circle that
generates the function.

• Non-constant linear functions are either always increasing or always decreasing; qua-
dratic functions are either always concave up or always concave down. Circular func-
tions are sometimes increasing and sometimes decreasing, plus sometimes concave up
and sometimes concave down. These behaviors are closely tied to the geometry of the
circle.

2.1.5 Exercises

1. Let y � f (x) be a periodic function whose values are given below. Find the period,
amplitude, and midline.

x 5 25 45 65 85 105 125 145 165
f(x) 17 15 -3 17 15 -3 17 15 -3

2. A ferris wheel is 140 meters in diameter and boarded at its lowest point (6 O’Clock)
from a platform which is 8 meters above ground. The wheel makes one full rotation
every 14 minutes, and at time t � 0 you are at the loading platform (6 O’Clock). Let
h � f (t) denote your height above ground in meters after t minutes.

(a) What is the period of the function h � f (t)?
(b) What is the midline of the function h � f (t)?
(c) What is the amplitude of the function h � f (t)?
(d) Consider the six possible graphs of h � f (t) below. Be sure to carefully read the
labels on the axes in order distinguish the key features of each graph.

Which (if any) of the graphs A-F represents two full revolutions of the ferris wheel
described above?
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A B C

D E F

3. Aweight is suspended from the ceiling by a spring. Let d be the distance in centimeters
from the ceiling to the weight. When the weight is motionless, d � 11 cm. If the weight
is disturbed, it begins to bob up and down, or oscillate. Then d is a periodic function
of t, the time in seconds, so d � f (t). Consider the graph of d � f (t) below, which
represents the distance of the weight from the ceiling at time t.

(a) Based on the graph of d � f (t) above, which of the statements below correctly
describes the motion of the weight as it bobs up and down?

⊙ The weight starts closest to the floor and begins by bouncing up towards the
ceiling.

⊙ The weight starts closest to the ceiling and begins by stretching the spring down
towards the floor.

⊙ The spring starts at its average distance between the ceiling and floor and begins
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by stretching the spring down towards the floor.

⊙ None of the above

(b) How long does it take the weight to bounce completely up and down (or down and
up) and return to its starting position?

(c) What is the closest the weight gets to the ceiling?

(d) What is the furthest the weights gets from the ceiling?

(e) What is the amplitdue of the graph of d � f (t)?

4. The temperature of a chemical reaction oscillates between a low of 10 ◦C and a high of
135 ◦C. The temperature is at its lowest point at time t � 0, and reaches its maximum
point over a two and a half hour period. It then takes the same amount of time to return
back to its initial temperature. Let y � H(t) denote the temperature of the reaction t
hours after the reaction begins.

(a) What is the period of the function y � H(t)?
(b) What is the midline of the function y � H(t)?
(c) What is the amplitude of the function y � H(t)?
(d) Based on your answers above, make a graph of the function y � H(t) on a piece of
paper. Which of the graphs below best matches your graph?

A B

C D
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5. Consider the circle pictured in Figure 2.1.14 that is centered at the point (2, 2) and that
has circumference 8. Suppose that we track the x-coordinate (that is, the horizontal
location, which we will call k) of a point that is traversing the circle counterclockwise
and that it starts at P0 as pictured.

1 2 3

1

2

3

P0

P1

(2,2)

Figure 2.1.14: A point
traversing the circle.

k

d

Figure 2.1.15: Axes for plotting k as a function of d.

Recall that inActivity 2.1.2we identified the exact and approximate vertical coordinates
of all 8 noted points on the unit circle. In addition, recall that the radius of the circle is
r �

8
2π ≈ 1.2732.

a. What is the exact horizontal coordinate of P0? Why?

b. Complete the entries in Table 2.1.16 that track the horizontal location, k, of the
point traversing the circle as a function of distance traveled, d.

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k 0.73

Table 2.1.16: Data for h as a function of d.

c. By plotting the points in Table 2.1.16 and connecting them in an intuitive way,
sketch a graph of k as a function of d on the axes provided in Figure 2.1.15 over
the interval 0 ≤ d ≤ 16. Clearly label the scale of your axes and the coordinates
of several important points on the curve.

d. What is similar about your graph in comparison to the one in Figure 2.1.7? What
is different?

e. What will be the value of k when d � 51? How about when d � 102?

6. Two circular functions, f and 1, are generated by tracking the y-coordinate of a point
traversing two different circles. The resulting graphs are shown in Figure 2.1.17 and
Figure 2.1.18. Assuming the horizontal scale matches the vertical scale, answer the
following questions for each of the functions f and 1.
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h
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h = f (t)

Figure 2.1.17: A plot of the circular
function f .

2

4

6

8

10

12
h

t

h = g(t)

Figure 2.1.18: A plot of the circular
function 1.

a. Assume that the circle used to generate the circular function is centered at the
point (0,m) and has radius r. What are the numerical values of m and r? Why?

b. What are the coordinates of the location on the circle at which the point begins
its traverse? Said differently, what point on the circle corresponds to t � 0 on the
function’s graph?

c. What is the period of the function? How is this connected to the circle and to the
scale on the horizontal axes on which the function is graphed?

d. Howwould the graph look if the circle’s radius was 1 unit larger? 1 unit smaller?
7. Aperson goes for a ride on a ferris wheel. They enter one of the cars at the lowest possi-

ble point on the wheel from a platform 7 feet off the ground. When they are at the very
top of the wheel, they are 92 feet off the ground. Let h represent the height of the car (in
feet) and d (in feet) the distance the car has traveled along the wheel’s circumference
from its starting location at the bottom of the wheel. We’ll use the notation h � f (d)
for how height is a function of distance traveled.

a. How high above the ground is the center of the ferris wheel?

b. How far does the car travel in one complete trip around the wheel?

c. For the circular function h � f (d), what is its amplitude? midline? period?

d. Sketch an accurate graph of h through at least two full periods. Clearly label the
scale on the horizontal and vertical axes along with several important points.
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2.2 The Unit Circle

2.2 The Unit Circle

Motivating Questions

• What is the radian measure of an angle?

• Are there natural special points on the unit circle whose coordinates we can identify
exactly?

• How can we determine arc length and the location of special points in circles other
than the unit circle?

As demonstrated by several different examples in Section 2.1, certain periodic phenomena
are closely linked to circles and circular motion. Rather than regularly work with circles
of different center and radius, it turns out to be ideal to work with one standard circle and
build all circular functions from it. The unit circle is the circle of radius 1 that is centered at
the origin, (0, 0).
If we pick any point (x , y) that lies on the unit circle, the point is associated with a right
triangle whose horizontal leg has length |x | and whose vertical leg has length |y |, as seen in
Figure 2.2.1. By the Pythagorean Theorem, it follows that

x2
+ y2

� 1,

and this is the equation of the unit circle: a point (x , y) lies on the unit circle if and only if
x2 + y2 � 1.

x

y

(x,y)

1

Figure 2.2.1: Coordinates of a point on the
unit circle.

t0

t1

t2

t3

t4
t5

t6

Figure 2.2.2: A point traversing the unit
circle.

To study the circular functions generated by the unit circle, we will also animate a point and
let it traverse the circle. Starting at (1, 0) indicated by t0 in Figure 2.2.2, we see a sequence
of points that result from traveling a distance along the circle that is 1/24 the circumference
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of the unit circle. Since the unit circle’s circumference is C � 2πr � 2π, it follows that the
distance from t0 to t1 is

d �
1
24 · 2π �

π
12 .

As we work to better understand the unit circle, we will commonly use fractional multiples
of π as these result in natural distances traveled along the unit circle.

Preview Activity 2.2.1. In Figure 2.2.3 there are 24 equally spaced points on the unit
circle. Since the circumference of the unit circle is 2π, each of the points is 1

24 ·2π �
π
12

units apart (traveled along the circle). Thus, the first point counterclockwise from
(1, 0) corresponds to the distance t �

π
12 traveled along the unit circle. The second

point is twice as far, and thus t � 2 · π12 �
π
6 units along the circle away from (1, 0).

t =
π

12

t =
π

6

Figure 2.2.3: The unit circle with 24 equally-spaced points.
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a. Label each of the subsequent points on the unit circle with the exact distance
they lie counter-clockwise away from (1, 0); write each fraction in lowest terms.

b. Which distance along the unit circle corresponds to 1
4 of a full rotation around?

to 5
8 of a full rotation?

c.

One way to measure angles is con-
nected to the arc length along a circle.
For an angle whose vertex is at (0, 0) in
the unit circle, we say the angle’s mea-
sure is 1 radian provided that the an-
gle intercepts an arc of the circle that
is 1 unit in length, as pictured in Fig-
ure 2.2.4. Note particularly that an an-
gle measuring 1 radian intercepts an
arc of the same length as the circle’s
radius.

11

1

θ = 1

Figure 2.2.4: An angle θ of measure 1
radian.

Suppose that α and β are each central angles and that their respective radian
measures are α �

π
3 and β � 3π

4 . Sketch the angles α and β on the unit circle in
Figure 2.2.3.

d. What is the radian measure that corresonds to a 90◦ angle?

2.2.1 Radians and degrees

In Preview Activity 2.2.1, we introduced the idea of radian measure of an angle. Here we
state the formal definition of this term.
Definition 2.2.5 An angle whose vertex is at the center of a circle¹ measures 1 radian pro-
vided that the arc the angle intercepts on the circle equals the radius of the circle. ♢

As seen in Figure 2.2.4, in the unit circle this means that a central angle has measure 1 radian
whenever it intercepts an arc of length 1 unit along the circumference. Because of this im-
portant correspondence between the unit circle and radian measure (one unit of arc length
on the unit circle corresponds to 1 radian), we focus our discussion of radianmeasurewithin
the unit circle.

Since there are 2π units of length along the unit circle’s circumference it follows there are 1
4 ·

2π �
π
2 units of length in 1

4 of a revolution. We also know that 1
4 of a revolution corresponds

to a central angle that is a right angle, whose familiar degree measure is 90◦. If we extend

¹We often call such an angle a central angle.
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Chapter 2 Circular Functions

to a central angle that intercepts half the circle, we see similarly that π radians corresponds
to 180◦; this relationship enables us to convert angle measures from radians to degrees and
vice versa.

Converting between radians and degrees.

An anglewhose radianmeasure is 1 radian has degreemeasure 180
π

◦. An anglewhose
degree measure is 1◦ has radian measure π

180 .

Activity 2.2.2. Convert each of the following quantities to the alternative measure:
degrees to radians or radians to degrees.

a. 30◦

b. 2π
3 radians

c. 5π
4 radians

d. 240◦

e. 17◦

f. 2 radians

Note that in Figure 2.2.3 in the Preview Activity, we labeled 24 equally spaced points with
their respective distances around the unit circle counterclockwise from (1, 0). Because these
distances are on the unit circle, they also correspond to the radian measure of the central
angles that intercept them. In particular, each central angle with one of its sides on the
positive x-axis generates a unique point on the unit circle, and with it, an associated length
intercepted along the circumference of the circle. A good exercise at this point is to return to
Figure 2.2.3 and label each of the noted points with the degree measure that is intercepted
by a central angle with one side on the positive x-axis, in addition to the arc lengths (radian
measures) already identified.

2.2.2 Special points on the unit circle

Our in-depth study of the unit circle is motivated by our desire to better understand the
behavior of circular functions. Recall that as we traverse a circle, the height of the point
moving along the circle generates a function that depends on distance traveled along the
circle. Wherever possible, we’d like to be able to identify the exact height of a given point on
the unit circle. Two special right triangles enable us to locate exactly an important collection
of points on the unit circle.

Activity 2.2.3. In what follows, we work to understand key relationships in 45◦-45◦-
90◦ and 30◦-60◦-90◦ triangles.
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x

1
y

45
◦

45
◦

Figure 2.2.6: A right triangle with two 45◦
angles.

x

1
y

30
◦

60
◦

Figure 2.2.7: A right triangle with a 30◦
angle.

a. For the 45◦-45◦-90◦ triangle with legs x and y and hypotenuse 1, what does the
fact that the triangle is isosceles tell us about the relationship between x and y?
What are their exact values?

b. Now consider the 30◦-60◦-90◦ triangle with hypotenuse 1 and the longer leg
lying along the positive x-axis. What special kind of triangle is formed when
we reflect this triangle across the x-axis? How can we use this perspective to
determine the exact values of x and y?

c. Suppose we consider the related 30◦-60◦-90◦ triangle with hypotenuse 1 and the
shorter leg lying along the positive x-axis. What are the exact values of x and y
in this triangle?

d. We know from the conversion factor from degrees to radians that an angle of
30◦ corresponds to an angle measuring π6 radians, an angle of 45◦ corresponds
to π4 radians, and 60◦ corresponds to π3 radians.

x

1

y

π/6

Figure 2.2.8: An angle
measuring π6 radians.

x

1

y

π/4

Figure 2.2.9: An angle
measuring π6 radians.

x

1
y

π/3

Figure 2.2.10: An angle
measuring π6 radians.
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Chapter 2 Circular Functions

Use your work in (a), (b), and (c) to label the noted point in each of Figure 2.2.8,
Figure 2.2.9, and Figure 2.2.10, respectively, with its exact coordinates.

Our work in Activity 2.2.3 enables us to identify exactly the location of 12 special points on
the unit circle. In part (d) of the activity, we located the three noted points in Figure 2.2.11
along with their respective radian measures. By symmetry across the coordinate axes and
thinking about the signs of coordinates in the other three quadrants, we can now identify
all of the coordinates of the remaining 9 points.

1

(
√

3

2
,

1

2

)

t=
π

6

(
√

2

2
,

√

2

2

)

t=
π

4

(

1

2
,

√

3

2

)

t=
π

3

x

y

Figure 2.2.11: The unit circle with 16 special points whose location we can determine
exactly.

In addition, we note that there are four additional points on the circle that we can locate
exactly: the four points that correspond to angle measures of 0, π2 , π, and

3π
2 radians, which

lie where the coordinate axes intersect the circle. Each such point has 0 for one coordinate
and ±1 for the other. Labeling all of the remaining points in Figure 2.2.11 is an important
exercise that you should do on your own.

Finally, we note that we can identify any point on the unit circle exactly simply by choosing
one of its coordinates. Since every point (x , y) on the unit circle satisfies the equation x2 +
y2 � 1, if we know the value of x or y and the quadrant in which the point lies, we can
determine the other coordinate exactly.
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2.2 The Unit Circle

2.2.3 Special points and arc length in non-unit circles

All of our work with the unit circle can be extended to circles centered at the origin with
different radii, since a circle with a larger or smaller radius is a scaled version of the unit
circle. For instance, if we instead consider a circle of radius 7, the coordinates of every point
on the unit circle are magnified by a factor of 7, so the point that corresponds to an angle
such as θ �

2π
3 has coordinates

(
− 7

2 ,
7
√

3
2

)
. Distance along the circle is magnified by the same

factor: the arc length along the unit circle from (0, 0) to
(
− 7

2 ,
7
√

3
2

)
is 7 · 2π

3 , since the arc length
along the unit circle for this angle is 2π

3 .

If we think more generally about a circle of radius r with a central angle θ that intercepts
an arc of length s, we see how the magnification factor r (in comparison to the unit circle)
connects arc length and the central angle according to the following principle.

Connecting arc length and angles in non-unit circles.

If a central anglemeasuring θ radians intercepts an arc of length s in a circle of radius
r, then

s � rθ.

In the unit circle, where r � 1, the equation s � rθ demonstrates the familiar fact
that arc length matches the radian measure of the central angle. Moreover, we also
see how this formula aligns with the definition of radian measure: if the arc length
and radius are equal, then the angle measures 1 radian.

Activity 2.2.4. Determine each of the following values or points exactly.
a. In a circle of radius 11, the arc length intercepted by a central angle of 5π

3 .

b. In a circle of radius 3, the central angle measure that intercepts an arc of length
π
4 .

c. The radius of the circle in which an angle of 7π
6 intercepts an arc of length π2 .

d. The exact coordinates of the point on the circle of radius 5 that lies 25π
6 units

counterclockwise along the circle from (5, 0).

2.2.4 Summary

• The radianmeasure of an angle connects themeasure of a central angle in a circle to the
radius of the circle. A central angle has radian measure 1 provided that it intercepts
an arc of length equal to the circle’s radius. In the unit circle, a central angle’s radian
measure is precisely the same numerical value as the length of the arc it intercepts
along the circle.

• Ifwe begin at the point (1, 0) andmove counterclockwise along the unit circle, there are
natural special points on the unit circle that correspond to angles of measure 30◦, 45◦,
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60◦, and their multiples. We can count in 30◦ increments and identify special points
that correspond to angles of measure 30◦, 60◦, 90◦, 120◦, and so on; doing likewise
with 45◦, these correspond to angles of 45◦, 90◦, 135◦, etc. In radian measure, these
sequences together give us the important angles π6 ,

π
4 ,
π
3 ,
π
2 ,

2π
3 , 3π

4 , and so on. Together
with our work involving 45◦-45◦-90◦ and 30◦-60◦-90◦ triangles in Activity 2.2.3, we are
able to identify the exact locations of all of the points in Figure 2.2.11.

• In any circle of radius r, if a central angle of measure θ radians intercepts an arc of
length s, then it follows that

s � rθ.
This shows that arc length, s, is magnified along with the size of the radius, r, of the
circle.

2.2.5 Exercises

1. Find t for the following terminal points:

(a) P(0, 1)

(b) P(−
√

2
2 ,

√
2

2 )
(c) P(−1, 0)

(d) P(−
√

2
2 ,−

√
2

2 )
(e) P(0,−1)

(f) P(
√

2
2 ,−

√
2

2 )
2. What is the exact radian angle measure for 45◦ as a fraction of π?

What is a decimal approximation for the radian angle measure for 45◦ accurate to three
decimal places?

3. What is the exact radian angle measure for 22◦ as a fraction of π?

What is a decimal approximation for the radian angle measure for 22◦ accurate to three
decimal places?

4. Find the length of an arc on a circle of radius 6 corresponding to an angle of 90◦.

5. What is the length of an arc cut off by an angle of 2.5 radians on a circle of radius 4
inches?

6. What angle (in degrees) corresponds to 17.7 rotations around the unit circle?

7. An angle of 5π
6 radians can be converted to an angle of degrees.

8. Let (x , y) by a point on the unit circle. In each of the following situations, determine
requested value exactly.

a. Suppose that x � −0.3 and y is negative. Find the value of y.

b. Suppose that (x , y) lies in Quadrant II and x � −2y. Find the values of x and y.

c. Suppose that (x , y) lies a distance of 29π
6 units clockwise around the circle from
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2.2 The Unit Circle

(1, 0). Find the values of x and y.

d. At what exact point(s) does the line y �
1
2 x +

1
2 intersect the unit circle?

9. The unit circle is centered at (0, 0) and radius r � 1, from which the Pythagorean The-
orem tells us that any point (x , y) on the unit circle satisfies the equation x2 + y2 � 1.

a. Explain why any point (x , y) on a circle of radius r centered at (h , k) satisfies the
equation (x − h)2 + (y − k)2 � r2.

b. Determine the equation of a circle centered at (−3, 5) with radius r � 2.

c. Suppose that the unit circle is magnified by a factor of 5 and then shifted 4 units
right and 7 units down. What is the equation of the resulting circle?

d. What is the length of the arc intercepted by a central angle of 2π
3 radians in the

circle (x − 1)2 + (y − 3)2 � 16?

e. Suppose that the line segment from (−2,−1) to (4, 2) is a diameter of a circle. What
is the circle’s center, radius, and equation?

10. Consider the circle whose center is (0, 0) and whose radius is r � 5. Let a point (x , y)
traverse the circle counterclockwise from (5, 0), and say the distance along the circle
from (5, 0) is represented by d.

a. Consider the point (a , b) that is generated by the central angle θ with vertices
(5, 0), (0, 0), and (a , b). If θ �

π
6 , what are the exact values of a and b?

b. Answer the same question as in (a) except with θ �
π
4 and θ �

π
3 .

c. How far has the point (x , y) traveled after it has traversed the circle one full rev-
olution?

d. Let h � f (d) be the circular function that tracks the height of the point (x , y) as a
function of distance, d, traversed counterclockwise from (5, 0). Sketch an accurate
graph of f through two full periods, labeling several special points on the graph
as well as the horizontal and vertical scale of the axes.
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Chapter 2 Circular Functions

2.3 The Sine and Cosine Functions

Motivating Questions

• What are the sine and cosine functions and how do they arise from a point traversing
the unit circle?

• What important properties do the sine and cosine functions share?

• How do we compute values of sin(t) and cos(t), either exactly or approximately?

In Section 2.1, we saw how tracking the height of a point that is traversing a cirle generates
a periodic function, such as in Figure 2.1.10. Then, in Section 2.2, we identified a collection
of 16 special points on the unit circle, as seen in Figure 2.3.1.
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Figure 2.3.1: The unit circle with 16 labeled special points.

You can also use the Desmos file at http://gvsu.edu/s/0xt to review and study the special
points on the unit circle.
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2.3 The Sine and Cosine Functions

Preview Activity 2.3.1. If we consider the unit circle in Figure 2.3.1, start at t � 0,
and traverse the circle counterclockwise, we may view the height, h, of the traversing
point as a function of the angle, t, in radians. From there, we can plot the resulting
(t , h) ordered pairs and connect them to generate the circular function pictured in
Figure 2.3.2.

-1

1

h

t

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4
2π

h = f (t)

Figure 2.3.2: Plot of the circular function that tracks the height of a point traversing
the unit circle.

a. What is the exact value of f (π4 )? of f (π3 )?

b. Complete the following table with the exact values of h that correspond to the
stated inputs.

t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

h

t π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

h

Table 2.3.3: Exact values of h as a function of t.

c. What is the exact value of f ( 11π
4 )? of f ( 14π

3 )?

d. Give four different values of t for which f (t) � −
√

3
2 .
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2.3.1 The definition of the sine function

The circular function that tracks the height of a point on the unit circle traversing counter-
clockwise from (1, 0) as a function of the corresponding central angle (in radians) is one of
the most important functions in mathematics. As such, we give the function a name: the
sine function.

Definition 2.3.4 Given a central angle in the
unit circle that measures t radians and that in-
tersects the circle at both (1, 0) and (a , b), as
shown in Figure 2.3.5, we define the sine of t,
denoted sin(t), by the rule sin(t) � b. ♢

Because of the correspondence between ra-
dian angle measure and distance traversed on
the unit circle, we can also think of sin(t) as
identifying the y-coordinate of the point after
it has traveled t units counterclockwise along
the circle from (1, 0). Note particularly that we
can consider the sine of negative inputs: for
instance, sin(−π2 ) � −1.

(a,b)

sin(t) = b

1

t

Figure 2.3.5: The definition of the sine of
an angle t.

Based on our earlier work with the unit circle, we know many different exact values of the
sine function, and summarize these in Table 2.3.6.

t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sin(t) 0 1
2

√
2

2

√
3

2 1
√

3
2

√
2

2
1
2 0

t π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

sin(t) 0 − 1
2 −

√
2

2 −
√

3
2 −1 −

√
3

2 −
√

2
2 − 1

2 0

Table 2.3.6: Values of h(t) � sin(t) at special points on the unit circle.

Moreover, if we now plot these points in the usual way, as we did in Preview Activity 2.3.1,
we get the familiar circular wave function that comes from tracking the height of a point
traversing a circle. We often call the the graph in Figure 2.3.7 the sine wave.
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f (t) = sin(t)

Figure 2.3.7: Plot of the sine function on the interval [−π4 , 7π
4 ].

2.3.2 The definition of the cosine function

Given any central angle of radian measure t in the unit circle with one side passing through
the point (1, 0), the angle generates a unique point (a , b) that lies on the circle. Just as we
can view the y-coordinate as a function of t, the x-coordinate is likewise a function of t. We
therefore make the following definition.

Definition 2.3.8 Given a central angle in the
unit circle that measures t radians and that in-
tersects the circle at both (1, 0) and (a , b), as
shown in Figure 2.3.9, we define the cosine of
t, denoted cos(t), by the rule cos(t) � a. ♢

Again because of the correspondence between
the radian measure of an angle and arc length
along the unit circle, we can view the value of
cos(t) as tracking the x-coordinate of a point
traversing the unit circle clockwise a distance
of t units along the circle from (1, 0). We now
use the data and information we have devel-
oped about the unit circle to build a table of
values of cos(t) as well as a graph of the curve
it generates.

(a,b)

cos(t) = a

1

t

Figure 2.3.9: The definition of the cosine
of an angle t.
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Activity 2.3.2. Let k � 1(t) be the function that tracks the x-coordinate of a point
traversing the unit circle counterclockwise from (1, 0). That is, 1(t) � cos(t). Use
the information we know about the unit circle that is summarized in Figure 2.3.1 to
respond to the following questions.

a. What is the exact value of cos(π6 )? of cos( 5π
6 )? cos(−π3 )?

b. Complete the following table with the exact values of k that correspond to the
stated inputs.

t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

k

t π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

k

Table 2.3.10: Exact values of k � 1(t) � cos(t).

c. On the axes provided in Figure 2.3.11, sketch an accurate graph of k � cos(t).
Label the exact location of several key points on the curve.
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4
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4
2π

g(t) = cos(t)

Figure 2.3.11: Axes for plotting k � cos(t).

d. What is the exact value of cos( 11π
4 )? of cos( 14π

3 )?

e. Give four different values of t for which cos(t) � −
√

3
2 .

f. How is the graph of k � cos(t) different from the graph of h � sin(t)? How are
the graphs similar?

As we work with the sine and cosine functions, it’s always helpful to remember their defin-
itions in terms of the unit circle and the motion of a point traversing the circle. At
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http://gvsu.edu/s/0xe you can explore and investigate a helpful Desmos animation that
shows how this motion around the circle generates each of the respective graphs.

2.3.3 Properties of the sine and cosine functions

Because the sine function results from tracking the y-coordinate of a point traversing the
unit circle and the cosine function from the x-coordinate, the two functions have several
shared properties of circular functions.

Properties of the sine and cosine functions.

For both f (t) � sin(t) and 1(t) � cos(t),
• the domain of the function is all real numbers;

• the range of the function is [−1, 1];

• the midline of the function is y � 0;

• the amplitude of the function is a � 1;

• the period of the function is p � 2π.

It is also insightful to juxtapose the sine and cosine functions’ graphs on the same coordinate
axes. Whenwedo, as seen in Figure 2.3.12, we see that the curves can be viewed as horizontal
translations of one another.
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f (t) = sin(t)g(t) = cos(t)

Figure 2.3.12: Graphs of the sine and cosine functions.

In particular, since the sine graph can be viewed as the cosine graph shifted π
2 units to the

right, it follows that for any value of t,

sin(t) � cos(t − π2 ).
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Similarly, since the cosine graph can be viewed as the sine graph shifted left,

cos(t) � sin(t + π2 ).

Because each of the two preceding equations hold for every value of t, they are often referred
to as identities.

In light of the definitions of the sine and cosine functions, we can now view any point (x , y)
on the unit circle as being of the form (cos(t), sin(t)), where t is the measure of the angle
whose vertices are (1, 0), (0, 0), and (x , y). Note particularly that since x2 + y2 � 1, it is also
true that cos2(t) + sin2(t) � 1. We call this fact the Fundamental Trigonometric Identity.

The Fundamental Trigonometric Identity.

For any real number t,
cos2(t) + sin2(t) � 1.

There are additional trends and patterns in the two functions’ graphs thatwe explore further
in the following activity.

Activity 2.3.3. Use Figure 2.3.12 to assist in answering the following questions.
a. Give an example of the largest interval you can find on which f (t) � sin(t) is

decreasing.

b. Give an example of the largest interval you can find on which f (t) � sin(t) is
decreasing and concave down.

c. Give an example of the largest interval you can find on which 1(t) � cos(t) is
increasing.

d. Give an example of the largest interval you can find on which 1(t) � cos(t) is
increasing and concave up.

e. Without doing any computation, on which interval is the average rate of change
of 1(t) � cos(t) greater: [π, π + 0.1] or [ 3π

2 ,
3π
2 + 0.1]? Why?

f. In general, how would you characterize the locations on the sine and cosine
graphs where the functions are increasing or decreasingly most rapidly?

g. Thinking from the perspective of the unit circle, for which quadrants of the x-y
plane is cos(t) negative for an angle t that lies in that quadrant?

2.3.4 Using computing technology

We have established that we know the exact value of sin(t) and cos(t) for any of the t-values
in Table 2.3.6, aswell as for any such t±2 jπ, where j is awhole number, due to the periodicity
of the functions. But what if we want to know sin(1.35) or cos(π5 ) or values for other inputs
not in the table?
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Any standard computing device such as a scientific calculator, Desmos, Geogebra, or Wol-
framAlpha, has the ability to evaluate the sine and cosine functions at any input we desire.
Because the input is viewed as an angle, each computing device has the option to consider
the angle in radians or degrees. It is always essential that you are sure which type of input your
device is expecting. Our computational device of choice is Desmos. In Desmos, you can change
the input type between radians and degrees by clicking the wrench icon in the upper right
and choosing the desired units. Radian measure is the default.

It takes substantial and sophisticated mathematics to enable a computational device to eval-
uate the sine and cosine functions at any value wewant; the algorithms involve an idea from
calculus known as an infinite series. While your computational device is powerful, it’s both
helpful and important to understand the meaning of these values on the unit circle and to
remember the special points for which we know the outputs of the sine and cosine functions
exactly.

Activity 2.3.4. Answer the following questions exactly wherever possible. If you es-
timate a value, do so to at least 5 decimal places of accuracy.

a. The x coordinate of the point on the unit circle that lies in the third quadrant
and whose y-coordinate is y � − 3

4 .

b. The y-coordinate of the point on the unit circle generated by a central angle in
standard position that measures t � 2 radians.

c. The x-coordinate of the point on the unit circle generated by a central angle in
standard position that measures t � −3.05 radians.

d. The value of cos(t) where t is an angle in Quadrant II that satisfies sin(t) � 1
2 .

e. The value of sin(t) where t is an angle in Quadrant III for which cos(t) � −0.7.

f. The average rate of change of f (t) � sin(t) on the intervals [0.1, 0.2] and [0.8, 0.9].

g. The average rate of change of 1(t) � cos(t) on the intervals [0.1, 0.2] and [0.8, 0.9].

2.3.5 Summary

• The sine and cosine functions result from tracking the y- and x-coordinates of a point
traversing the unit circle counterclockwise from (1, 0). The value of sin(t) is the y-
coordinate of a point that has traversed t units along the circle from (1, 0) (or equiv-
alently that corresponds to an angle of t radians), while the value of cos(t) is the x-
coordinate of the same point.

• The sine and cosine functions are both periodic functions that share the same domain
(the set of all real numbers), range (the interval [−1, 1]), midline (y � 0), amplitude
(a � 1), and period (P � 2π). In addition, the sine function is horizontal shift of the
cosine function by π2 units to the right, so sin(t) � cos(t − π2 ) for any value of t.

• If t corresponds to one of the special angles that we know on the unit circle (as in
Figure 2.3.1), we can compute the values of sin(t) and cos(t)exactly. For other values
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of t, we can use a computational device to estimate the value of either function at a
given input; when we do so, we must take care to know whether we are computing in
terms of radians or degrees.

2.3.6 Exercises

1. Without using a calculator, find the exact value as fraction (not a decimal approxima-
tion).

cos
(
4π
3

)

2. Evaluate the following expressions.

1. cos (−225◦) �

2. sin (135◦) �

3. cos (−150◦) �

4. sin (240◦) �

5. cos (225◦) �

6. sin (−180◦) �

Remark: Your answer cannot contain trigonometric functions; it must be a fraction (not
a decimal) and it may contain square roots (e.g.,

√
2).

3. Determine whether each of the following expressions is Positive or Negative without
using a calculator.

sin(70◦)
cos(138◦)

sin( 15π
16 )

cos( 20π
21 )

4. a)Write an expression (involving the variable a and h ) for the slope of the line segment
joining S and T in the figure below.

b) Evaluate your expression for a � 1.6 and h � 0.01. Round your answer to two
decimal places.
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2.3 The Sine and Cosine Functions

5. Without using a computational device, determine the exact value of each of the follow-
ing quantities.

a. sin(− 11π
4 )

b. cos( 29π
6 )

c. sin(47π)

d. cos(−113π)

e. t in quadrant III such
that cos(t) � −

√
3

2

f. t in quadrant IV such
that sin(t) � −

√
3

2

6. We now know three different identities involving the sine and cosine functions: sin(t +
π
2 ) � cos(t), cos(t− π2 ) � sin(t), and cos2(t)+sin2(t) � 1. Following are several proposed
identities. For each, your task is to decide whether the identity is true or false. If true,
give a convincing argument for why it is true; if false, give an example of a t-value for
which the equation fails to hold.

a. cos(t + 2π) � cos(t)

b. sin(t − π) � − sin(t)

c. cos(t − 3π
2 ) � sin(t)

d. sin2(t) � 1 − cos2(t)

e. sin(t) + cos(t) � 1

f. sin(t) + sin(π2 ) � cos(t)
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2.4 Sinusoidal Functions

Motivating Questions

• How do the three standard transformations (vertical translation, horizontal transla-
tion, and vertical scaling) affect themidline, amplitude, range, and period of sine and
cosine curves?

• What algebraic transformation results in horizontal stretching or scaling of a func-
tion?

• How can we determine a formula involving sine or cosine that models any circular
periodic function for which the midline, amplitude, period, and an anchor point are
known?

Recall our work in Section 1.8, where we studied how the graph of the function 1 defined
by 1(x) � a f (x − b) + c is related to the graph of f , where a, b, and c are real numbers
with a , 0. Because such transformations can shift and stretch a function, we are interested
in understanding how we can use transformations of the sine and cosine functions to fit
formulas to circular functions.

Preview Activity 2.4.1. Let f (t) � cos(t). First, answer all of the questions below
without using Desmos; then use Desmos to confirm your conjectures. For each prompt,
describe the graphs of 1 and h as transformations of f and, in addition, state the
amplitude, midline, and period of both 1 and h.

a. 1(t) � 3 cos(t) and h(t) � − 1
4 cos(t)

b. 1(t) � cos(t − π) and h(t) � cos
(
t + π2

)
c. 1(t) � cos(t) + 4 and h(t) � cos (t) − 2

d. 1(t) � 3 cos(t − π) + 4 and h(t) � − 1
4 cos

(
t + π2

)
− 2

2.4.1 Shifts and vertical stretches of the sine and cosine functions

We know that the standard functions f (t) � sin(t) and 1(t) � cos(t) are circular functions
that each have midline y � 0, amplitude a � 1, period p � 2π, and range [−1, 1]. Our work
in Preview Activity 2.4.1 suggests the following general principles.

Transformations of sine and cosine.
Given real numbers a, b, and c with a , 0, the functions

k(t) � a cos(t − b) + c and h(t) � a sin(t − b) + c

each represent a horizontal shift by b units to the right, followed by a vertical stretch
by |a | units (if a < 0, there is also a reflection across the x-axis), followed by a vertical
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2.4 Sinusoidal Functions

shift of c units, applied to the parent function (cos(t) or sin(t), respectively). The
resulting circular functions have midline y � c, amplitude |a |, range [c − |a |, c + |a |],
and period p � 2π. In addition, the point (b , a + c) lies on the graph of k and the
point (b , c) lies on the graph of h.

In Figure 2.4.1, we see how the overall transformation k(t) � a cos(t − b) + c comes from
executing a sequence of simpler ones. The original parent function y � cos(t) (in dark gray)
is first shifted b units right to generate the light red graph of y � cos(t − b). In turn, that
graph is then scaled vertically by a to generate the purple graph of y � a cos(t − b). Finally,
the purple graph is shifted c units vertically to result in the final graph of y � a cos(t − b)+ c
in blue.

y

t

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4
2π

y = cos(t)

y = cos(t −b)

y = acos(t −b)

y = acos(t −b)+ c

(0,1)

(b,a+ c)

Figure 2.4.1: A sequence of transformations of y � cos(t).

It is often useful to follow one particular point through a sequence of transformations. In
Figure 2.4.1, we see the red point that is located at (0, 1) on the original function y � cos(t),
as well as the point (b , a + c) that is the corresponding point on k(t) � a cos(t − b)+ c under
the overall transformation. Note that the point (b , a + c) results from the input, t � b, that
makes the argument of the cosine function zero: k(b) � a cos(b − b) + c � a cos(0) + c.
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While the sine and cosine functions extend infinitely in either direction, it’s natural to think
of the point (0, 1) as the “starting point” of the cosine function, and similarly the point (0, 0)
as the starting point of the sine function. We will refer to the corresponding points (b , a + c)
and (b , c) on k(t) � a cos(t − b) + c and h(t) � a sin(t − b) + c as anchor points. Anchor
points, along with other information about a circular function’s amplitude, midline, and
period help us to determine a formula for a function that fits a given situation.

Activity 2.4.2. Consider a spring-mass system where a weight is resting on a friction-
less table. We let d(t) denote the distance from the wall (where the spring is attached)
to the weight at time t in seconds and know that the weight oscillates periodically
with a minimum value of d(t) � 2 feet and a maximum value of d(t) � 7 feet with a
period of 2π. We also know that d(0) � 4.5 and d

(
π
2
)
� 2.

Determine a formula for d(t) in the form d(t) � a cos(t− b)+ c or d(t) � a sin(t− b)+ c.
Is it possible to find two different formulas that work? For any formula you find,
identify the anchor point.

2.4.2 Horizontal scaling

There is one more very important transformation of a function that we’ve not yet explored.
Given a function y � f (x), we want to understand the related function 1(x) � f (kx), where
k is a positive real number. The sine and cosine functions are ideal functions with which to
explore these effects; moreover, this transformation is crucial for being able to use the sine
and cosine functions to model phenomena that oscillate at different frequencies.

In the interactive Figure 2.4.2, we can explore the effect of the transformation 1(t) � f (kt),
where f (t) � sin(t).

Figure 2.4.2: Interactive horizontal scaling demonstration (in the HTML version only).

By experimenting with the slider, we gain an intuitive sense for how the value of k affects
the graph of h(t) � f (kt) in comparision to the graph of f (t). When k � 2, we see that the
graph of h is oscillating twice as fast as the graph of f since h(t) � f (2t) completes two full
cycles over an interval in which f completes one full cycle. In contrast, when k �

1
2 , the

graph of h oscillates half as fast as the graph of f , as h(t) � f ( 1
2 t) completes only half of one

cycle over an interval where f (t) completes a full one.

We can also understand this from the perspective of function composition. To evaluate
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2.4 Sinusoidal Functions

h(t) � f (2t), at a given value of t, we first multiply the input t by a factor of 2, and then
evaluate the function f at the result. An important observation is that

h
(
1
2 t

)
� f

(
2 · 1

2 t
)
� f (t).

This tells us that the point ( 1
2 t , f (t)) lies on the graph of h since an input of 1

2 t in h results in
the value f (t). At the same time, the point (t , f (t)) lies on the graph of f . Thus we see that
the correlation between points on the graphs of f and h (where h(t) � f (2t)) is

(t , f (t)) →
(
1
2 t , f (t)

)
.

We can therefore think of the transformation h(t) � f (2t) as achieving the output values of f
twice as fast as the original function f (t) does. Analogously, the transformation h(t) � f ( 1

2 t)
will achieve the output values of f only half as quickly as the original function.

Horizontal scaling.

Given a function y � f (t) and a real number k > 0, the transformed function y �

h(t) � f (kt) is a horizontal stretch of the graph of f . Every point (t , f (t)) on the graph
of f gets stretched horizontally to the corresponding point ( 1

k t , f (t)) on the graph of
h. If 0 < k < 1, the graph of h is a stretch of f away from the y-axis by a factor of 1

k ;
if k > 1, the graph of h is a compression of f toward the y-axis by a factor of 1

k . The
only point on the graph of f that is unchanged by the transformation is (0, f (0)).

While we will soon focus on horizontal stretches of the sine and cosine functions for the
remainder of this section, it’s important to note that horizontal scaling follows the same
principles for any function we choose.

Activity 2.4.3. Consider the functions f and 1 given in Figure 2.4.3 and Figure 2.4.4.
a. On the same axes as the plot of y � f (t), sketch the following graphs: y �

h(t) � f ( 1
3 t) and y � j(t) � r � f (4t). Be sure to label several points on each

of f , h, and k with arrows to indicate their correspondence. In addition, write
one sentence to explain the overall transformations that have resulted in h and
j from f .

b. On the same axes as the plot of y � 1(t), sketch the following graphs: y � k(t) �
1(2t) and y � m(t) � 1( 1

2 t). Be sure to label several points on each of 1, k, and
m with arrows to indicate their correspondence. In addition, write one sentence
to explain the overall transformations that have resulted in k and m from 1.
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y

f

(2,−2)

Figure 2.4.3: A parent function f .

-6 6

-6

6

t

y

g

(−2,2)

Figure 2.4.4: A parent function 1.

c. On the additional copies of the two figures below, sketch the graphs of the fol-
lowing transformed functions: y � r(t) � 2 f ( 1

2 t) (at left) and y � s(t) � 1
21(2t).

As above, be sure to label several points on each graph and indicate their corre-
spondence to points on the original parent function.

-6 6

-6

6

t

y

f

(2,−2)

-6 6

-6

6

t

y

g

(−2,2)

d. Describe in words how the function y � r(t) � 2 f ( 1
2 t) is the result of two ele-

mentary transformations of y � f (t). Does the order in which these transfor-
mations occur matter? Why or why not?

2.4.3 Circular functions with different periods

Because the circumference of the unit circle is 2π, the sine and cosine functions each have
period 2π. Of course, as we think about using transformations of the sine and cosine func-
tions to model different phenomena, it is apparent that we will need to generate functions
with different periods than 2π. For instance, if a ferris wheel makes one revolution every 5
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minutes, we’dwant the period of the function that models the height of one car as a function
of time to be P � 5. Horizontal scaling of functions enables us to generate circular functions
with any period we desire.

We begin by considering two basic examples. First, let f (t) � sin(t) and 1(t) � f (2t) �

sin(2t). We know from our most recent work that this transformation results in a horizontal
compression of the graph of sin(t) by a factor of 1

2 toward the y-axis. If we plot the two func-
tions on the same axes as seen in Figure 2.4.5, it becomes apparent how this transformation
affects the period of f .

-1

1
y

t

π

2
π

3π

2
2π−

π

2−π−

3π

2
−2π

f (t) = sin(t)

g(t) = sin(2t)

Figure 2.4.5: A plot of the parent function, f (t) � sin(t) (dashed, in gray), and the
transformed function 1(t) � f (2t) � sin(2t) (in blue).

From the graph, we see that 1(t) � sin(2t) oscillates twice as frequently as f (t) � sin(t), and
that 1 completes a full cycle on the interval [0, π], which is half the length of the period of
f . Thus, the “2” in f (2t) causes the period of f to be 1

2 as long; specifially, the period of 1 is
P �

1
2 (2π) � π.

-1

1
y

t

π

2
π

3π

2
2π−

π

2−π−

3π

2
−2π

f (t) = sin(t)

h(t) = sin( 1

2
t)

Figure 2.4.6: A plot of the parent function, f (t) � sin(t) (dashed, in gray), and the
transformed function h(t) � f ( 1

2 t) � sin( 1
2 t) (in blue).
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On the other hand, if we let h(t) � f ( 1
2 t) � sin( 1

2 t), the transformed graph h is stretched
away from the y-axis by a factor of 2. This has the effect of doubling the period of f , so that
the period of h is P � 2 · 2π � 4π, as seen in Figure 2.4.6.

Our observations generalize for any positive constant k > 0. In the case where k � 2, we saw
that the period of 1(t) � sin(2t) is P �

1
2 · 2π, whereas in the case where k �

1
2 , the period

of h(t) � sin( 1
2 t) is P � 2 · 2π �

1
1
2
· 2π. Identical reasoning holds if we are instead working

with the cosine function. In general, we can say the following.

The period of a circular function.

For any constant k > 0, the period of the functions sin(kt) and cos(kt) is

P �
2π
k

.

Thus, if we know the k-value from the given function, we can deduce the period. If instead
we know the desired period, we can determine k by the rule k �

2π
P .

Activity 2.4.4. Determine the exact period, amplitude, and midline of each of the fol-
lowing functions. In addition, state the range of each function, any horizontal shift
that has been introduced to the graph, and identify an anchor point. Make your con-
clusions without consulting Desmos, and then use the program to check your work.

a. p(x) � sin(10x) + 2

b. q(x) � −3 cos(0.25x) − 4

c. r(x) � 2 sin
(
π
4 x

)
+ 5

d. w(x) � 2 cos
(
π
2 (x − 3)

)
+ 5

e. u(x) � −0.25 sin (3x − 6) + 5

Activity 2.4.5. Consider a spring-mass system where the weight is hanging from the
ceiling in such a way that the following is known: we let d(t) denote the distance
from the ceiling to the weight at time t in seconds and know that the weight oscillates
periodically with a minimum value of d(t) � 1.5 and a maximum value of d(t) � 4,
with a period of 3, and you know d(0.5) � 2.75 and d (1.25) � 4.

State the midline, amplitude, range, and an anchor point for the function, and hence
determine a formula for d(t) in the form a cos(k(t + b))+ c or a sin(k(t + b))+ c. Show
your work and thinking, and use Desmos appropriately to check that your formula
generates the desired behavior.
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2.4.4 Summary

• Given real numbers a, b, and c with a , 0, the functions

k(t) � a cos(t − b) + c and h(t) � a sin(t − b) + c

each represent a horizontal shift by b units to the right, followed by a vertical stretch
by |a | units (with a reflection across the x-axis if a < 0), followed by a vertical shift
of c units, applied to the parent function (cos(t) or sin(t), respectively). The resulting
circular functions have midline y � c, amplitude |a |, range [c − |a |, c + |a |], and period
p � 2π. In addition, the anchor point (b , a + c) lies on the graph of k and the anchor
point (b , c) lies on the graph of h.

• Given a function f and a constant k > 0, the algebraic transformation h(t) � f (kt)
results in horizontal scaling of f by a factor of 1

k . In particular, when k > 1, the graph
of f is compressed toward the y-axis by a factor of 1

k to create the graph of h, while
when 0 < k < 1, the graph of f is stretched away from the y-axis by a factor of 1

k to
create the graph of h.

• Given any circular periodic function for which the midline, amplitude, period, and an
anchor point are known, we can find a corresponding formula for the function of the
form

k(t) � a cos(k(t − b)) + c or h(t) � a sin(k(t − b)) + c.

Each of these functions hasmidline y � c, amplitude |a |, and period P �
2π
k . The point

(b , a + c) lies on k and the point (b , c) lies on h.

2.4.5 Exercises

1. Without a calculator, match each of the equations below to one of the graphs by placing
the corresponding letter of the equation under the appropriate graph.

A. y � sin (t) + 2

B. y � sin (t + 2)
C. y � sin (2t)
D. y � 2 sin (t)
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2. Find period, amplitude, and midline of the following function:

y � −6 cos (7πx + 2) − 9

3. Estimate the amplitude, midline, and period of the sinusoidal function graphed below:

4. Find a possible formula for the trigonometric function graphed below.

150



2.4 Sinusoidal Functions

5. Find a formula for the trigonometric function graphed below. Use x as the independent
variable in your formula.

6. A ferris wheel is 40 meters in diameter and boarded at ground level. The wheel makes
one full rotation every 8 minutes, and at time t � 0 you are at the 9 o’clock position and
descending. Let f (t) denote your height (in meters) above ground at t minutes. Find a
formula for f (t).

7. Find a possible formula for the circular functionwhose values are in the following table.

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1(x) 2 2.6 3 3 2.6 2 1.4 1 1 1.4 2

Table 2.4.7: Data for a circular function.

Hint: Plot the points first; doing so in Desmos is ideal.
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8. In 2018, on the summer solstice, June 21, Grand Rapids, MI, experiences 15 hours, 21
minutes, and 25 seconds of daylight. Said differently, on the 172nd day of the year,
people on earth at the latitude of Grand Rapids experience 15.3569 hours of daylight.
On the winter solstice, December 21, 2018, the same latitude has 9 hours, 0 minutes,
and 31 seconds of daylight; equivalently, on day 355, there are 9.0086 hours of daylight.
This data is essentially identical every year as the patterns of the earth’s rotation repeat.

Let t be the day of the year starting with t � 0 on December 31, 2017. In addition, let
s(t) be the number of hours of daylight on day t in Grand Rapids, MI. Find a formula
for a circular function s(t) that fits this data. What is the function’s midline, amplitude,
and period? What are you using as an anchor point? Explain fully, and then graph
your function to check your conclusions.

9. We now understand the effects of the transformation h(t) � f (kt) where k > 0 for a
given function f . Our goal is to understand what happens when k < 0.

a. We first consider the special case where k � −1. Let f (t) � 2t − 1, and let 1(t) �
f (−1 · t) � f (−t) � −2t − 1. Plot f and 1 on the same coordinate axes. How are
their graphs related to one another?

b. Given any function p, how do you expect the graph of y � q(t) � p(−t) to be
related to the graph of p?

c. How is the graph of y � sin(−3t) related to the graph of y � sin(t)?

d. How is the graph of y � cos(−3t) related to the graph of y � cos(t)?

e. Given any function p and a constant k < 0, how do you expect the graph of
y � q(t) � p(kt) to be related to the graph of p?

f. How are sin(−t) and sin(t) related? How are cos(t) and cos(−t) related?
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Exponential and Logarithmic Functions

3.1 Exponential Growth and Decay

Motivating Questions

• What does it mean to say that a function is “exponential”?

• How much data do we need to know in order to determine the formula for an expo-
nential function?

• Are there important trends that all exponential functions exhibit?

Linear functions have constant average rate of change and model many important phenom-
ena. In other settings, it is natural for a quantity to change at a rate that is proportional to the
amount of the quantity present. For instance, whether you put $100 or $100000 or any other
amount in a mutual fund, the investment’s value changes at a rate proportional the amount
present. We often measure that rate in terms of the annual percentage rate of return.

Suppose that a certain mutual fund has a 10% annual return. If we invest $100, after 1 year
we still have the original $100, plus we gain 10% of $100, so

100
year 1
−−−−→ 100 + 0.1(100) � 1.1(100).

If we instead invested $100000, after 1 year we again have the original $100000, but now we
gain 10% of $100000, and thus

100000
year 1
−−−−→ 100000 + 0.1(100000) � 1.1(100000).

We therefore see that regardless of the amount of money originally invested, say P, the
amount of money we have after 1 year is 1.1P.

If we repeat our computations for the second year, we observe that

1.1(100)
year 2
−−−−→ 1.1(100) + 0.1(1.1(100) � 1.1(1.1(100)) � 1.12(100).

The ideas are identical with the larger dollar value, so

1.1(100000)
year 2
−−−−→ 1.1(100000) + 0.1(1.1(100000) � 1.1(1.1(100000)) � 1.12(100000),
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and we see that if we invest P dollars, in 2 years our investment will grow to 1.12P.

Of course, in 3 years at 10%, the original investment P will have grown to 1.13P. Here we see
a new kind of pattern developing: annual growth of 10% is leading to powers of the base 1.1,
where the power to which we raise 1.1 corresponds to the number of years the investment
has grown. We often call this phenomenon exponential growth.

Preview Activity 3.1.1. Suppose that at age 20 you have $20000 and you can choose
between one of two ways to use the money: you can invest it in a mutual fund that
will, on average, earn 8% interest annually, or you can purchase a new automobile
that will, on average, depreciate 12% annually. Let’s explore how the $20000 changes
over time.

Let I(t) denote the value of the $20000 after t years if it is invested in the mutual fund,
and let V(t) denote the value of the automobile t years after it is purchased.

a. Determine I(0), I(1), I(2), and I(3).

b. Note that if a quantity depreciates 12% annually, after a given year, 88% of the
quantity remains. Compute V(0), V(1), V(2), and V(3).

c. Based on the patterns in your computations in (a) and (b), determine formulas
for I(t) and V(t).

d. Use Desmos to define I(t) and V(t). Plot each function on the interval 0 ≤ t ≤ 20
and record your results on the axes in Figure 3.1.1, being sure to label the scale
on the axes. What trends do you observe in the graphs? Howdo I(20) and V(20)
compare?

$

t

Figure 3.1.1: Blank axes for plotting I and V .
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3.1 Exponential Growth and Decay

3.1.1 Exponential functions of form f (t) � abt

In PreviewActivity 3.1.1, we encountered the functions I(t) and V(t) that had the same basic
structure. Each can be written in the form 1(t) � abt where a and b are positive constants
and b , 1. Based on our earlier work with transformations, we know that the constant a is a
vertical scaling factor, and thus the main behavior of the function comes from bt , which we
call an “exponential function”.

Definition 3.1.2 Let b be a real number such that b > 0 and b , 1. We call the function
defined by

f (t) � bt

an exponential function with base b. ♢

For an exponential function f (t) � bt , we note that f (0) � b0 � 1, so an exponential function
of this form always passes through (0, 1). In addition, because a positive number raised to
any power is always positive (for instance, 210 � 1096 and 2−10 �

1
210 �

1
2096 ), the output of an

exponential function is also always positive. In particular, f (t) � bt is never zero and thus
has no x-intercepts.

Becausewewill be frequently interested in functions such as I(t) and V(t)with the form abt ,
we will also refer to functions of this form as “exponential”, understanding that technically
these are vertical stretches of exponential functions according to Definition 3.1.2. In Preview
Activity 3.1.1, we found that I(t) � 20000(1.08)t and V(t) � 20000(0.88)t . It is natural to call
1.08 the “growth factor” of I and similarly 0.88 the growth factor of V . In addition, we note
that these values stem from the actual growth rates: 0.08 for I and −0.12 for V , the latter
being negative because value is depreciating. In general, for a function of form f (t) � abt ,
we call b the growth factor. Moreover, if b � 1+r, we call r the growth rate. Whenever b > 1,
we often say that the function f is exhibiting “exponential growth”, wherease if 0 < b < 1,
we say f exhibits “exponential decay”.

We explore the properties of functions of form f (t) � abt further in Activity 3.1.2.

Activity 3.1.2. In Desmos, define the function 1(t) � abt and create sliders for both
a and b when prompted. Click on the sliders to set the minimum value for each to
0.1 and the maximum value to 10. Note that for 1 to be an exponential function, we
require b , 1, even though the slider for b will allow this value.

a. What is the domain of 1(t) � abt?

b. What is the range of 1(t) � abt?

c. What is the y-intercept of 1(t) � abt?

d. How does changing the value of b affect the shape and behavior of the graph of
1(t) � abt? Write several sentences to explain.

e. For what values of the growth factor b is the corresponding growth rate posi-
tive? For which b-values is the growth rate negative?

f. Consider the graphs of the exponential functions p and q provided in Figure 3.1.3.
If p(t) � abt and q(t) � cdt , what can you say about the values a, b, c, and d
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Chapter 3 Exponential and Logarithmic Functions

(beyond the fact that all are positive and b , 1 and d , 1)? For instance, can you
say a certain value is larger than another? Or that one of the values is less than
1?

q

p

y

t

Figure 3.1.3: Graphs of exponential functions p and q.

3.1.2 Determining formulas for exponential functions

To better understand the roles that a and b play in an exponential function, let’s compare ex-
ponential and linear functions. In Table 3.1.4 and Table 3.1.5, we see output for two different
functions r and s that correspond to equally spaced input.

t 0 3 6 9
r(t) 12 10 8 6

Table 3.1.4: Data for the function r.

t 0 3 6 9
s(t) 12 9 6.75 5.0625

Table 3.1.5: Data for the function s.
In Table 3.1.4, we see a function that exhibits constant average rate of change since the change
in output is always △r � −2 for any change in input of △t � 3. Said differently, r is a
linear function with slope m � − 2

3 . Since its y-intercept is (0, 12), the function’s formula is
y � r(t) � 12 − 2

3 t.

In contrast, the function s given by Table 3.1.5 does not exhibit constant average rate of
change. Instead, another pattern is present. Observe that if we consider the ratios of con-
secutive outputs in the table, we see that

9
12 �

3
4 ,

6.75
9 � 0.75 �

3
4 , and

5.0625
6.75 � 0.75 �

3
4 .

So, where the differences in the outputs in Table 3.1.4 are constant, the ratios in the outputs in
Table 3.1.5 are constant. The latter is a hallmark of exponential functions and may be used
to help us determine the formula of a function for which we have certain information.

156



3.1 Exponential Growth and Decay

If we know that a certain function is linear, it suffices to know two points that lie on the
line to determine the function’s formula. It turns out that exponential functions are similar:
knowing two points on the graph of a function known to be exponential is enough informa-
tion to determine the function’s formula. In the following example, we show how knowing
two values of an exponential function enables us to find both a and b exactly.

Example 3.1.6 Suppose that p is an exponential function and we know that p(2) � 11 and
p(5) � 18. Determine the exact values of a and b for which p(t) � abt .

Solution. Since we know that p(t) � abt , the two data points give us two equations in the
unknowns a and b. First, using t � 2,

ab2
� 11, (3.1.1)

and using t � 5 we also have
ab5

� 18. (3.1.2)
Because we know that the quotient of outputs of an exponential function corresponding to
equally-spaced inputs must be constant, we thus naturally consider the quotient 18

11 . Using
Equation (3.1.1) and Equation (3.1.2), it follows that

18
11 �

ab5

ab2 .

Simplifying the fraction on the right, we see that 18
11 � b3. Solving for b, we find that b �

3
√

18
11

is the exact value of b. Substituting this value for b in Equation (3.1.1), it then follows that

a
(

3
√

18
11

)2

� 11, so a �
11

( 18
11 )2/3 . Therefore,

p(t) � 11( 18
11

)2/3

(
3

√
18
11

) t

≈ 7.9215 · 1.1784t ,

and a plot of y � p(t) confirms that the function indeed passes through (2, 11) and (5, 18) as
shown in Figure 3.1.7.

2 4 6

10

20

30

p(t) = abt

y

t

(2,11)

(5,18)

Figure 3.1.7: Plot of p(t) � abt that passes through (2, 11) and (5, 18).
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Chapter 3 Exponential and Logarithmic Functions

□

Activity 3.1.3. The value of an automobile is depreciating. When the car is 3 years
old, its value is $12500; when the car is 7 years old, its value is $6500.

a. Suppose the car’s value t years after its purchase is given by the function V(t)
and that V is exponential with form V(t) � abt , what are the exact values of a
and b?

b. Using the exponential model determined in (a), determine the purchase value
of the car and estimate when the car will be worth less than $1000.

c. Suppose instead that the car’s value is modeled by a linear function L and sat-
isfies the values stated at the outset of this activity. Find a formula for L(t) and
determine both the purchase value of the car and when the car will be worth
$1000.

d. Which model do you think is more realistic? Why?

3.1.3 Trends in the behavior of exponential functions

Recall that a function is increasing on an interval if its value always increasing as we move
from left to right. Similarly, a function is decreasing on an interval provided that its value
always decreases as we move from left to right.

f

y

t

Figure 3.1.8: The exponential function f .

g

y

t

Figure 3.1.9: The exponential function 1.
If we consider an exponential function f with a growth factor b > 1, such as the function
pictured in Figure 3.1.8, then the function is always increasing because higher powers of b are
greater than lesser powers (for example, (1.2)3 > (1.2)2). On the other hand, if 0 < b < 1, then
the exponential function will be decreasing because higher powers of positive numbers less
than 1 get smaller (e.g., (0.9)3 < (0.9)2), as seen for the exponential function in Figure 3.1.9.
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3.1 Exponential Growth and Decay

An additional trend is apparent in the graphs in Figure 3.1.8 and Figure 3.1.9. Each graph
bends upward and is therefore concave up. We can better understand why this is so by
considering the average rate of change of both f and 1 on consecutive intervals of the same
width. We choose adjacent intervals of length 1 and note particularly that as we compute
the average rate of change of each function on such intervals,

AV[t ,t+1] �
f (t + 1) − f (t)

t + 1 − 1 � f (t + 1) − f (t).

Thus, these average rates of change are alsomeasuring the total change in the function across
an interval that is 1-unit wide. We now assume that f (t) � 2(1.25)t and 1(t) � 8(0.75)t and
compute the rate of change of each function on several consecutive intervals.

t f (t) AV[t ,t+1]
0 2 0.5
1 2.5 0.625
2 3.125 0.78215
3 3.90625 0.97656

Table 3.1.10: The average rate of change of
f (t) � 2(1.25)t .

t 1(t) AV[t ,t+1]
0 8 −2
1 6 −1.5
2 4.5 −1.125
3 3.375 −0.84375

Table 3.1.11: The average rate of change of
1(t) � 8(0.75)t .

From the data in Table 3.1.10, we see that the average rate of change is increasing as we
increase the value of t. We naturally say that f appears to be “increasing at an increasing
rate”. For the function 1, we first notice that its average rate of change is always negative,
but also that the average rate of change gets less negative as we increase the value of t. Said
differently, the average rate of change of 1 is also increasing as we increase the value of
t. Since 1 is always decreasing but its average rate of change is increasing, we say that 1
appears to be “decreasing at an increasing rate”. These trends hold for exponential functions
generally¹ according to the following conditions.

Trends in exponential function behavior.

For an exponential function of the form f (t) � abt where a and b are both positive
with b , 1,

• if b > 1, then f is always increasing and always increases at an increasing rate;

• if 0 < b < 1, then f is always decreasing and always decreases at an increasing
rate.

Observe how a function’s average rate of change helps us classify the function’s behavior on
an interval: whether the average rate of change is always positive or always negative on the
interval enables us to say if the function is always increasing or always decreasing, and then
how the average rate of change itself changes enables us to potentially say how the function
is increasing or decreasing through phrases such as “decreasing at an increasing rate”.

¹It takes calculus to justify this claim fully and rigorously.
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Chapter 3 Exponential and Logarithmic Functions

Activity 3.1.4. For each of the following prompts, give an example of a function that
satisfies the stated characteristics by both providing a formula and sketching a graph.

a. A function p that is always decreasing and decreases at a constant rate.

b. A function q that is always increasing and increases at an increasing rate.

c. A function r that is always increasing for t < 2, always decreasing for t > 2, and
is always changing at a decreasing rate.

d. A function s that is always increasing and increases at a decreasing rate. (Hint:
to find a formula, think about how you might use a transformation of a familiar
function.)

e. A function u that is always decreasing and decreases at a decreasing rate.

3.1.4 Summary

• We say that a function is exponential whenever its algebraic form is f (t) � abt for
some positive constants a and b where b , 1. (Technically, the formal definition of an
exponential function is one of form f (t) � bt , but in our everyday usage of the term
“exponential” we include vertical stretches of these functions and thus allow a to be
any positive constant, not just a � 1.)

• To determine the formula for an exponential function of form f (t) � abt , we need to
know two pieces of information. Typically this information is presented in one of two
ways.

◦ If we know the amount, a, of a quantity at time t � 0 and the rate, r, at which the
quantity grows or decays per unit time, then it follows f (t) � a(1 + r)t . In this
setting, r is often given as a percentage that we convert to a decimal (e.g., if the
quantity grows at a rate of 7% per year, we set r � 0.07, so b � 1.07).

◦ If we know any two points on the exponential function’s graph, then we can set
up a system of two equations in two unknowns and solve for both a and b exactly.
In this situation, it is useful to consider the quotient of the two known outputs,
as demonstrated in Example 3.1.6.

• Exponential functions of the form f (t) � abt (where a and b are both positive and
b , 1) exhibit the following important characteristics:

◦ The domain of any exponential function is the set of all real numbers and the
range of any exponential function is the set of all positive real numbers.

◦ The y-intercept of the exponential function f (t) � abt is (0, a) and the function
has no x-intercepts.

◦ If b > 1, then the exponential function is always increasing and always increases
at an increasing rate. If 0 < b < 1, then the exponential function is always de-
creasing and always decreases at an increasing rate.
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3.1 Exponential Growth and Decay

3.1.5 Exercises

1. Suppose Q � 30.8(0.751)t . Give the starting value a, the growth factor b, and the growth
rate r if Q � a · bt � a(1 + r)t .

2. Find a formula for P � f (t), the size of the population that begins in year t � 0 with
2090 members and decreases at a 3.7 % annual rate. Assume that time is measured in
years.

3. (a) The annual inflation rate is 3.8% per year. If a movie ticket costs $9.00 today, find
a formula for p, the price of a movie ticket t years from today, assuming that movie
tickets keep up with inflation.

(b) According to your formula, how much will a movie ticket cost in 30 years?

4. In the year 2003, a total of 7.2 million passengers took a cruise vacation. The global
cruise industry has been growing at 9% per year for the last decade. Assume that this
growth rate continues.

(a)Write a formula for to approximate the number, N , of cruise passengers (inmillions)
t years after 2003.

(b) How many cruise passengers (in millions) are predicted in the year 2011?

(c) How many cruise passengers (in millions) were there in the year 2000?

5. The populations, P, of six towns with time t in years are given by

1 P � 800(0.78)t

2 P � 900(1.06)t

3 P � 1600(0.96)t

4 P � 1400(1.187)t

5 P � 500(1.14)t

6 P � 2800(0.8)t

Answer the following questions regarding the populations of the six towns above.

(a) Which of the towns are growing?

(b) Which of the towns are shrinking?

(c) Which town is growing the fastest?

What is the annual percentage growth RATE of that town?

(d) Which town is shrinking the fastest?

What is the annual percentage decay RATE of that town?

(e) Which town has the largest initial population?

(f) Which town has the smallest initial population?
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6. (a) Determine whether function whose values are given in the table below could be
linear or exponential.

x � 0 1 2 3 4
h(x) � 14 8 2 -4 -10

Find a possible formula for this function.

(b) Determine whether function whose values are given in the table below could be
linear or exponential.

x � 0 1 2 3 4
i(x) � 14 12.6 11.34 10.206 9.1854

Find a possible formula for this function.

7. A population has size 8000 at time t � 0, with t in years.

(a) If the population decreases by 125 people per year, find a formula for the population,
P, at time t.

(b) If the population decreases by 6% per year, find a formula for the population, P, at
time t.

8. Grinnell Glacier in Glacier National Park in Montana covered about 142 acres in 2007
and was found to be shrinking at about 4.4% per year.²

a. Let G(t) denote the area of Grinnell Glacier in acres in year t, where t is the num-
ber of years since 2007. Find a formula for G(t) and define the function in Desmos.

b. Howmany acres of ice were in the glacier in 1997? In 2012? What does the model
predict for 2022?

c. How many total acres of ice were lost from 2007 to 2012?

d. What was the average rate of change of G from 2007 to 2012? Write a sentence
to explain the meaning of this number and include units on your answer. In ad-
dition, how does this compare to the average rate of change of G from 2012 to
2017?

e. Howwould you you describe the overall behavior of G, and thus what is happen-
ing to the Grinnell Glacier?

9. Consider the exponential function f whose graph is given by Figure 3.1.12. Note that
f passes through the two noted points exactly.

a. Determine the values of a and b exactly.

b. Determine the average rate of change of f on the intervals [2, 7] and [7, 12]. Which
average rate is greater?

c. Find the equation of the linear function L that passes through the points (2, 20)
and (7, 5).

²See Exercise 34 on p. 146 of Connally’s Functions Modeling Change.
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2 4 6
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f (t) = abt
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t

(2,20)

(7,5)

Figure 3.1.12: A plot of the exponential function f .

d. Which average rate of change is greater? The average rate of change of f on [0, 2]
or the average rate of change of L on [0, 2]?

10. A cup of hot coffee is brought outside on a cold winter morning in Winnipeg, Mani-
toba, where the surrounding temperature is 0degrees Fahrenheit. A temperature probe
records the coffee’s temperature (in degrees Fahrenheit) every minute and generates
the data shown in Table 3.1.13.

t 0 2 4 6 8 10
F(t) 175 129.64 96.04 71.15 52.71 39.05

Table 3.1.13: The temperature, F, of the coffee at time t.

a. Assume that the data in the table represents the overall trend of the behavior of
F. Is F linear, exponential, or neither? Why?

b. Is it possible to determine an exact formula for F? If yes, do so and justify your
formula; if not, explain why not.

c. What is the average rate of change of F on [4, 6]? Write a sentence that explains
the practical meaning of this value in the context of the overall exercise.

d. How do you think the data would appear if instead of being in a regular coffee
cup, the coffee was contained in an insulated mug?

11. The amount (in milligrams) of a drug in a person’s body following one dose is given by
an exponential decay function. Let A(t) denote the amount of drug in the body at time
t in hours after the dose was taken. In addition, suppose you know that A(3) � 22.7
and A(6) � 15.2.

a. Find a formula for A in the form A(t) � abt , where you determine the values of a
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and b exactly.

b. What is the size of the initial dose the person was given?

c. How much of the drug remains in the person’s body 8 hours after the dose was
taken?

d. Estimate how long it will take until there is less than 1 mg of the drug remaining
in the body.

e. Compute the average rate of change of A on the intervals [3, 5], [5, 7], and [7, 9].
Write at least one careful sentence to explain themeaning of the values you found,
including appropriate units. Then write at least one additional sentence to ex-
plain any overall trend(s) you observe in the average rate of change.

f. Plot A(t) on an appropriate interval and label important points and features of
the graph to highlight graphical interpretations of your answers in (b), (c), (d),
and (e).
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3.2 Modeling with exponential functions

3.2 Modeling with exponential functions

Motivating Questions

• What canwe say about the behavior of an exponential function as the input gets larger
and larger?

• How do vertical stretches and shifts of an exponontial function affect its behavior?

• Why is the temperature of a cooling or warming object modeled by a function of the
form F(t) � abt + c?

If a quantity changes so that its growth or decay occurs at a constant percentage rate with
respect to time, the function is exponential. This is because if the growth or decay rate is r,
the total amount of the quantity at time t is given by A(t) � a(1+ r)t , where a is the amount
present at time t � 0. Many different natural quantities change according to exponential
models: money growth through compounding interest, the growth of a population of cells,
and the decay of radioactive elements.

A related situation arises when an object’s temperature changes in response to its surround-
ings. For instance, if we have a cup of coffee at an initial temperature of 186◦ Fahrenheit and
the cup is placed in a room where the surrounding temperature is 71◦, our intuition and ex-
perience tell us that over time the coffee will cool and eventually tend to the 71◦ temperature
of the surroundings. From an experiment ¹ with an actual temperature probe, we have the
data in Table 3.2.1 that is plotted in Figure 3.2.2.

t 0 1 2 3 8 13
F(t) 186 179 175 171 156 144

18 23 28 33 38 43 48
135 127 120 116 111 107 104

Table 3.2.1: Data for cooling coffee, measured
in degrees Fahrenheit at time t in minutes.

10 20 30 40

40

80
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160

t (min)

F (degrees Fahrenheit)

Figure 3.2.2: A plot of the data in Table 3.2.1.
In one sense, the data looks exponential: the points appear to lie on a curve that is always
decreasing and decreasing at an increasing rate. However, we know that the function can’t

¹See http://gvsu.edu/s/0SB for this data.

165

http://gvsu.edu/s/0SB


Chapter 3 Exponential and Logarithmic Functions

have the form f (t) � abt because such a function’s range is the set of all positive real num-
bers, and it’s impossible for the coffee’s temperature to fall below room temperature (71◦).
It is natural to wonder if a function of the form 1(t) � abt + c will work. Thus, in order to
find a function that fits the data in a situation such as Figure 3.2.2, we begin by investigating
and understanding the roles of a, b, and c in the behavior of 1(t) � abt + c.

Preview Activity 3.2.1. In Desmos, define 1(t) � abt + c and accept the prompt for
sliders for both a and b. Edit the sliders so that a has values from a � 5 to a � 50, b
has values from b � 0.7 to b � 1.3, and c has values from c � −5 to c � 5 (also with
a step-size of 0.01). In addition, in Desmos let P � (0, 1(0)) and check the box to show
the label. Finally, zoom out so that the window shows an interval of t-values from
−30 ≤ t ≤ 30.

a. Set b � 1.1 and explore the effects of changing the values of a and c. Write
several sentences to summarize your observations.

b. Follow the directions for (a) again, this time with b � 0.9

c. Set a � 5 and c � 4. Explore the effects of changing the value of b; be sure to
include values of b both less than and greater than 1. Write several sentences to
summarize your observations.

d. When 0 < b < 1, what happens to the graph of 1 when we consider positive
t-values that get larger and larger?

3.2.1 Long-term behavior of exponential functions

We have already established that any exponential function of the form f (t) � abt where a
and b are positive real numbers with b , 1 is always concave up and is either always in-
creasing or always decreasing. We next introduce precise language to describe the behavior
of an exponential function’s value as t gets bigger and bigger. To start, let’s consider the two
basic exponential functions p(t) � 2t and q(t) � ( 1

2 )t and their respective values at t � 10,
t � 20, and t � 30, as displayed in Table 3.2.3 and Table 3.2.4.

t p(t)
10 210 � 1026
20 220 � 1048576
30 230 � 1073741824

Table 3.2.3: Data for p(t) � 2t .

t q(t)
10 ( 1

2 )10 �
1

1026 ≈ 0.00097656
20 ( 1

2 )20 �
1

1048576 ≈ 0.00000095367
30 ( 1

2 )30 �
1

1073741824 ≈ 0.00000000093192

Table 3.2.4: Data for q(t) � ( 1
2 )t .

For the increasing function p(t) � 2t , we see that the output of the function gets very large
very quickly. In addition, there is no upper bound to how large the function can be. Indeed,
we can make the value of p(t) as large as we’d like by taking t sufficiently big. We thus say
that as t increases, p(t) increases without bound.

For the decreasing function q(t) � ( 1
2 )t , we see that the output q(t) is always positive but

getting closer and closer to 0. Indeed, becasue we can make 2t as large as we like, it follows
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that we canmake its reciprocal 1
2t � ( 1

2 )t as small aswe’d like. We thus say that as t increases,
q(t) approaches 0.

To represent these two common phenomena with exponential functions—the value increas-
ing without bound or the value approaching 0—we will use shorthand notation. First, it is
natural to write “q(t) → 0” as t increases without bound. Moreover, since we have the no-
tion of the infinite to represent quantities without bound, we use the symbol for infinity and
arrow notation (∞) and write “p(t) → ∞” as t increases without bound in order to indicate
that p(t) increases without bound.

In Preview Activity 3.2.1, we saw how the value of b affects the steepness of the graph of
f (t) � abt , as well as how all graphs with b > 1 have the similar increasing behavior, and all
graphswith 0 < b < 1 have similar decreasing behavior. For instance, by taking t sufficiently
large, we can make (1.01)t as large as we want; it just takes much larger t to make (1.01)t big
in comparison to 2t . In the same way, we can make (0.99)t as close to 0 as we wish by taking
t sufficiently big, even though it takes longer for (0.99)t to get close to 0 in comparison to
( 1

2 )t . For an arbitrary choice of b, we can say the following.

Long-term behavior of exponential functions.

Let f (t) � bt with b > 0 and b , 1.
• If 0 < b < 1, then bt → 0 as t → ∞. We read this notation as “bt tends to 0 as t

increases without bound.”

• If b > 1, then bt → ∞ as t → ∞. We read this notation as “bt increases without
bound as t increases without bound.”

In addition, we make a key observation about the use of exponents. For the function q(t) �
( 1

2 )t , there are three equivalent ways we may write the function:(
1
2

) t

�
1
2t � 2−t .

In our work with transformations involving horizontal scaling in Exercise 2.4.5.9, we saw
that the graph of y � h(−t) is the reflection of the graph of y � h(t) across the y-axis.
Therefore, we can say that the graphs of p(t) � 2t and q(t) � ( 1

2 )t � 2−t are reflections of
one another in the y-axis since p(−t) � 2−t � q(t). We see this fact verified in Figure 3.2.5.
Similar observations hold for the relationship between the graphs of bt and 1

bt � b−t for any
positive b , 1.

3.2.2 The role of c in 1(t) � abt + c

The function 1(t) � abt + c is a vertical translation of the function f (t) � abt . We now have
extensive understanding of the behavior of f (t) and how that behavior depends on a and
b. Since a vertical translation by c does not change the shape of any graph, we expect that 1
will exhibit very similar behavior to f . Indeed, we can compare the two functions’ graphs
as shown in Figure 3.2.6 and Figure 3.2.7 and then make the following general observations.
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Figure 3.2.5: Plots of p(t) � 2t and q(t) � 2−t .

f (t) = abt

y

t

(0,a)

Figure 3.2.6: Plot of f (t) � abt .

g(t) = abt + c

y

y = c

t

(0,a+ c)

Figure 3.2.7: Plot of 1(t) � abt + c.

Behavior of vertically shifted exponential functions.

Let 1(t) � abt + c with a > 0, b > 0 and b , 1, and c any real number.
• If 0 < b < 1, then 1(t) � abt + c → c as t → ∞. The function 1 is always

decreasing, always concave up, and has y-intercept (0, a + c). The range of the
function is all real numbers greater than c.

• If b > 1, then 1(t) � abt +c → ∞ as t → ∞. The function 1 is always increasing,
always concave up, and has y-intercept (0, a + c). The range of the function is
all real numbers greater than c.
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3.2 Modeling with exponential functions

It is also possible to have a < 0. In this situation, because 1(t) � abt is both a reflection
of f (t) � bt across the x-axis and a vertical stretch by |a |, the function 1 is always concave
down. If 0 < b < 1 so that f is always decreasing, then 1 is always increasing; if instead
b > 1 so f is increasing, then 1 is decreasing. Moreover, instead of the range of the function
1 having a lower bound as when a > 0, in this setting the range of 1 has an upper bound.
These ideas are explored further in Activity 3.2.2.

It’s an important skill to be able to look at an exponential function of the form 1(t) � abt + c
and form an accurate mental picture of the graph’s main features in light of the values of a,
b, and c.

Activity 3.2.2. For each of the following functions, without using graphing technology,
determine whether the function is

i. always increasing or always decreasing;

ii. always concave up or always concave down; and

iii. increasingwithout bound, decreasingwithout bound, or increasing/decreasing
toward a finite value.

In addition, state the y-intercept and the range of the function. For each function,
write a sentence that explains your thinking and sketch a rough graph of how the
function appears.

a. p(t) � 4372(1.000235)t + 92856

b. q(t) � 27931(0.97231)t + 549786

c. r(t) � −17398(0.85234)t

d. s(t) � −17398(0.85234)t + 19411

e. u(t) � −7522(1.03817)t

f. v(t) � −7522(1.03817)t + 6731

3.2.3 Modeling temperature data

Newton’s Law of Cooling states that the rate that an object warms or cools occurs in di-
rect proportion to the difference between its own temperature and the temperature of its
surroundings. If we return to the coffee temperature data in Table 3.2.1 and recall that the
room temperature in that experiment was 71◦, we can see how to use a transformed expo-
nential function to model the data. In Table 3.2.8, we add a row of information to the table
where we compute F(t) − 71 to subtract the room temperature from each reading.

t 0 1 2 3 8 13 18 23 28 33 38 43 48
F(t) 186 179 175 171 156 144 135 127 120 116 111 107 104
f (t) � F(t) − 71 115 108 104 100 85 73 64 56 49 45 40 36 33

Table 3.2.8: Data for cooling coffee, measured in degrees Fahrenheit at time t in minutes,
plus shifted to account for room temperature.

The data in the bottom row of Table 3.2.8 appears exponential, and if we test the data by
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computing the quotients of output values that correspond to equally-spaced input, we see a
nearly constant ratio. In particular,

73
85 ≈ 0.86, 64

73 ≈ 0.88, 56
64 ≈ 0.88, 49

56 ≈ 0.88, 45
49 ≈ 0.92, and40

45 ≈ 0.89.

Of course, there is some measurement error in the data (plus it is only recorded to accuracy
of whole degrees), so these computations provide convincing evidence that the underlying
function is exponential. In addition, we expect that if the data continued in the bottom row
of Table 3.2.8, the values would approach 0 because F(t) will approach 71.

10 20 30 40
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t (min)

F (degrees Fahrenheit)

Figure 3.2.9: Plot of f (t) � 103.503(0.974)t .
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Figure 3.2.10: Plot of
F(t) � 103.503(0.974)t + 71.

If we choose two of the data points, say (18, 64) and (23, 56), and assume that f (t) � abt , we
can determine the values of a and b. Doing so, it turns out that a ≈ 103.503 and b ≈ 0.974,
so f (t) � 103.503(0.974)t . Since f (t) � F(t) − 71, we see that F(t) � f (t) + 71, so F(t) �

103.503(0.974)t + 71. Plotting f against the shifted data and F along with the original data
in Figure 3.2.9 and Figure 3.2.10, we see that the curves go exactly through the points where
t � 18 and t � 23 as expected, but also that the function provides a reasonable model for
the observed behavior at any time t. If our data was even more accurate, we would expect
that the curve’s fit would be even better.

Our preceding work with the coffee data can be done similarly with data for any cooling
or warming object whose temperature initially differs from its surroundings. Indeed, it is
possible to show that Newton’s Law of Cooling implies that the object’s temperature is given
by a function of the form F(t) � abt + c.

Activity 3.2.3. A can of soda (at room temperature) is placed in a refrigerator at time
t � 0 (inminutes) and its temperature, F(t), in degrees Fahrenheit, is computed at reg-
ular intervals. Based on the data, a model is formulated for the object’s temperature,
given by

F(t) � 42 + 30(0.95)t .
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3.2 Modeling with exponential functions

a. Consider the simpler (parent) function p(t) � (0.95)t . How do you expect the
graph of this function to appear? Howwill it behave as time increases? Without
using graphing technology, sketch a rough graph of p and write a sentence of
explanation.

b. For the slightly more complicated function r(t) � 30(0.95)t , how do you expect
this function to look in comparison to p? What is the long-range behavior of
this function as t increases? Without using graphing technology, sketch a rough
graph of r and write a sentence of explanation.

c. Finally, how do you expect the graph of F(t) � 42 + 30(0.95)t to appear? Why?
First sketch a rough graph without graphing technology, and then use technol-
ogy to check your thinking and report an accurate, labeled graph on the axes
provided in Figure 3.2.11.

F

t

Figure 3.2.11: Axes for plotting F.

d. What is the temperature of the refrigerator? What is the room temperature of
the surroundings outside the refrigerator? Why?

e. Determine the average rate of change of F on the intervals [10, 20], [20, 30], and
[30, 40]. Write at least two careful sentences that explain the meaning of the
values you found, including units, and discuss any overall trend in how the
average rate of change is changing.

Activity 3.2.4. A potato initially at room temperature (68◦) is placed in an oven (at
350◦) at time t � 0. It is known that the potato’s temperature at time t is given by the
function F(t) � a − b(0.98)t for some positive constants a and b, where F is measured

171



Chapter 3 Exponential and Logarithmic Functions

in degrees Fahrenheit and t is time in minutes.
a. What is the numerical value of F(0)? What does this tell you about the value of

a − b?

b. Based on the context of the problem, what should be the long-range behavior of
the function F(t)? Use this fact along with the behavior of (0.98)t to determine
the value of a. Write a sentence to explain your thinking.

c. What is the value of b? Why?

d. Check your work above by plotting the function F using graphing technology
in an appropriate window. Record your results on the axes provided in Fig-
ure 3.2.12, labeling the scale on the axes. Then, use the graph to estimate the
time at which the potato’s temperature reaches 325 degrees.

F

t

Figure 3.2.12: Axes for plotting F.

e. How can we view the function F(t) � a − b(0.98)t as a transformation of the
parent function f (t) � (0.98)t? Explain.

3.2.4 Summary

• For an exponential function of the form f (t) � bt , the function either approaches zero
or grows without bound as the input gets larger and larger. In particular, if 0 < b < 1,
then f (t) � bt → 0 as t → ∞, while if b > 1, then f (t) � bt → ∞ as t → ∞. Scaling
f by a positive value a (that is, the transformed function abt) does not affect the long-
range behavior: whether the function tends to 0 or increases without bound depends
solely on whether b is less than or greater than 1.

• The function f (t) � bt passes through (0, 1), is always concave up, is either always
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increasing or always decreasing, and its range is the set of all positive real numbers.
Among these properties, a vertical stretch by a positive value a only affects the y-
intercept, which is instead (0, a). If we include a vertical shift and write 1(t) � abt + c,
the biggest change is that the range of 1 is the set of all real numbers greater than c. In
addition, the y-intercept of 1 is (0, a + c).
In the situation where a < 0, several other changes are induced. Here, because 1(t) �
abt is both a reflection of f (t) � bt across the x-axis and a vertical stretch by |a |, the
function 1 is now always concave down. If 0 < b < 1 so that f is always decreasing,
then 1 (the reflected function) is now always increasing; if instead b > 1 so f is in-
creasing, then 1 is decreasing. Finally, if a < 0, then the range of 1(t) � abt + c is the
set of all real numbers c.

• An exponential function can be thought of as a function that changes at a rate pro-
portional to itself, like how money grows with compound interest or the amount of a
radioactive quantity decays. Newton’s Law of Cooling says that the rate of change of
an object’s temperature is proportional to the difference between its own temperature
and the temperature of its surroundings. This leads to the function that measures the
difference between the object’s temperature and room temperature being exponential,
and hence the object’s temperature itself is a vertically-shifted exponential function of
the form F(t) � abt + c.

3.2.5 Exercises

1. If b > 1, what is the horizontal asymptote of y � abt as t → −∞?

2. Find the long run behavior of each of the following functions.

(a) As x −→ ∞, 18(0.8)x −→
(b) As t −→ −∞, 9(2.2)t −→
(c) As t −→ ∞, 0.6(2 + (0.1)t) −→
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3. Suppose t0 is the t-coordinate of the point of intersection of the graphs below. Complete
the statement below in order to correctly describe what happens to t0 if the value of r
(in the blue graph of f (t) � a(1+ r)t below) is increased, and all other quantities remain
the same.

As r increases, does the value of t0 increase, decrease, or remain the same?

4. Acan of soda has been in a refrigerator for several days; the refrigerator has temperature
41◦ Fahrenheit. Upon removal, the soda is placed on a kitchen table in a room with
surrounding temperature 72◦. Let F(t) represent the soda’s temperature in degrees
Fahrenheit at time t in minutes, where t � 0 corresponds to the time the can is removed
from the refrigerator. We know from Newton’s Law of Cooling that F has form F(t) �
abt + c for some constants a, b, and c, where 0 < b < 1.

a. What is the numerical value of the soda’s initial temperature? What is the value
of F(0) in terms of a, b, and c? What do these two observations tell us?

b. What is the numerical value of the soda’s long-term temperature? What is the
long-term value of F(t) in terms of a, b, and c? What do these two observations
tell us?

c. Using your work in (a) and (b), determine the numerical values of a and c.

d. Suppose it can be determined that b � 0.931. What is the soda’s temperature after
10 minutes?
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3.2 Modeling with exponential functions

5. Consider the graphs of the following four functions p, q, r, and s. Each is a shifted
exponential function of the form abt + c.

p

y

t

q

y

t

r

y

t

s

y

t

For each function p, q, r, and s, determine

• whether a > 0 or a < 0;

• whether 0 < b < 1 or b > 1;

• whether c > 0, c � 0, or c < 0; and

• the range of the function in terms of c.

6. A cup of coffee has its temperature, C(t), measured in degrees Celsius. When poured
outdoors on a coldmorning, its temperature is C(0) � 95. Tenminutes later, C(10) � 80.
If the surrounding temperature outside is 0◦ Celsius, find a formula for a function C(t)
that models the coffee’s temperature at time t.

In addition, recall that we can convert between Celsius and Fahrenheit according to the
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equations F �
9
5 C+32 and C �

5
9 (F−32). Use this information to also find a formula for

F(t), the coffee’s Fahrenheit temperature at time t. What is similar andwhat is different
regarding the functions C(t) and F(t)?
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3.3 The special number e

3.3 The special number e

Motivating Questions

• Why can every exponential function of form f (t) � bt (where b > 0 and b , 1) be
thought of as a horizontal scaling of a single special exponential function?

• What is the natural base e and what makes this number special?

We have observed that the behavior of functions of the form f (t) � bt is very consistent,
where the only major differences depend on whether b < 1 or b > 1. Indeed, if we stipulate
that b > 1, the graphs of functions with different bases b look nearly identical, as seen in the
plots of p, q, r, and s in Figure 3.3.1.
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Figure 3.3.1: Plots of four different exponential functions of form bt with b > 1.

Because the point (0, 1) lies on the graph of each of the four functions in Figure 3.3.1, the
functions cannot be vertical scalings of one another. However, it is possible that the func-
tions are horizontal scalings of one another. This leads us to a natural question: might it be
possible to find a single exponential functionwith a special base, say e, for which every other
exponential function f (t) � bt can be expressed as a horizontal scaling of E(t) � e t?

Preview Activity 3.3.1. Open a new Desmos worksheet and define the following func-
tions: f (t) � 2t , 1(t) � 3t , h(t) � ( 1

3 )t , and p(t) � f (kt). After you define p, accept the
slider for k, and set the range of the slider to be −2 ≤ k ≤ 2.

a. By experimenting with the value of k, find a value of k so that the graph of
p(t) � f (kt) � 2kt appears to align with the graph of 1(t) � 3t . What is the
value of k?
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b. Similarly, experiment to find a value of k so that the graph of p(t) � f (kt) � 2kt

appears to align with the graph of h(t) � ( 1
3 )t . What is the value of k?

c. For the value of k you determined in (a), compute 2k . What do you observe?

d. For the value of k you determined in (b), compute 2k . What do you observe?

e. Given any exponential function of the form bt , do you think it’s possible to find
a value of k to that p(t) � f (kt) � 2kt is the same function as bt? Why or why
not?

3.3.1 The natural base e

In Preview Activity 3.3.1, we found that it appears possible to find a value of k so that given
any base b, we can write the function bt as the horizontal scaling of 2t given by

bt
� 2kt .

It’s also apparent that there’s nothing particularly special about “2”: we could similarlywrite
any function bt as a horizontal scaling of 3t or 4t , albeit with a different scaling factor k for
each. Thus, we might also ask: is there a best possible single base to use?

Through the central topic of the rate of change of a function, calculus helps us decide which
base is best to use to represent all exponential functions. While we study average rate of
change extensively in this course, in calculus there is more emphasis on the instantaneous
rate of change. In that context, a natural question arises: is there a nonzero function that
grows in such a way that its height is exactly how fast its height is increasing?

Amazingly, it turns out that the answer to this questions is “yes,” and the function with
this property is the exponential function with the natural base, denoted e t . The number
e (named in homage to the great Swiss mathematician Leonard Euler (1707-1783)) is com-
plicated to define. Like π, e is an irrational number that cannot be represented exactly by
a ratio of integers and whose decimal expansion never repeats. Advanced mathematics is
needed in order to make the following formal definition of e.

Definition 3.3.2 The natural base, e. The number e is the infinite sum¹

e � 1 +
1
1! +

1
2! +

1
3! +

1
4! + · · ·

From this, e ≈ 2.718281828. ♢

For instance, 1+ 1
1+

1
2+

1
6+

1
24+

1
120 �

163
60 ≈ 2.7167 is an approximation of e generated by taking

the first 6 terms in the infinite sum that defines it. Every computational device knows the
number e and we will normally work with this number by using technology appropriately.

Initially, it’s important to note that 2 < e < 3, and thus we expect the function e t to lie
between 2t and 3t .

¹Infinite sums are usually studied in second semester calculus.
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t −2 −1 0 1 2
2t 0.25 0.5 1 2 4

t −2 −1 0 1 2
e t 0.135 0.368 1 2.718 7.389

t −2 −1 0 1 2
3t 0.111 0.333 1 3 9

Table 3.3.3: Select outputs of 2t , e t , and 3t re-
ported to 3 decimal places. -2 2
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Figure 3.3.4: Plot of e t along with 2t and 3t .
If we compare the graphs and some selected outputs of each function, as in Table 3.3.3 and
Figure 3.3.4, we see that the function e t satisfies the inequality

2t < e t < 3t

for all positive values of t. When t is negative, we can view the values of each function
as being reciprocals of powers of 2, e, and 3. For instance, since 22 < e2 < 32, it follows
1
32 <

1
e2 <

1
22 , or

3−2 < e−2 < 2−2.
Thus, for any t < 0,

3t < e t < 2t

Like 2t and 3t , the function e t passes through (0, 1) is always increasing and always concave
up, and its range is the set of all positive real numbers.

Activity 3.3.2. Recall from Section 1.3 that the average rate of change of a function f
on an interval [a , b] is

AV[a ,b] �
f (b) − f (a)

b − a
.

In Section 1.6, we also saw that if we instead think of the average rate of change of f
on the interval [a , a + h], the expression changes to

AV[a ,a+h] �
f (a + h) − f (a)

h
.

In this activitywe explore the average rate of change of f (t) � e t near the pointswhere
t � 1 and t � 2.

In a new Desmos worksheet, let f (t) � e t and define the function A by the rule

A(h) � f (1 + h) − f (1)
h

.
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a. What is the meaning of A(0.5) in terms of the function f and its graph?

b. Compute the value of A(h) for at least 6 different small values of h, both positive
and negative. For instance, one value to try might be h � 0.0001. Record a table
of your results.

c. What do you notice about the values you found in (b)? How do they compare
to an important number?

d. Explain why the following sentence makes sense: “The function e t is increasing
at an average rate that is about the same as its value on small intervals near
t � 1.”

e. Adjust your definition of A in Desmos by changing 1 to 2 so that

A(h) � f (2 + h) − f (2)
h

.

How does the value of A(h) compare to f (2) for small values of h?

3.3.2 Why any exponential function can be written in terms of e

In PreviewActivity 3.3.1, we saw graphical evidence that any exponential function f (t) � bt

can be written as a horizontal scaling of the function 1(t) � 2t , plus we observed that there
wasn’t anything particularly special about 2t . Because of the importance of e t in calculus,
we will choose instead to use the natural exponential function, E(t) � e t as the function we
scale to generate any other exponential function f (t) � bt . We claim that for any choice of
b > 0 (with b , 1), there exists a horizontal scaling factor k such that bt � f (t) � E(kt) � ekt .

By the rules of exponents, we can rewrite this last equation equivalently as

bt
� (ek)t .

Since this equation has to hold for every value of t, it follows that b � ek . Thus, our claim
that we can scale E(t) to get f (t) requires us to show that regardless of the choice of the
positive number b, there exists a single corresponding value of k such that b � ek .

Given b > 0, we can always find a corresponding value of k such that ek � b because the
function f (t) � e t passes the Horizontal Line Test, as seen in Figure 3.3.5. In Figure 3.3.5,
we can think of b as a point on the positive vertical axis. From there, we draw a horizontal
line over to the graph of f (t) � e t , and then from the (unique) point of intersection we drop
a vertical line to the x-axis. At that corresponding point on the x-axis we have found the
input value k that corresponds to b. We see that there is always exactly one such k value
that corresponds to each chosen b because f (t) � e t is always increasing, and any always
increasing function passes the Horizontal Line Test.

It follows that the function f (t) � e t has an inverse function, and hence there must be some
other function 1 such that writing y � f (t) is the same as writing t � 1(y). This important
function 1 will be developed in Section 3.4 and will enable us to find the value of k exactly

180



3.3 The special number e

-2 2

2

4

6

8

et

y

tk

b
(k,ek)

Figure 3.3.5: A plot of f (t) � e t along with several choices of positive constants b viewed
on the vertical axis.

for a given b. For now, we are content to work with these observations graphically and to
hence find estimates for the value of k.

Activity 3.3.3. By graphing f (t) � e t and appropriate horizontal lines, estimate the
solution to each of the following equations. Note that in some parts, you may need to
do some algebraic work in addition to using the graph.

a. e t � 2

b. e3t � 5

c. 2e t − 4 � 7

d. 3e0.25t + 2 � 6

e. 4 − 2e−0.7t � 3

f. 2e1.2t � 1.5e1.6t

3.3.3 Summary

• Any exponential function f (t) � bt can be viewed as a horizontal scaling of E(t) � e t

because there exists a unique constant k such that E(kt) � ekt � bt � f (t) is true for
every value of t. This holds since the exponential function e t is always increasing, so
given an output b there exists a unique input k such that ek � b, from which it follows
that ekt � bt .

• The natural base e is the special number that defines an increasing exponential func-
tion whose rate of change at any point is the same as its height at that point, a fact that
is established using calculus. The number e turns out to be given exactly by an infinite
sum and approximately by e ≈ 2.7182818.
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3.3.4 Exercises

1. Certain radioactive material decays in such a way that the mass remaining after t years
is given by the function

m(t) � 175e−0.015t

where m(t) is measured in grams.

(a) Find the mass at time t � 0.

(b) How much of the mass remains after 15 years?

2. The graph of the function f (x) � −ex can be obtained from the graph of 1(x) � ex by
one of the following actions:

(a) reflecting the graph of 1(x) in the y-axis;

(b) reflecting the graph of 1(x) in the x-axis;

The range of the function f (x) is f (x) < A, find A.

Is the domain of the function f (x) still (−∞,∞)?

3. The graph of the function f (x) � e−x − 4 can be obtained from the graph of 1(x) � ex

by two of the following actions:

(a) reflecting the graph of 1(x) in the y-axis;

(b) reflecting the graph of 1(x) in the x-axis;

(c) shifting the graph of 1(x) to the right 4 units;

(d) shifting the graph of 1(x) to the left 4 units;

(e) shifting the graph of 1(x) upward 4 units;

(f) shifting the graph of 1(x) downward 4 units;

(Please give your answer in the order the changes are applied, e.g. a first, then b sec-
ond.)

The range of the function f (x) is f (x) > A, find A.

Is the domain of the function f (x) still (−∞,∞)?

4. Find the end behavior of the following function. As t → −∞, 11e0.14t →

5. Compute the following limit.

lim
t→∞

(
12e−0.15t

+ 17
)
�

6. When a single investment of principal, $P, is invested in an account that returns interest
at an annual rate of r (a decimal that corresponds to the percentage rate, such as r � 0.05
corresponding to 5%) that is compounded n times per year, the amount of money in
the account after t years is given by A(t) � P(1 +

r
n )nt .

Suppose we invest $P in an account that earns 8% annual interest. We investigate the
effects of different rates of compounding.
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a. Compute A(1) if interest is compounded quarterly (n � 4).

b. Compute A(1) if interest is compounded monthly.

c. Compute A(1) if interest is compounded weekly.

d. Compute A(1) if interest is compounded daily.

e. Ifwe let the number of times that interest is compounded increasewithout bound,
we say that the interest is “compounded continuously”. When interest is com-
pounded continuously, it turns out that the amount of money an account with
initial investment $P after t years at an annual interest rate of r is A(t) � Pe rt ,
where e is the natural base. Compute A(1) in the same context as the preceding
questions but where interest is compounded continuously.

f. How much of a difference does continuously compounded interest make over
interest compounded quarterly in one year’s time? Howdoes your answer change
over 25 years’ time?

7. In Desmos, define the function 1(t) � ekt and accept the slider for k. Set the range of the
slider to −2 ≤ k ≤ 2, and assume that k , 0. Experiment with a wide range of values
of k to see the effects of changing k.

a. For what values of k is 1 always increasing? For what values of k is 1 always
decreasing?

b. For which value of k is the average rate of change of 1 on [0, 1] greater: when
k � −0.1 or when k � −0.05?

c. What is the long-term behavior of 1 when k < 0? Why does this occur?

d. Experiment with the slider to find a value of k for which 1(2) �
1
2 . Test your

estimate by computing e2k . How accurate is your estimate?
8. A can of soda is removed from a refrigerator at time t � 0 (in minutes) and its temper-

ature, F(t), in degrees Fahrenheit, is computed at regular intervals. Based on the data,
a model is formulated for the object’s temperature, given by

F(t) � 74.4 − 38.8e−0.05t .

a. What is the long-term behavior of the function 1(t) � e−0.05t? Why?

b. What is the long-term behavior of the function F(t) � 74.4 − 38.8e−0.05t? What is
the meaning of this value in the physical context of the problem?

c. What is the temperature of the refrigerator? Why?

d. Compute the average rate of change of F on the intervals [10, 20], [20, 30], and
[30, 40]. Write a careful sentence, with units, to explain the meaning of each, and
write an additional sentence to describe any overall trends in how the average
rate of change of F is changing.
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3.4 What a logarithm is

Motivating Questions

• How is the base-10 logarithm defined?

• What is the “natural logarithm” and how is it different from the base-10 logarithm?

• How can we solve an equation that involves e to some unknown quantity?

In Section 1.7, we introduced the idea of an inverse function. The fundamental idea is that
f has an inverse function if and only if there exists another function 1 such that f and 1
“undo” one another’s respective processes. In other words, the process of the function f is
reversible, and reversing f generates a related function 1.

More formally, recall that a function y � f (x) (where f : A → B) has an inverse function if
and only if there exists another function 1 : B → A such that 1( f (x)) � x for every x in A,
and f (1(y)) � y for every y in B. We know that given a function f , we can use theHorizontal
Line Test to determinewhether or not f has an inverse function. Finally, whenever a function
f has an inverse function, we call its inverse function f −1 and know that the two equations
y � f (x) and x � f −1(y) say the same thing from different perspectives.

Preview Activity 3.4.1. Let P(t) be the “powers of 10” function, which is given by
P(t) � 10t .

a. Complete Table 3.4.1 to generate certain values of P.

t -3 -2 -1 0 1 2 3
y � P(t) � 10t

Table 3.4.1: Select values of the powers of 10 function.

b. Why does P have an inverse function?

c. Since P has an inverse function, we know there exists some other function, say L,
such that writing “y � P(t)” says the exact same thing as writing “t � L(y)”. In
words, where P produces the result of raising 10 to a given power, the function
L reverses this process and instead tells us the power to which we need to raise
10, given a desired result. Complete Table 3.4.2 to generate a collection of values
of L.

y 10−3 10−2 10−1 100 101 102 103

L(y)

Table 3.4.2: Select values of the function L that is the inverse of P.
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d. What are the domain and range of the function P? What are the domain and
range of the function L?

3.4.1 The base-10 logarithm

The powers-of-10 function P(t) � 10t is an exponential function with base b > 1. As such, P
is always increasing, and thus its graph passes the Horizontal Line Test, so P has an inverse
function. We therefore know there exists some other function, L, such that writing y � P(t)
is equivalent to writing t � L(y). For instance, we know that P(2) � 100 and P(−3) � 1

1000 ,
so it’s equivalent to say that L(100) � 2 and L( 1

1000 ) � −3. This new function L we call the
base 10 logarithm, which is formally defined as follows.

Definition 3.4.3 Given a positive real number y, the base-10 logarithm of y is the power to
which we raise 10 to get y. We use the notation “log10(y)” to denote the base-10 logarithm
of y. ♢

The base-10 logarithm is therefore the inverse of the powers of 10 function. Whereas P(t) �
10t takes an input whose value is an exponent and produces the result of taking 10 to that
power, the base-10 logarithm takes an input number we view as a power of 10 and produces
the corresponding exponent such that 10 to that exponent is the input number.

In the notation of logarithms, we can nowupdate our earlier observationswith the functions
P and L and see how exponential equations can be written in two equivalent ways. For
instance,

102
� 100 and log10(100) � 2 (3.4.1)

each say the same thing from twodifferent perspectives. The first says “100 is 10 to the power
2”, while the second says “2 is the power to which we raise 10 to get 100”. Similarly,

10−3
�

1
1000 and log10

(
1

1000

)
� −3. (3.4.2)

If we rearrange the statements of the facts in Equation (3.4.1), we can see yet another im-
portant relationship between the powers of 10 and base-10 logarithm function. Noting that
log10(100) � 2 and 100 � 102 are equivalent statements, and substituting the latter equation
into the former, we see that

log10(102) � 2. (3.4.3)

In words, Equation (3.4.3) says that “the power to which we raise 10 to get 102, is 2”. That
is, the base-10 logarithm function undoes the work of the powers of 10 function.

In a similar way, if we rearrange the statements in Equation (3.4.2), we can observe that by
replacing −3 with log10( 1

1000 ) we have

10log10( 1
1000 ) �

1
1000 . (3.4.4)

In words, Equation (3.4.4) says that “when 10 is raised to the power to which we raise 10 in
order to get 1

1000 , we get 1
1000”.
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We summarize the key relationships between the powers-of-10 function and its inverse, the
base-10 logarithm function, more generally as follows.

P(t) � 10t and L(y) � log10(y).

• The domain of P is the set of all real numbers and the range of P is the set of all
positive real numbers.

• The domain of L is the set of all positive real numbers and the range of L is the
set of all real numbers.

• For any real number t, log10(10t) � t. That is, L(P(t)) � t.

• For any positive real number y, 10log10(y) � y. That is, P(L(y)) � y.

• 100 � 1 and log10(1) � 0.

The base-10 logarithm function is like the sine or cosine function in this way: for certain
special values, it’s easy to know the value of the logarithm function. While for sine and
cosine the familiar points come from specially placed points on the unit circle, for the base-
10 logarithm function, the familiar points come from powers of 10. In addition, like sine and
cosine, for all other input values, (a) calculus ultimately determines the value of the base-
10 logarithm function at other values, and (b) we use computational technology in order to
compute these values. For most computational devices, the command log(y) produces the
result of the base-10 logarithm of y.

It’s important to note that the logarithm function produces exact values. For instance, if we
want to solve the equation 10t � 5, then it follows that t � log10(5) is the exact solution to
the equation. Like

√
2 or cos(1), log10(5) is a number that is an exact value. A computational

device can give us a decimal approximation, and we normally want to distinguish between
the exact value and the approximate one. For the three different numbers here,

√
2 ≈ 1.414,

cos(1) ≈ 0.540, and log10(5) ≈ 0.699.

Activity 3.4.2. For each of the following equations, determine the exact value of the
unknown variable. If the exact value involves a logarithm, use a computational device
to also report an approximate value. For instance, if the exact value is y � log10(2),
you can also note that y ≈ 0.301.

a. 10t � 0.00001

b. log10(1000000) � t

c. 10t � 37

d. log10(y) � 1.375

e. 10t � 0.04

f. 3 · 10t + 11 � 147

g. 2 log10(y) + 5 � 1

3.4.2 The natural logarithm

The base-10 logarithm is a good starting point for understanding how logarithmic functions
work because powers of 10 are easy to mentally compute. We could similarly consider the
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3.4 What a logarithm is

powers of 2 or powers of 3 function and develop a corresponding logarithm of base 2 or 3.
But rather than have awhole collection of different logarithm functions, in the sameway that
we now use the function e t and appropriate scaling to represent any exponential function,
we develop a single logarithm function that we can use to represent any other logarithmic
function through scaling. In correspondence with the natural exponential function, e t , we
now develop its inverse function, and call this inverse function the natural logarithm.

Definition 3.4.4 Given a positive real number y, the natural logarithm of y is the power to
which we raise e to get y. We use the notation “ln(y)” to denote the natural logarithm of y.

♢

We can think of the natural logarithm, ln(y), as the “base-e logarithm”. For instance,

ln(e2) � 2

and

e ln(−1)
� −1.

The former equation is true since “the power to which we raise e to get e2 is 2”; the latter
equation is true since “whenwe raise e to the power towhichwe raise e to get−1, we get−1”.
The key relationships between the natural exponential and the natural logarithm function
are investigated in Activity 3.4.3.

Activity 3.4.3. Let E(t) � e t and N(y) � ln(y) be the natural exponential function and
the natural logarithm function, respectively.

a. What are the domain and range of E?

b. What are the domain and range of N?

c. What can you say about ln(e t) for every real number t?

d. What can you say about e ln(y) for every positive real number y?

e. Complete Table 3.4.5 and Table 3.4.6 with both exact and approximate values
of E and N . Then, plot the corresponding ordered pairs from each table on
the axes provided in Figure 3.4.7 and connect the points in an intuitive way.
When you plot the ordered pairs on the axes, in both cases view the first line of
the table as generating values on the horizontal axis and the second line of the
table as producing values on the vertical axis¹; label each ordered pair you plot
appropriately.
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t −2 −1 0 1 2
E(t) � e t e−2 ≈ 0.135

Table 3.4.5: Values of y � E(t).

y e−2 e−1 1 e1 e2

N(y) � ln(y) −2

Table 3.4.6: Values of t � N(y).

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

y

t

Figure 3.4.7: Axes for plotting
data from Table 3.4.5 and
Table 3.4.6 along with the graphs
of the natural exponential and
natural logarithm functions.

3.4.3 f (t) � bt revisited

In Section 3.1 and Section 3.2, we saw that that function f (t) � bt plays a key role inmodeling
exponential growth and decay, and that the value of b not only determines whether the
function models growth (b > 1) or decay (0 < b < 1), but also how fast the growth or decay
occurs. Furthermore, once we introduced the natural base e in Section 3.3, we realized that
we could write every exponential function of form f (t) � bt as a horizontal scaling of the
function E(t) � e t by writing

bt
� f (t) � E(kt) � ekt

for some value k. Our development of the natural logarithm function in the current section
enables us to now determine k exactly.

Example 3.4.8 Determine the exact value of k for which f (t) � 3t � ekt .

Solution. Since we want 3t � ekt to hold for every value of t and ekt � (ek)t , we need to have
3t � (ek)t , and thus 3 � ek . Therefore, k is the power to which we raise e to get 3, which by
definition means that k � ln(3). □

Inmodeling important phenomenausing exponential functions, wewill frequently encounter
equations where the variable is in the exponent, like in Example 3.4.8 where we had to solve
ek � 3. It is in this context where logarithms find one of their most powerful applications.
Activity 3.4.4 provides some opportunities to practice solving equations involving the nat-
ural base, e, and the natural logarithm.

¹Note that when we take this perspective for plotting the data in Table 3.4.6, we are viewing N as a function of
t, writing N(t) � ln(t) in order to plot the function on the t-y axes
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Activity 3.4.4. Solve each of the following equations for the exact value of the un-
known variable. If there is no solution to the equation, explain why not.

a. e t � 1
10

b. 5e t � 7

c. ln(t) � − 1
3

d. e1−3t � 4

e. 2 ln(t) + 1 � 4

f. 4 − 3e2t � 2

g. 4 + 3e2t � 2

h. ln(5 − 6t) � −2

3.4.4 Summary

• The base-10 logarithm of y, denoted log10(y), is defined to be the power to which we
raise 10 to get y. For instance, log10(1000) � 3, since 103 � 1000. The function L(y) �
log10(y) is thus the inverse of the powers-of-10 function, P(t) � 10t .

• The natural logarithm N(y) � ln(y) differs from the base-10 logarithm in that it is the
logarithm with base e instead of 10, and thus ln(y) is the power to which we raise e
to get y. The function N(y) � ln(y) is the inverse of the natural exponential function
E(t) � e t .

• The natural logarithm often enables us solve an equation that involves e to some un-
known quantity. For instance, to solve 2e3t−4 + 5 � 13, we can first solve for e3t−4 by
subtracting 5 from each side and dividing by 2 to get

e3t−4
� 4.

This last equation says “e to some power is 4”. We know that it is equivalent to say

ln(4) � 3t − 4.

Since ln(4) is a number, we can solve thismost recent linear equation for t. In particular,
3t � 4 + ln(4), so

t �
1
3 (4 + ln(4)).

3.4.5 Exercises

1. Express the equation in exponential form

(a) ln 4 � x is equivalent to eA � B. Find A and B.

(b) ln x � 3 is equivalent to eC � D. Find C and D.

2. Evaluate the following expressions. Your answers must be exact and in simplest form.

(a) ln e9

(b) e ln 2

(c) e ln
√

3
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(d) ln(1/e2)

3. Find the solution of the exponential equation

20ex − 1 � 15

in terms of logarithms, or correct to four decimal places.

4. Find the solution of the exponential equation

e2x+1
� 18

in terms of logarithms, or correct to four decimal places.

5. Find the solution of the logarithmic equation

6 − ln(5 − x) � 0

correct to four decimal places.

6. Recall that when a function y � f (x) has an inverse function, the two equations y �

f (x) and x � f −1(y) say the same thing from different perspectives: the first equation
expresses y in terms of x, while the second expresses x in terms of y. When y � f (x) �
ex , we know its inverse is x � f −1(y) � ln(y). Through logarithms, we now have the
ability to find the inverse ofmanydifferent exponential functions. In particular, because
exponential functions and their transformations are either always increasing or always
decreasing, any function of the form y � f (x) � ae−kx + c will have an inverse function.

Find the inverse function for each given function by solving algebraically for x as a
function of y. In addition, state the domain and range of the given function and the
domain and range of of the inverse function.

a. y � 1(x) � e−0.25x

b. y � h(x) � 2ex + 1

c. y � r(x) � 21 + 15e−0.1x

d. y � s(x) � 72 − 40e−0.05x

e. y � u(x) � −5e3x−4 + 8

f. y � w(x) � 3 ln(x) + 4

g. y � z(x) � −0.2 ln(2x − 5) + 1

7. We’ve seen that any exponential function f (t) � bt (b > 0, b , 1) can be written in the
form f (t) � ekt for some real number k, and this is because f (t) � bt is a horizontal
scaling of the function E(t) � e t . In this exercise, we explore how the natural logarithm
can be scaled to achieve a logarithm of any base.

Let b > 1. Because the function y � f (t) � bt has an inverse function, it makes sense
to define its inverse like we did when b � 10 or b � e. The base-b logarithm, denoted
logb(y) is defined to be the power to which we raise b to get y. Thus, writing y � f (t) �
bt is the same as writing t � f −1(y) � logb(y).
In Desmos, the natural logarithm function is given by ln(t), while the base-10 loga-
rithm by log(t). To get a logarithm of a different base, such as a base-2 logarithm, type
log_2(t) (the underscore will generate a subscript; then use the right arrow to get out
of subscript mode).
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In a new Desmos worksheet, enter V(t) = k * ln(t) and accept the slider for k. Set the
lower and upper bounds for the slider to 0.01 and 15, respectively.

a. Define f (t) � log2(t) in Desmos. Can you find a value of k for which log2(t) �

k ln(t)? If yes, what is the value? If not, why not?

b. Repeat (a) for the functions 1(t) � log3(t), h(t) � log5(t), and p(t) � log1.25(t).
What pattern(s) do you observe?

c. True or false: for any value of b > 1, the function logb(t) can be viewed as a
vertical scaling of ln(t).

d. Compute the following values: 1
ln(2) ,

1
ln(3) ,

1
ln(5) , and

1
ln(1.25) . What do you notice

about these values compared to those of k you found in (a) and (b)?
8. A can of soda is removed from a refrigerator at time t � 0 (in minutes) and its temper-

ature, F(t), in degrees Fahrenheit, is computed at regular intervals. Based on the data,
a model is formulated for the object’s temperature, given by

F(t) � 74.4 − 38.8e−0.05t .

a. Determine the exact time when the soda’s temperature is 50◦.

b. Is there ever a time when the soda’s temperature is 36◦? Why or why not?

c. For the model, its domain is the set of all positive real numbers, t > 0. What is its
range?

d. Find a formula for the inverse of the function y � F(t). What is the meaning of
this function?
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3.5 Properties and applications of logarithmic functions

Motivating Questions

• What structural rules do logarithms obey that are similar to rules for exponents?

• What are the key properties of the graph of the natural logarithm function?

• How do logarithms enable us to solve exponential equations?

Logarithms arise as inverses of exponential functions. In addition, we have motivated their
development by our desire to solve exponential equations such as ek � 3 for k. Because
of the inverse relationship between exponential and logarithmic functions, there are sev-
eral important properties logarithms have that are analogous to ones held by exponential
functions. We will work to develop these properties and then show how they are useful in
applied settings.

Preview Activity 3.5.1. In the following questions, we investigate how log10(a · b) can
be equivalently written in terms of log10(a) and log10(b).

a. Write 10x · 10y as 10 raised to a single power. That is, complete the equation

10x · 10y
� 10□

by filling in the box with an appropriate expression involving x and y.

b. What is the simplest possible way to write log10 10x? What about the simplest
equivalent expression for log10 10y?

c. Explain why each of the following three equal signs is valid in the sequence of
equalities:

log10(10x · 10y) � log10(10x+y)
� x + y
� log10(10x) + log10(10y).

d. Suppose that a and b are positive real numbers, so we can think of a as 10x

for some real number x and b as 10y for some real number y. That is, say that
a � 10x and b � 10y . What does our work in (c) tell us about log10(ab)?

3.5.1 Key properties of logarithms

In PreviewActivity 3.5.1, we considered an argument for why log10(ab) � log10(a)+ log10(b)
for any choice of positive numbers a and b. In what follows, we develop this and other
properties of the natural logarithm function; similar reasoning shows the same properties
hold for logarithms of any base.
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Let a and b be any positive real numbers so that x � ln(a) and y � ln(b) are both defined.
Observe thatwe can rewrite these two equations using the definition of the natural logarithm
so that

a � ex and b � e y .

Using substitution, we can now say that

ln(a · b) � ln(ex · e y).

By exponent rules, we know that ln(ex · e y) � ln(ex+y), and because the natural logarithm
and natural exponential function are inverses, ln(ex+y) � x + y. Combining the three most
recent equations,

ln(a · b) � x + y.

Finally, recalling that x � ln(a) and y � ln(b), we have shown that

ln(a · b) � ln(a) + ln(b)

for any choice of positive real numbers a and b.

A similar property holds for ln( a
b ). By nearly the same argument, we can say that

ln
( a

b

)
� ln

(
ex

e y

)
� ln (ex−y)
� x − y
� ln(a) − ln(b).

We have thus shown the following general principles.

Logarithms of products and quotients.

For any positive real numbers a and b,
• ln(a · b) � ln(a) + ln(b)

• ln
( a

b

)
� ln(a) − ln(b)

Because positive integer exponents are a shorthand way to express repeated multiplication,
we can use the multiplication rule for logarithms to think about exponents as well. For
example,

ln(a3) � ln(a · a · a),
and by repeated application of the rule for the natural logarithm of a product, we see

ln(a3) � ln(a) + ln(a) + ln(a) � 3 ln(a).

A similar argument works to show that for every natural number n,

ln(an) � n ln(a).

More sophisticated mathematics can be used to prove that the following property holds for
every real number exponent t.
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Logarithms of exponential expressions.

For any positive real number a and any real number t,

ln(at) � t ln(a).

The rule that ln(at) � t ln(a) is extremely powerful: by working with logarithms appro-
priately, it enables us to move from having a variable in an exponential expression to the
variable being part of a linear expression. Moreover, it enables us to solve exponential equa-
tions exactly, regardless of the base involved.

Example 3.5.1 Solve the equation 7 · 3t − 1 � 5 exactly for t.

Solution. To solve for t, we first solve for 3t . Adding 1 to both sides and dividing by 7, we
find that 3t �

6
7 . Next, we take the natural logarithm of both sides of the equation. Doing

so, we have

ln
(
3t )

� ln
(
6
7

)
.

Applying the rule for the logarithm of an exponential expression on the left, we see that
t ln(3) � ln

( 6
7
)
. Both ln(3) and ln

( 6
7
)
are simply numbers, and thus we conclude that

t �
ln(3)
ln

( 6
7
) .

□

The approach used in Example 3.5.1 works in a wide range of settings: any time we have an
exponential equation of the form p · qt + r � s, we can solve for t by first isolating the expo-
nential expression qt and then by taking the natural logarithm of both sides of the equation.

Activity 3.5.2. Solve each of the following equations exactly and then find an estimate
that is accurate to 5 decimal places.

a. 3t � 5

b. 4 · 2t − 2 � 3

c. 3.7 · (0.9)0.3t + 1.5 � 2.1

d. 72 − 30(0.7)0.05t � 60

e. ln(t) � −2

f. 3 + 2 log10(t) � 3.5

3.5.2 The graph of the natural logarithm

As the inverse of the natural exponential function E(x) � ex , we have already established
that the natural logarithm N(x) � ln(x) has the set of all positive real numbers as its domain
and the set of all real numbers as its range. In addition, being the inverse of E(x) � ex ,
we know that when we plot the natural logarithm and natural exponential functions on the
same coordinate axes, their graphs are reflections of one another across the line y � x, as
seen in Figure 3.5.2 and Figure 3.5.3.
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Figure 3.5.2: The natural exponential and
natural logarithm functions on the interval
[−3, 3].
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Figure 3.5.3: The natural exponential and
natural logarithm functions on the interval
[−15, 15].

Indeed, for any point (a , b) that lies on the graph of E(x) � ex , it follows that the point (b , a)
lies on the graph of the inverse N(x) � ln(x). From this, we see several important properties
of the graph of the logarithm function.

The graph of y � ln(x).

The graph of y � ln(x)
• passes through the point (1, 0);

• is always increasing;

• is always concave down; and

• increases without bound.

Because the graph of E(x) � ex increases more and more rapidly as x increases, the graph
of N(x) � ln(x) increases more and more slowly as x increases. Even though the natural
logarithm function grows very slowly, it does grow without bound because we can make
ln(x) as large as we want by making x sufficiently large. For instance, if we want x such that
ln(x) � 100, we choose x � e100, since ln(e100) � 100.

While the natural exponential function and the natural logarithm (and transformations of
these functions) are connected and have certain similar properties, it’s also important to be
able to distinguish between behavior that is fundamentally exponential and fundamentally
logarithmic.
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Activity 3.5.3. In the questions that follow, we compare and contrast the properties
and behaviors of exponential and logarithmic functions.

a. Let f (t) � 1 − e−(t−1) and 1(t) � ln(t). Plot each function on the same set of
coordinate axes. What properties do the two functions have in common? For
what properties do the two functions differ? Consider each function’s domain,
range, t-intercept, y-intercept, increasing/decreasing behavior, concavity, and
long-term behavior.

b. Let h(t) � a − be−k(t−c), where a, b, c, and k are positive constants. Describe h as
a transformation of the function E(t) � e t .

c. Let r(t) � a + b ln(t − c), where a, b, and c are positive constants. Describe r as
a transformation of the function L(t) � ln(t).

d. Data for the height of a tree is given in the Table 3.5.4; time t ismeasured in years
and height is given in feet. At http://gvsu.edu/s/0yy, you can find a Desmos
worksheet with this data already input.

t 1 2 3 4 5 6 7 8 9 10 11
h(t) 6 9.5 13 15 16.5 17.5 18.5 19 19.5 19.7 19.8

Table 3.5.4: The height of a tree as a function of time t in years.

Do you think this data is bettermodeled by a logarithmic function of form p(t) �
a + b ln(t − c) or by an exponential function of form q(t) � m + ne−rt . Provide
reasons based in how the data appears and how you think a tree grows, as well
as by experimenting with sliders appropriately in Desmos. (Note: youmay need
to adjust the upper and lower bounds of several of the sliders in order to match
the data well.)

3.5.3 Putting logarithms to work

We’ve seen in several different settings that the function ekt plays a key role in modeling
phenomena in theworld around us. We also understand that the value of k controls whether
ekt is increasing (k > 0) or decreasing (k < 0) and how fast the function is increasing or
decreasing. As such, we often need to determine the value of k from data that is presented
to us; doing so almost always requires the use of logarithms.

Example 3.5.5 Apopulation of bacteria cells is growing at a rate proportionate to the number
of cells present at a given time t (in hours). Suppose that the number of cells, P, in the
population ismeasured inmillions of cells andwe know that P(0) � 2.475 and P(10) � 4.298.
Find a model of the form P(t) � Aekt that fits this data and use it to determine the value of
k and how long it will take for the population to reach 1 billion cells.

Solution. Since the model has form P(t) � Aekt , we know that P(0) � A. Because we
are given that P(0) � 2.475, this shows that A � 2.475. To find k, we use the fact that
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P(10) � 4.298. Applying this information, A � 2.475, and the form of themodel, P(t) � Aekt ,
we see that

4.298 � 2.475ek·10.

To solve for k, we first isolate e10k by dividing both sides by 2.475 to get

e10k
�

4.298
2.475 .

Taking the natural logarithm of each side, we find

10k � ln
(
4.298
2.475

)
,

and thus k �
1
10 ln

( 4.298
2.475

)
≈ 0.05519.

To determine how long it takes for the population to reach 1 billion cells, we need to solve
the equation P(t) � 1000. Using our preceding work to find A and k, we know that we need
to solve the equation

1000 � 2.475e
1
10 ln( 4.298

2.475 )t .

We divide both sides by 2.475 to get e
1
10 ln( 4.298

2.475 )t
�

1000
2.475 , and after taking the natural logarithm

of each side, we see
1
10 ln

(
4.298
2.475

)
t � ln

(
1000
2.475

)
,

so that

t �
10 ln

( 1000
2.475

)
ln

( 4.298
2.475

) ≈ 108.741.

□

Activity 3.5.4. Solve each of the following equations for the exact value of k.
a. 41 � 50e−k·7

b. 65 � 34 + 47e−k·45

c. 7e2k−1 + 4 � 32

d. 5
1+2e−10k � 4

3.5.4 Summary

• There are three fundamental rules for exponents given nonzero base a and exponents
m and n:

am · an
� am+n ,

am

an � am−n , and (am)n
� amn .

For logarithms¹, we have the following analogous structural rules for positive real
numbers a and b and any real number t:

ln(a · b) � ln(a) + ln(b), ln
( a

b

)
� ln(a) − ln(b), and ln(at) � t ln(a).

¹We state these rules for the natural logarithm, but they hold for any logarithm of any base.
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• The natural logarithm’s domain is the set of all positive real numbers and its range
is the set of all real numbers. Its graph passes through (1, 0), is always increasing, is
always concave down, and increases without bound.

• Logarithms are very important in determining values that arise in equations of the
form

ab
� c,

where a and c are known, but b is not. In this context, we can take the natural logarithm
of both sides of the equation to find that

ln(ab) � ln(c)

and thus b ln(a) � ln(c), so that b �
ln(c)
ln(a) .

3.5.5 Exercises

1. Solve for x: 3x � 38

2. Solve for x: 6 · 44x−4 � 65

3. Find the solution of the exponential equation 11 + 55x � 16 correct to at least four
decimal places.

4. Find the solution of the exponential equation 1000(1.04)2t � 50000 in terms of loga-
rithms, or correct to four decimal places.

5. Find the solution of the logarithmic equation 19 − ln(3 − x) � 0 correct to four decimal
places.

6. For a population that is growing exponentially according to a model of the form P(t) �
Aekt , the doubling time is the amount of time that it takes the population to double.
For each population described below, assume the function is growing exponentially
according to a model P(t) � Aekt , where t is measured in years.

a. Suppose that a certain population initially has 100 members and doubles after 3
years. What are the values of A and k in the model?

b. A different population is observed to satisfy P(4) � 250 and P(11) � 500. What is
the population’s doubling time? When will 2000 members of the population be
present?

c. Another population is observed to have doubling time t � 21. What is the value
of k in the model?

d. How is k related to a population’s doubling time, regardless of how long the dou-
bling time is?

7. A new car is purchased for $28000. Exactly 1 year later, the value of the car is $23200.
Assume that the car’s value in dollars, V , t years after purchase decays exponentially
according to a model of form V(t) � Ae−kt .

a. Determine the exact values of A and k in the model.

b. How many years will it take until the car’s value is $10000?
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c. Suppose that rather than having the car’s value decay all the way to $0, the lowest
dollar amount its value ever approaches is $500. Explainwhy amodel of the form
V(t) � Ae−kt + c is more appropriate.

d. Under the original assumptions (V(0) � 28000 and V(1) � 23200) along with the
condition in (c) that the car’s valuewill approach $500 in the long-term, determine
the exact values of A, k, and c in the model V(t) � Ae−kt + c. Are the values of A
and k the same or different from the model explored in (a)? Why?

8. In Exercise 3.4.5.7, we explored graphically how the function y � logb(x) can be thought
of as a vertical stretch of the nautral logarithm, y � ln(x). In this exercise, we determine
the exact value of the vertical stretch that is needed.

Recall that logb(x) is the power to which we raise b to get x.

(a) Write the equation y � logb(x) as an equivalent equation involving exponents
with no logarithms present.

(b) Take the equation you found in (a) and take the natural logarithm of each side.

(c) Use rules and properties of logarithms appropriately to solve the equation from
(b) for y. Your result here should express y in terms of ln(x) and ln(b).

(d) Recall that y � logb(x). Explain why the following equation (often called the
Golden Rule for Logarithms) is true:

logb(x) �
ln(x)
ln(b) .

(e) What is the value of k that allows us to express the function y � logb(x) as a
vertical stretch of the function y � ln(x)?
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3.6 Modeling temperature and population

Motivating Questions

• What roles do the parameters a, k, and c play in how the function F(t) � c + ae−kt

models the temperature of an object that is cooling or warming in its surroundings?

• How can we use an exponential function to more realistically model a population
whose growth levels off?

We’ve seen that exponential functions can be used to model several different important phe-
nomena, such as the growth of money due to continuously compounded interest, the decay
of radioactive quanitities, and the temperature of an object that is cooling or warming due to
its surroundings. From initial work with functions of the form f (t) � abt where b > 0 and
b , 1, we found that shifted exponential functions of form 1(t) � abt + c are also important.
Moreover, the special base e allows us to represent all of these functions through horizontal
scaling by writing

1(t) � aekt
+ c (3.6.1)

where k is the constant such that ek � b. Functions of the form of Equation (3.6.1) are either
always increasing or always decreasing, always have the same concavity, are defined on the
set of all real numbers, and have their range as the set of all real numbers greater than c or all
real numbers less than c. In whatever setting we are using a model of this form, the crucial
task is to identify the values of a, k, and c; that endeavor is the focus of this section.

We have also begun to see the important role that logarithms play in work with exponential
models. The natural logarithm is the inverse of the natural exponential function and satisfies
the important rule that ln(bk) � k ln(b). This rule enables us to solve equations with the
structure ak � b for k in the context where a and b are known but k is not. Indeed, we can
first take the natural log of both sides of the equation to get

ln(ak) � ln(b),

from which it follows that k ln(a) � ln(b), and therefore

k �
ln(b)
ln(a) .

Finding k is often central to determining an exponentialmodel, and logarithmsmake finding
the exact value of k possible.

In Preview Activity 3.6.1, we revisit some key algebraic ideas with exponential and loga-
rithmic equations in preparation for using these concepts in models for temperature and
population.

Preview Activity 3.6.1. In each of the following situations, determine the exact value
of the unknown quantity that is identified.

a. The temperature of a warming object in an oven is given by F(t) � 275−203e−kt ,
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and we know that the object’s temperature after 20 minutes is F(20) � 101. De-
termine the exact value of k.

b. The temperature of a cooling object in a refrigerator is modeled by F(t) � a +

37.4e−0.05t , and the temperature of the refrigerator is 39.8◦. By thinking about
the long-term behavior of e−0.05t and the long-term behavior of the object’s tem-
perature, determine the exact value of a.

c. Later in this section, we’ll learn that onemodel for how a population grows over
time can be given by a function of the form

P(t) � A
1 + Me−kt

.

Models of this form lead naturally to equations that have structure like

3 �
10

1 + x
. (3.6.2)

Solve Equation (3.6.2) for the exact value of x.

d. Suppose that y � a + be−kt . Solve for t in terms of a, b, k, and y. What does this
new equation represent?

3.6.1 Newton’s Law of Cooling revisited

In Section 3.2, we learned that Newton’s Law of Cooling, which states that an object’s tem-
perature changes at a rate proportional to the difference between its own temperature and
the surrounding temperature, results in the object’s temperature being modeled by func-
tions of the form F(t) � abt + c. In light of our subsequent work in Section 3.3 with the
natural base e, as well as the fact that 0 < b < 1 in this model, we know that Newton’s Law
of Cooling implies that the object’s temperature is modeled by a function of the form

F(t) � ae−kt
+ c (3.6.3)

for some constants a, c, and k, where k > 0.

From Equation (3.6.3), we can determine several different characteristics of how the con-
stants a, b, and k are connected to the behavior of F by thinking about what happens at
t � 0, at one additional value of t, and as t increases without bound. In particular, note that
e−kt will tend to 0 as t increases without bound.

Modeling temperature with Newton’s Law of Cooling.

For the function F(t) � ae−kt +c that models the temperature of a cooling or warming
object, the constants a, c, and k play the following roles.

• Since e−kt tends to 0 as t increases without bound, F(t) tends to c as t increases
without bound, and thus c represents the temperature of the object’s surround-

201



Chapter 3 Exponential and Logarithmic Functions

ings.

• Since e0 � 1, F(0) � a + c, and thus the object’s initial temperature is a + c. Said
differently, a is the difference between the object’s initial temperature and the
temperature of the surroundings.

• Once we know the values of a and c, the value of k is determined by knowing
the value of the temperature function F(t) at one nonzero value of t.

Activity 3.6.2. A can of soda is initially at room temperature, 72.3◦ Fahrenheit, and at
time t � 0 is placed in a refrigerator set at 37.7◦. In addition, we know that after 30
minutes, the soda’s temperature has dropped to 59.5◦.

a. Use algebraic reasoning and your understanding of the physical situation to
determine the exact values of a, c, and k in the model F(t) � ae−kt + c. Write at
least one careful sentence to explain your thinking.

b. Determine the exact time the object’s temperature is 42.4◦. Clearly show your
algebraic work and thinking.

c. Find the average rate of change of F on the interval [25, 30]. What is themeaning
(with units) of this value?

d. If everything stayed the same except the value of F(0), and instead F(0) � 65,
would the value of k be larger or smaller? Why?

3.6.2 A more realistic model for population growth

If we assume that a population grows at a rate that is proportionate to the size of the popu-
lation, it follows that the population grows exponentially according to the model

P(t) � Aekt

where A is the initial population and k is tied to the rate at which the population grows.
Since k > 0, we know that ekt is an always increasing, always concave up function that grows
without bound. While P(t) � Aekt may be a reasonable model for how a population grows
when it is relatively small, because the function grows without bound as time increases, it
can’t be a realistic long-term representation of what happens in reality. Indeed, whether
it is the number of fish who can survive in a lake, the number of cells in a petri dish, or
the number of human beings on earth, the size of the surroundings and the limitations of
resources will keep the population from being able to grow without bound.

In light of these observations, a different model is needed for population, one that grows
exponentially at first, but that levels off later. Calculus can be used to develop such a model,
and the resulting function is usually called the logistic function, which has form

P(t) � A
1 + Me−kt

, (3.6.4)

202



3.6 Modeling temperature and population

where A, M, and k are positive constants. Since k > 0, it follows that e−kt → 0 as t increases
without bound, and thus the denominator of P approaches 1 as time goes on. Thus, we
observe that P(t) tends to A as t increases without bound. We sometimes refer to A as the
carrying capacity of the population.

Activity 3.6.3. In Desmos, define P(t) �
A

1+Me−kt and accept sliders for A, M, and k.
Set the slider ranges for these parameters as follows: 0.01 ≤ A ≤ 10; 0.01 ≤ M ≤ 10;
0.01 ≤ k ≤ 5.

a. Sketch a typical graph of P(t) on the axes provided and write several sentences
to explain the effects of A, M, and k on the graph of P.

P

t

Figure 3.6.1: Axes for plotting a typical logistic function P.

b. On a typical logistic graph, where does it appear that the population is growing
most rapidly? How is this value connected to the carrying capacity, A?

c. How does the function 1 + Me−kt behave as t decreases without bound? What
is the algebraic reason that this occurs?

d. Use your Desmos worksheet to find a logistic function P that has the following
properties: P(0) � 2, P(2) � 4, and P(t) approaches 9 as t increases without
bound. What are the approximate values of A, M, and k that make the function
P fit these criteria?

Activity 3.6.4. Suppose that a population of animals that lives on an island (measured
in thousands) is known to grow according to the logistic model, where t is measured
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in years. We know the following information: P(0) � 2.45, P(3) � 4.52, and as t
increases without bound, P(t) approaches 11.7.

a. Determine the exact values of A, M, and k in the logistic model

P(t) � A
1 + Me−kt

.

Clearly show your algebraic work and thinking.

b. Plot your model from (a) and check that its values match the desired charac-
teristics. Then, compute the average rate of change of P on the intervals [0, 2],
[2, 4], [4, 6], and [6, 8]. What is the meaning (with units) of the values you’ve
found? How is the population growing on these intervals?

c. Find the exact time valuewhen the populationwill be 10 (thousand). Showyour
algebraic work and thinking.

3.6.3 Summary

• When a function of form F(t) � c + ae−kt models the temperature of an object that
is cooling or warming in its surroundings, the temperature of the surroundings is c
because e−kt → 0 as time goes on, the object’s initial temperature is a + c, and the
constant k is connected to how rapidly the object’s temperature changes. Once a and
c are known, the constant k can be determined by knowing the temperature at one
additional time, t.

• Because the exponential function P(t) � Aekt grows without bound as t increases,
such a function is not a realistic model of a population that we expect to level off as
time goes on. The logistic function

P(t) � A
1 + Me−kt

more appropriately models a population that grows roughly exponentially when P is
small but whose size levels off as it approaches the carrying capacity of the surround-
ing environment, which is the value of the constant A.

3.6.4 Exercises

1. Newton’s law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Sup-
pose that the temperature of a cup of coffee obeys Newton’s law of cooling. If the coffee
has a temperature of 210degrees Fahrenheitwhen freshly poured, and 1.5minutes later
has cooled to 195 degrees in a room at 78 degrees, determine when the coffee reaches
a temperature of 155 degrees.
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2. The total number of people infected with a virus often grows like a logistic curve. Sup-
pose that 25 people originally have the virus, and that in the early stages of the virus
(with time, t, measured in weeks), the number of people infected is increasing expo-
nentially with k � 1.8. It is estimated that, in the long run, approximately 7250 people
become infected.

(a) Use this information to find a logistic function to model this situation.

(b) Sketch a graph of your answer to part (a). Use your graph to estimate the length of
time until the rate at which people are becoming infected starts to decrease. What is
the vertical coordinate at this point?

3. The town of Sickville, with a population of 9310 is exposed to the Blue Moon Virus,
against which there is no immunity. The number of people infected when the virus is
detected is 30. Suppose the number of infections grows logistically, with k � 0.18.

Find A.

Find the formula for the number of people infected after t days.

Find the number of people infected after 30 days.

4. A glass filled with ice and water is set on a table in a climate-controlled room with
constant temperature of 71◦ Fahrenheit. A temperature probe is placed in the glass,
and we find that the following temperatures are recorded (at time t in minutes).

t 0 20
F(t) 34.2 41.7

a. Make a rough sketch of how you think the temperature graph should appear. Is
the temperature function always increasing? always decreasing? always concave
up? always concave down? what’s its long-range behavior?

b. By desribing F as a transformation of e t , explain why a function of form F(t) �
c− ae−kt , where a, c, and k are positive constants is an appropriate model for how
we expect the temperature function to behave.

c. Use the given information to determine the exact values of a, c, and k in themodel
F(t) � c − ae−kt .

d. Determine the exact time when the water’s temperature is 60◦.

5. A popular cruise ship sets sail in the Gulf of Mexico with 5000 passengers and crew on
board. Unfortunately, a five family members who board the ship are carrying a highly
contagious virus. After interacting with many other passengers in the first few hours
of the cruise, all five of them get very sick.

Let S(t) be the number of people who have acquired the virus t days after the ship has
left port. It turns out that a logistic function is a good model for S, and thus we assume
that

S(t) � A
1 + Me−kt

for some positive constants A, M, and k. Suppose that after 1 day, 20 people have gotten
the virus.
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a. Recall we know that S(0) � 5 and S(1) � 20. In addition, assume that 5000 is the
number of people who will eventually get sick. Use this information determine
the exact values of A, M, and k in the logistic model.

b. How many days will it take for 4000 of the people on the cruise ship to have
acquired the virus?

c. Compute the average rate of change of S on the intervals [1, 2], [3, 4], and [5, 7].
What is the meaning of each of these values (with units) in the context of the
question, and what trend(s) do you observe in these average rates of change?

6. A closed tank with an inflow and outflow contains a 100 liters of saltwater solution.
Let the amount of salt in the tank at time t (in minutes) be given by the function A(t),
whose output is measured in grams. At time t � 0 there is an initial amount of salt
present in the tank, and the inflow line also carries a saltwater mixture to the tank at
a fixed rate; the outflow occurs at the same rate and carries a perfectly mixed solution
out of the tank. Because of these conditions, the volume of solution in the tank stays
fixed over time, but the amount of salt possibly changes.

It turns out that the problem of determining the amount of salt in the tank at time t is
similar to the problem of determining the temperature of a warming or cooling object,
and that the function A(t) has form

A(t) � ae−kt
+ c

for constants a, c, and k. Suppose that for a particular set of conditions, we know that

A(t) � −500e−0.25t
+ 750.

Again, A(t) measures the amount of salt in the tank after t minutes.

a. How much salt is in the tank initially?

b. In the long run, how much salt do we expect to eventually be in the tank?

c. At what exact time are there exactly 500 grams of salt present in the tank?

d. Can you determine the concentration of the solution that is being delivered by the
inflow to the tank? If yes, explain why and determine this value. If not, explain
why that information cannot be found without additional data.
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CHAPTER 4
Trigonometry

4.1 Right triangles

Motivating Questions

• How canwe view cos(θ) and sin(θ) as side lengths in right triangleswith hypotenuse
1?

• Why can both cos(θ) and sin(θ) be thought of as ratios of certain side lengths in any
right triangle?

• What is the minimum amount of information we need about a right triangle in order
to completely determine all of its sides and angles?

In Section 2.3, we defined the cosine and sine functions as the functions that track the lo-
cation of a point traversing the unit circle counterclockwise from (1, 0). In particular, for a
central angle of radian measure t that passes through the point (1, 0), we define cos(t) as
the x-coordinate of the point where the other side of the angle intersects the unit circle, and
sin(t) as the y-coordinate of that same point, as pictured in Figure 4.1.1.

By changing our perspective slightly, we can see that it is equivalent to think of the values of
the sine and cosine function as representing the lengths of legs in right triangles. Specifically,
given a central angle¹ θ, if we think of the right triangle with vertices (cos(θ), 0), (0, 0), and
(cos(θ), sin(θ)), then the length of the horizontal leg is cos(θ) and the length of the vertical
leg is sin(θ), as seen in Figure 4.1.2.

¹In ourworkwith right triangles, we’ll often represent the angle by θ and think of this angle as fixed, as opposed
to our previous use of t where we frequently think of t as changing.
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(cos(t),sin(t))

(1,0)

1

t

Figure 4.1.1: The values of cos(t) and
sin(t) as coordinates on the unit circle.

cos(θ)

sin(θ)
1

θ

Figure 4.1.2: The values of cos(θ) and
sin(θ) as the lengths of the legs of a right
triangle.

This right triangle perspective enables us to use the sine and cosine functions to determine
missing information in certain right triangles. The field ofmathematics that studies relation-
ships among the angles and sides of triangles is called trigonometry. In addition, it’s impor-
tant to recall both the Pythagorean Theorem and the Fundamental Trigonometric Identity.
The former states that in any right triangle with legs of length a and b and hypotenuse

of length c, it follows a2 + b2 � c2. The latter, which is a special case of the Pythagorean
Theorem, says that for any angle θ, cos2(θ) + sin2(θ) � 1.

Preview Activity 4.1.1. For each of the following situations, sketch a right triangle
that satisfies the given conditions, and then either determine the requested missing
information in the triangle or explain why you don’t have enough information to de-
termine it. Assume that all angles are being considered in radian measure.

a. The length of the other leg of a right triangle with hypotenuse of length 1 and
one leg of length 3

5 .

b. The lengths of the two legs in a right triangle with hypotenuse of length 1 where
one of the non-right angles measures π3 .

c. The length of the other leg of a right triangle with hypotenuse of length 7 and
one leg of length 6.

d. The lengths of the two legs in a right triangle with hypotenuse 5 and where one
of the non-right angles measures π4 .

e. The length of the other leg of a right triangle with hypotenuse of length 1 and
one leg of length cos(0.7).

f. The measures of the two angles in a right triangle with hypotenuse of length 1
where the two legs have lengths cos(1.1) and sin(1.1), respectively.
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4.1.1 The geometry of triangles

In the study of functions, linear functions are the simplest of all and form a foundation for
our understanding of functions that have other shapes. In the study of geometric shapes
(polygons, circles, and more), the simplest figure of all is the triangle, and understanding
triangles is foundational to understanding many other geometric ideas. To begin, we list
some familiar and important facts about triangles.

• Any triangle has 6 important features: 3 sides and 3 angles.

• In any triangle in the Cartesian plane, the sum of the measures of the interior angles
is π radians (or equivalently, 180◦).

• In any triangle in the plane, knowing three of the six features of a triangle is often
enough information to determine the missing three features.²

The situation is especially nice for right triangles, because then we only have five unknown
features since one of the angles is π2 radians (or 90◦), as demonstrated in Figure 4.1.3. If we
know one of the two non-right angles, thenwe know the other aswell. Moreover, if we know
any two sides, we can immediately deduce the third, because of the Pythagorean Theorem.
As we saw in Preview Activity 4.1.1, the cosine and sine functions offer additional help
in determining missing information in right triangles. Indeed, while the functions cos(t)
and sin(t) have many important applications in modeling periodic phenomena such as os-
ciallating masses on springs, they also find powerful application in settings involving right
triangles, such as in navigation and surveying.

β

α

a

b

c

Figure 4.1.3: The 5 potential unknowns in a right triangle.

Because we know the values of the cosine and sine functions from the unit circle, right trian-
gles with hypotentuse 1 are the easiest ones in which to determine missing information. In
addition, we can relate any other right triangle to a right triangle with hypotenuse 1 through
the concept of similarity. Recall that two triangles are similar provided that one is a mag-
nification of the other. More precisely, two triangles are similar whenever there is some

²Formally, this idea relies on what are called congruence criteria. For instance, if we know the lengths of all three
sides, then the angle measures of the triangle are uniquely determined. This is called the Side-Side-Side Criterion
(SSS). You are likely familiar with SSS, aswell as SAS (Side-Angle-Side), ASA, andAAS,which are the four standard
criteria.
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constant k such that every side in one triangle is k times as long as the corresponding side
in the other and the corresponding angles in the two triangles are equal. An important
result from geometry tells us that if two triangles are known to have all three of their corre-
sponding angles equal, then it follows that the two triangles are similar, and therefore their
corresponding sides must be proportionate to one another.

Activity 4.1.2. Consider right triangle OPQ given in Figure 4.1.4, and assume that
the length of the hypotenuse is OP � r for some constant r > 1. Let point M lie on
OP between O and P in such a way that OM � 1, and let point N lie on OQ so that
∠ONM is a right angle, as pictured. In addition, assume that point O corresponds to
(0, 0), point Q to (x , 0), and point P to (x , y) so that OQ � x and PQ � y. Finally, let
θ be the measure of ∠POQ.

θ

x

y

r

1

O N

M

Q

P

Figure 4.1.4: Two right triangles △OPQ and △OMN .

a. Explain why △OPQ and △OMN are similar triangles.

b. What is the value of the ratio OP
OM ? What does this tell you about the ratios OQ

ON

and PQ
MN ?

c. What is the value of ON in terms of θ? What is the value of MN in terms of θ?

d. Use your conclusions in (b) and (c) to express the values of x and y in terms of
r and θ.

4.1.2 Ratios of sides in right triangles

A right triangle with a hypotenuse of length 1 can be viewed as lying in standard position
in the unit circle, with one vertex at the origin and one leg along the positive x-axis. If
we let the angle formed by the hypotenuse and the horizontal leg have measure θ, then
the right triangle with hypotenuse 1 has horizontal leg of length cos(θ) and vertical leg of
length sin(θ). If we consider now consider a similar right triangle with hypotenuse of length
r , 1, we can view that triangle as a magnification of a triangle with hypotenuse 1. These
observations, combined with our work in Activity 4.1.2, show us that the horizontal legs
of the right triangle with hypotenuse r have measure r cos(θ) and r sin(θ), as pictured in
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Figure 4.1.5.

θ

cos(θ)
r cos(θ)

sin(θ)

r sin(θ)

r

1

Figure 4.1.5: The roles of r and θ in a right triangle.

From the similar triangles in Figure 4.1.5, we canmake an important observation about ratios
in right triangles. Because the triangles are similar, the ratios of corresponding sides must
be equal, so if we consider the two hypotenuses and the two horizontal legs, we have

r
1 �

r cos(θ)
cos(θ) . (4.1.1)

If we rearrange Equation (4.1.1) by dividing both sides by r and multiplying both sides by
cos(θ), we see that

cos(θ)
1 �

r cos(θ)
r

. (4.1.2)

From a geometric perspective, Equation (4.1.2) tells us that the ratio of the horizontal leg of
a right triangle to the hypotenuse of the triangle is always the same (regardless of r) and
that the value of that ratio is cos(θ), where θ is the angle adjacent to the horizontal leg. In
an analogous way, the equation involving the hypotenuses and vertical legs of the similar
triangles is

r
1 �

r sin(θ)
sin(θ) , (4.1.3)

which can be rearranged to

sin(θ)
1 �

r sin(θ)
r

. (4.1.4)

Equation (4.1.4) shows that the ratio of the vertical leg of a right triangle to the hypotenuse
of the triangle is always the same (regardless of r) and that the value of that ratio is sin(θ),
where θ is the angle opposite the vertical leg. We summarize these recent observations as
follows.
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Ratios in right triangles.

In a right triangle where one of the non-right an-
gles is θ, and “adj” denotes the length of the leg
adjacent to θ, “opp” the length the side opposite
θ, and “hyp” the length of the hypotenuse,

cos(θ) �
adj
hyp and sin(θ) �

opp
hyp .

adj

opp
hyp

θ

Activity 4.1.3. In each of the following scenarios involving a right triangle, determine
the exact values of as many of the remaining side lengths and angle measures (in
radians) that you can. If there are quantities that you cannot determine, explain why.
For every prompt, draw a labeled diagram of the situation.

a. A right triangle with hypotenuse 7 and one non-right angle of measure π7 .

b. A right triangle with non-right angle α that satisfies sin(α) � 3
5 .

c. A right triangle where one of the non-right angles is β � 1.2 and the hypotenuse
has length 2.7.

d. A right triangle with hypotenuse 13 and one leg of length 6.5.

e. A right triangle with legs of length 5 and 12.

f. A right triangle where one of the non-right angles is β � π
5 and the leg opposite

this angle has length 4.

4.1.3 Using a ratio involving sine and cosine

In Activity 4.1.3, we found that in many cases where we have a right triangle, knowing two
additional pieces of information enables us to find the remaining three unknown quantities
in the triangle. At this point in our studies, the following general principles hold.

Missing information in right triangles.

In any right triangle,
1. if we know one of the non-right angles and the length of the hypotenuse, we

can find both the remaining non-right angle and the lengths of the two legs;

2. if we know the length of two sides of the triangle, then we can find the length
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of the other side;

3. if we know the measure of one non-right angle, then we can find the measure
of the remaining angle.

In scenario (1.), all 6 features of the triangle are not only determined, but we are able to find
their values. In (2.), the triangle is uniquely determined by the given information, but as
in Activity 4.1.3 parts (d) and (e), while we know the values of the sine and cosine of the
angles in the triangle, we haven’t yet developed a way to determine the measures of those
angles. Finally, in scenario (3.), the triangle is not uniquely determined, since any magnified
version of the triangle will have the same three angles as the given one, and thus we need
more information to determine side length.

Wewill revisit scenario (2) in our futurework. Now, however, wewant to consider a situation
that is similar to (1), but where it is one leg of the triangle instead of the hypotenuse that is
known. We encountered this in Activity 4.1.3 part (f): a right triangle where one of the
non-right angles is β � π

5 and the leg opposite this angle has length 4.

Example 4.1.6
Consider a right triangle in which one of the non-
right angles is β �

π
5 and the leg opposite β has

length 4.
Determine (both exactly and approximately) the
measures of all of the remaining sides and angles
in the triangle.

x

4

h

β

α

Figure 4.1.7: The given right
triangle.

Solution. From the fact that β � π
5 , it follows that α �

π
2 − π

5 �
3π
10 . In addition, we know

that
sin

(π
5

)
�

4
h

(4.1.5)

and
cos

(π
5

)
�

x
h

(4.1.6)

Solving Equation (4.1.5) for h, we see that

h �
4

sin
(
π
5
) , (4.1.7)

which is the exact numerical value of h. Substituting this result in Equation (4.1.6), solving
for h we find that

cos
(π

5

)
�

x
4

sin( π5 )
. (4.1.8)
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Solving this equation for the single unknown x shows that

x �
4 cos

(
π
5
)

sin
(
π
5
) .

The approximate values of x and h are x ≈ 5.506 and h ≈ 6.805. □

Example 4.1.6 demonstrates that a ratio of values of the sine and cosine function can be
needed in order to determine the value of one of the missing sides of a right triangle, and
also that we may need to work with two unknown quantities simultaneously in order to
determine both of their values.

Activity 4.1.4.

We want to determine the distance be-
tween two points A and B that are di-
rectly across from one another on op-
posite sides of a river, as pictured in
Figure 4.1.8. We mark the locations
of those points and walk 50 meters
downstream from B to point P and use
a sextant tomeasure ∠BPA. If themea-
sure of ∠BPA is 56.4◦, how wide is the
river? What other information about
the situation can you determine?

50

56.4
◦

P

A

B

Figure 4.1.8: Finding the width of the
river.

4.1.4 Summary

• In a right triangle with hypotenuse 1, we can view cos(θ) as the length of the leg adja-
cent to θ and sin(θ) as the length of the leg opposite θ, as seen in Figure 4.1.2. This is
simply a change in perspective achieved by focusing on the triangle as opposed to the
unit circle.

• Because a right triangle with hypotenuse of length r can be thought of as a scaled
version of a right triangle with hypotenuse of length 1, we can conclude that in a right
triangle with hypotenuse of length r, the leg adjacent to angle θ has length r cos(θ),
and the leg opposite θ has length r sin(θ), as seen in Figure 4.1.5. Moreover, in any
right triangle with angle θ, we know that

cos(θ) �
adj
hyp and sin(θ) �

opp
hyp .

• In a right triangle, there are five additional characteristics: the measures of the two
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non-right angles and the lengths of the three sides. In general, if we know one of those
two angles and one of the three sides, we can determine all of the remaining pieces.

4.1.5 Exercises

1. Refer to the right triangle in the figure.

If , BC � 3 and the angle α � 65◦, find any missing angles or sides.

2. Suppose that a, b and c are the sides of a right triangle, where side a is across from angle
A, side b is across from angle B, and side c is across from the right angle. If a � 17 and
B � 33◦, find the missing sides and angles in this right triangle. All angles should be in
degrees (not radians), and all trig functions entered will be evaluated in degrees (not
radians).

3. A person standing 50 feet away from a streetlight observes that they cast a shadow that
is 14 feet long. If a ray of light from the streetlight to the tip of the person’s shadow
forms an angle of 27.5◦ with the ground, how tall is the person and how tall is the
streetlight? What other information about the situation can you determine?

4. A person watching a rocket launch uses a laser range-finder to measure the distance
from themselves to the rocket. The range-finder also reports the angle at which the
finder is being elevated from horizontal. At a certain instant, the range-finder reports
that it is elevated at an angle of 17.4◦ from horizontal and that the distance to the rocket
is 1650 meters. Howhigh off the ground is the rocket? Assuming a straight-line vertical
path for the rocket that is perpendicular to the earth, how far away was the rocket from
the range-finder at the moment it was launched?

5. A trough is constructed by bending a 4′×24′ rectangular sheet ofmetal. Two symmetric
folds 2 feet apart aremade parallel to the longest side of the rectangle so that the trough
has cross-sections in the shape of a trapezoid, as pictured in Figure 4.1.9. Determine a
formula for V(θ), the volume of the trough as a function of θ.

2

1 1

θ

Figure 4.1.9: A cross-section of the trough.

Hint. The volume of the trough is the area of a cross-section times the length of the
trough.
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4.2 The Tangent Function

Motivating Questions

• How is the tangent function defined in terms of the sine and cosine functions?

• Why is the graph of the tangent function so different from the graphs of the sine and
cosine functions?

• What are important applications of the tangent function?

In Activity 4.1.4, we determined the distance be-
tween two points A and B on opposite sides of a
river by knowing a length along one shore of the
river and the angle formed between a point down-
stream and the point on the opposite shore, as pic-
tured in Figure 4.2.1. By first using the cosine of
the angle, we determined the value of z and from
there were able to use the sine of the angle to find
w, the river’s width, which turns out to be

w � 50 · sin(56.4)
cos(56.4) .

50

w
z

56.4
◦

P

A

B

Figure 4.2.1: Finding the width of
the river.

It turns out that we regularly need to evaluate the ratio of the sine and cosine functions at
the same angle, so it is convenient to define a new function to be their ratio.

Definition 4.2.2 The tangent function. For any real number t for which cos(t) , 0, we
define the tangent of t, denoted tan(t), by

tan(t) � sin(t)
cos(t) .

♢

Preview Activity 4.2.1. Through the following questions, we work to understand the
special values and overall behavior of the tangent function.

a. Without using computational device, find the exact value of the tan(t) at the
following values: t � π

6 ,
π
4 ,
π
3 ,

2π
3 ,

3π
4 ,

5π
6 .

b. Why is tan
(
π
2
)
not defined? What are three other input values x forwhich tan(x)

is not defined?

c. Point your browser to http://gvsu.edu/s/0yO (“zero-y-Oh”) to find a Desmos
worksheet with data from the tangent function already input. Click on several
of the orange points to compare your exact values in (a) with the decimal values
given by Desmos. Add one entry to the table: x �

11π
24 , y � T( 11π

24 ). At about

217

http://gvsu.edu/s/0yO


Chapter 4 Trigonometry

what coordinates does this point lie? What are the respective values of sin( 11π
24 )

and cos( 11π
24 )? Why is the value of tan( 11π

24 ) so large?

d. At the top of the input lists on the left side of the Desmos worksheet, click the
circle to highlight the function T(x) � tan(x) and thus show its plot along with
the data points in orange. Use the plot and your work above to answer the
following important questions about the tangent function:

• What is the domain of y � tan(x)?
• What is the period of y � tan(x)?
• What is the range of y � tan(x)?

4.2.1 Two perspectives on the tangent function

(a,b)

tan(t) = b

a

1

t

Figure 4.2.3: An angle t in standard
position in the unit circle that
intercepts an arc from (1, 0) to (a , b). adj

opp
hyp

θ

Figure 4.2.4: A right triangle with
legs adjacent and opposite angle θ.

Because the tangent function is defined in terms of the two fundamental circular functions
by the rule tan(t) � sin(t)

cos(t) , we can use our understanding of the sine and cosine functions to
make sense of the tangent function. In particular, we can think of the tangent of an angle
from two different perspectives: as an angle in standard position in the unit circle, or as an
angle in a right triangle.

From the viewpoint of Figure 4.2.3, as the point corresponding to angle t traverses the circle
and generates the point (a , b), we know cos(t) � a and sin(t) � b, and therefore the tangent
function tracks the ratio of these two quantities, and is given by

tan(t) � sin(t)
cos(t) �

b
a
.
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From the perspective of any right triangle (not necessarily in the unit circle) with hypotenuse
“hyp” and legs “adj” and “opp” that are respectively adjacent and opposite the known angle
θ, as seen in Figure 4.2.4, we know that sin(θ) � opp

hyp and cos(θ) � adj
hyp . Substituting these

expressions for sin(θ) and cos(θ) in the rule for the tangent function, we see that

tan(θ) � sin(θ)
cos(θ) �

opp
hyp
adj
hyp

�
opp
adj .

We typically use the first perspective of tracking the ratio of the y-coordinate to the x-
coordinate of a point traversing the unit circle in order to think of the overall behavior and
graph of the tangent function, and use the second perspective in a right triangle whenever
we are working to determine missing values in a triangle.

4.2.2 Properties of the tangent function

Because the tangent function is defined in terms of the sine and cosine functions, its values
and behavior are completely determined by those two functions. To begin, we know the
value of tan(t) for every special angle t on the unit circle that we identified for the sine and
cosine functions. For instance, we know that

tan
(π

6

)
�

sin
(
π
6
)

cos
(
π
6
) �

1
2√
3

2

�
1√
3
.

Executing similar computations for every familiar special angle on the unit circle, we find
the results shown in Table 4.2.5 and Table 4.2.6. We also note that anywhere cos(t) � 0, the
value of tan(t) is undefined. We record such instances in the table bywriting “u”. Table 4.2.5
and Table 4.2.6 helps us identify trends in the tangent function. For instance, we observe that
the sign of tan(t) is positive in Quadrant I, negative in Quadrant II, positive in Quadrant III,
and negative in Quadrant IV. This holds because the sine and cosine functions have the same
sign in the first and third quadrants, and opposite signs in the other two quadrants.

In addition, we observe that as t-values in the first quadrant get closer to π2 , sin(t) gets closer
to 1, while cos(t) gets closer to 0 (while being always positive). Noting that π2 ≈ 1.57, we
observe that

tan(1.47) � sin(1.47)
cos(1.47) ≈

0.995
0.101 � 9.887

t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sin(t) 0 1
2

√
2

2

√
3

2 1
√

3
2

√
2

2
1
2 0

cos(t) 1
√

3
2

√
2

2
1
2 0 − 1

2 −
√

2
2 −

√
3

2 −1
tan(t) 0 1√

3
1 3√

3
u − 3√

3
−1 − 1√

3
0

Table 4.2.5: Values of the sine, cosine, and tangent functions at special points on the unit
circle.
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t 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

sin(t) − 1
2 −

√
2

2 −
√

3
2 −1 −

√
3

2 −
√

2
2 − 1

2 0
cos(t) −

√
3

2 −
√

2
2 − 1

2 0 1
2

√
2

2

√
3

2 0
tan(t) 1√

3
1 3√

3
u − 3√

3
−1 − 1√

3
0

Table 4.2.6: Additional values of the sine, cosine, and tangent functions at special points on
the unit circle.

-3

3

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4 2π
9π

4

5π

2
−

π

4
−

π

2

y

t

h(t) = tan(t)

Figure 4.2.7: A plot of the tangent function together with special points that come from the
unit circle.

and

tan(1.56) � sin(1.56)
cos(1.56) ≈

0.9994
0.0108 � 92.6205.

Because the ratio of numbers closer and closer to 1 divided by numbers closer and closer
to 0 (but positive) increases without bound, this means that tan(t) increases without bound
as t approaches π2 from the left side. Once t is slightly greater than π

2 in Quadrant II, the
value of sin(t) stays close to 1, but now the value of cos(t) is negative (and close to zero).
For instance, cos(1.58) ≈ −0.0092. This makes the value of tan(t) decrease without bound
(negative and getting further away from 0) for t approaching π

2 from the right side, and
results in h(t) � tan(t) having a vertical asymptote at t �

π
2 . The periodicity and sign

behaviors of sin(t) and cos(t) mean this asymptotic behavior of the tangent function will
repeat.

Plotting the data in the table along with the expected asymptotes and connecting the points
intuitively, we see the graph of the tangent function in Figure 4.2.7. We see from Table 4.2.5
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and Table 4.2.6 as well as from Figure 4.2.7 that the tangent function has period P � π and
that the function is increasing on any interval on which it is defined. We summarize our
recent work as follows.

Properties of the tangent function.

For the function h(t) � tan(t),
• its domain is the set of all real numbers except t � π

2 ± kπ where k is any whole
number;

• its range is the set of all real numbers;

• its period is P � π;

• is increasing on any interval on which the function is defined at every point in
the interval.

While the tangent function is an interesting mathematical function for its own sake, its most
important applications arise in the setting of right triangles, and for the remainder of this
section we will focus on that perspective.

4.2.3 Using the tangent function in right triangles

The tangent function offers us an additional choice when working in right triangles with
limited information. In the settingwherewe have a right trianglewith one additional known
angle, if we know the length of the hypotenuse, we can use either the sine or cosine of the
angle to help us easily find the remaining side lengths. But in the setting where we know
only the length of one leg, the tangent function now allows us to determine the value of the
remaining leg in a similarly straightforward way, and from there the hypotenuse.

Example 4.2.8 Use the tangent function to determine thewidth, w, of the river in Figure 4.2.9.
(Note that here we are revisiting the problem in Activity 4.1.4, which we previously solved
without using the tangent function.) What other information can we now easily determine?

50

w
z

56.4
◦

P

A

B

Figure 4.2.9: A right triangle with one angle and one leg known.
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Solution. Using the perspective that tan(θ) �
opp
adj in a right triangle, in this context we

have
tan(56.4◦) � w

50
and thus w � 50 tan(56.4) is the exact width of the river. Using a computational device, we
find that w ≈ 75.256.

Once we know the river’s width, we can use the Pythagorean theorem or the sine function
to determine the distance from P to A, at which point all 6 parts of the triangle are known.

□

The tangent function finds a wide range of applications in finding missing information in
right triangles where information about one or more legs of the triangle is known.

Activity 4.2.2. The top of a 225 foot tower is to be anchored by four cables that each
make an angle of 32.5◦ with the ground. How long do the cables have to be and how
far from the base of the tower must they be anchored?

Activity 4.2.3.
Supertall¹ high rises have changed the
Manhattan skyline. These skyscrapers are
known for their small footprint in pro-
portion to their height, with their ratio of
width to height at most 1 : 10, and some as
extreme as 1 : 24. Suppose that a relatively
short supertall has been built to a height
of 635 feet, as pictured in Figure 4.2.10,
and that a second supertall is built nearby.
Given the two angles that are computed
from the new building, how tall, s, is the
new building, and how far apart, d, are the
two towers?

31
◦

34
◦

635

s

d

Figure 4.2.10: Two supertall skyscrapers.

Activity 4.2.4. Surveyors are trying to determine the height of a hill relative to sea
level. First, they choose a point to take an initial measurement with a sextant that
shows the angle of elevation from the ground to the peak of the hill is 19◦. Next, they
move 1000 feet closer to the hill, staying at the same elevation relative to sea level, and
find that the angle of elevation has increased to 25◦, as pictured in Figure 4.2.11. We
let h represent the height of the hill relative to the twomeasurements, and x represent
the distance from the secondmeasurement location to the “center” of the hill that lies
directly under the peak.

¹See, for instance, this article
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19
◦

25
◦

1000 x

h

Figure 4.2.11: The surveyors’ initial measurements.

a. Using the right triangle with the 25◦ angle, find an equation that relates x and
h.

b. Using the right triangle with the 19◦ angle, find a second equation that relates
x and h.

c. Ourwork in (a) and (b) results in a systemof two equations in the twounknowns
x and h. Solve each of the two equations for h and then substitute appropriately
in order to find a single equation in the variable x.

d. Solve the equation from (c) to find the exact value of x and determine an ap-
proximate value accurate to 3 decimal places.

e. Use your preceding work to solve for h exactly, plus determine an estimate ac-
curate to 3 decimal places.

f. If the surveyors’ initial measurements were taken from an elevation of 78 feet
above sea level, how high above sea level is the peak of the hill?

4.2.4 Summary

• The tangent function is defined defined to be the ratio of the sine and cosine functions
according to the rule

tan(t) � sin(t)
cos(t)

for all values of t for which cos(t) , 0.

• The graph of the tangent function differs substantially from the graphs of the sine and
cosine functions, primarily because near values where cos(t) � 0, the ratio of sin(t)

cos(t)
increases or decreases without bound, producing vertical asymptotes. In addition,
while the period of the sine and cosine functions is P � 2π, the period of the tangent
function is P � π due to how the sine and cosine functions repeat the same values
(with different signs) as a point traverses the unit circle.

223



Chapter 4 Trigonometry

• The tangent function finds some of its most important applications in the setting of
right triangles where one leg of the triangle is known and one of the non-right angles
is known. Computing the tangent of the known angle, say α, and using the fact that

tan(α) �
opp
adj

we can then find the missing leg’s length in terms of the other and the tangent of the
angle.

4.2.5 Exercises

1. From the information given, find the quadrant in which the terminal point determined
by t lies. Input I, II, III, or IV.

(a) sin(t) < 0 and cos(t) < 0

(b) sin(t) > 0 and cos(t) < 0

(c) sin(t) > 0 and cos(t) > 0

(d) sin(t) < 0 and cos(t) > 0

2. Refer to the right triangle in the figure.

If BC � 6 and the angle α � 65◦, find any missing angles or sides. Give your answer to
at least 3 decimal digits.

3. Refer to the right triangle in the figure.

If AC � 7 and the angle β � 45◦, find any missing angles or sides. Give your answer to
at least 3 decimal digits.
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4.2 The Tangent Function

4. If cos(ϕ) � 0.8347 and 3π/2 ≤ ϕ ≤ 2π, approximate the following to four decimal
places.

(a) sin(ϕ)
(b) tan(ϕ)

5. Suppose sin θ �
x
8 and the angle θ is in the first quadrant. Write algebraic expressions

for cos(θ) and tan(θ) in terms of x.

(a) cos(θ)
(b) tan(θ)

6. Solve the equations below exactly. Give your answers in radians, and find all possible
values for t in the interval 0 ≤ t ≤ 2π.

(a) sin (t) �
√

2
2

(b) cos (t) � −
√

2
2

(c) tan (t) � − 1√
3

7. A wheelchair ramp is to be built so that the angle it forms with level ground is 4◦. If
the ramp is going to rise from a level sidewalk up to a front porch that is 3 feet above
the ground, how long does the ramp have to be? How far from the front porch will it
meet the sidewalk? What is the slope of the ramp?

8. A person is flying a kite and at the end of a fixed length of string. Assume there is no
slack in the string.

At a certain moment, the kite is 170 feet off the ground, and the angle of elevation the
string makes with the ground is 40◦.

a. How far is it from the person flying the kite to another person who is standing
directly beneath the kite?

b. How much string is out between the person flying the kite and the kite itself?

c. With the same amount of string out, the angle of elevation increases to 50◦. How
high is the kite at this time?

9. An airplane is flying at a constant speed along a straight path above a straight road at a
constant elevation of 2400 feet. A person on the road observes the plane flying directly
at them and uses a sextant to measure the angle of elevation from them to the plane.
The first measurement they take records an angle of 36◦; a second measurement taken
2 seconds later is 41◦.

How far did the plane travel during the two seconds between the two angle measure-
ments? How fast was the plane flying?
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4.3 Inverses of trigonometric functions

Motivating Questions

• Is it possible for a periodic function that fails the Horizontal Line Test to have an
inverse?

• For the restricted cosine, sine, and tangent functions, how do we define the corre-
sponding arccosine, arcsine, and arctangent functions?

• What are the key properties of the arccosine, arcsine, and arctangent functions?

In our prior work with inverse functions, we have seen several important principles, includ-
ing

• A function f has an inverse function if and only if there exists a function 1 that undoes
the work of f . Such a function 1 has the properties that 1( f (x)) � x for each x in the
domain of f , and f (1(y)) � y for each y in the range of f . We call 1 the inverse of f ,
and write 1 � f −1.

• A function f has an inverse function if and only if the graph of f passes the Horizontal
Line Test.

• When f has an inverse, we know that writing “y � f (t)” and “t � f −1(y)” say the
exact same thing, but from two different perspectives.

The trigonometric functions f (t) � sin(t), 1(t) � cos(t), and h(t) � tan(t) are periodic, so
each fails the horizontal line test, and thus these functions on their full domains do not have
inverse functions. At the same time, it is reasonable to think about changing perspective
and viewing angles as outputs in certain restricted settings. For instance, we may want to
say both √

3
2 � cos

(π
6

)
and π

6 � cos−1
(√

3
2

)
depending on the context in which we are considering the relationship between the angle
and side length.

It’s also important to understand why the issue of finding an angle in terms of a known
value of a trigonometric function is important. Suppose we know the following information
about a right triangle: one leg has length 2.5, and the hypotenuse has length 4. If we let θ
be the angle opposite the side of length 2.5, it follows that sin(θ) � 2.5

4 . We naturally want
to use the inverse of the sine function to solve the most recent equation for θ. But the sine
function does not have an inverse function, so how can we address this situation?

While the original trigonometric functions f (t) � sin(t), 1(t) � cos(t), and h(t) � tan(t) do
not have inverse functions, it turns out that we can consider restricted versions of them that
do have corresponding inverse functions. We thus investigate how we can think differently
about the trigonometric functions so that we can discuss inverses in a meaningful way.
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4.3 Inverses of trigonometric functions

Preview Activity 4.3.1. Consider the plot of the standard cosine function in Fig-
ure 4.3.1 along with the emphasized portion of the graph on [0, π].

-1

1

y

t

−

π

2−π−

3π

2
−2π

π

2
π

3π

2
2π

y = g(t)

Figure 4.3.1: The cosine function on [− 5π
2 ,

5π
2 ]with the portion on [0, π] emphasized.

Let 1 be the function whose domain is 0 ≤ t ≤ π and whose outputs are determined
by the rule 1(t) � cos(t). Note well: 1 is defined in terms of the cosine function, but
because it has a different domain, it is not the cosine function.

a. What is the domain of 1?

b. What is the range of 1?

c. Does 1 pass the horizontal line test? Why or why not?

d. Explain why 1 has an inverse function, 1−1, and state the domain and range of
1−1.

e. We know that 1(π4 ) �
√

2
2 . What is the exact value of 1−1(

√
2

2 )? How about the
exact value of 1−1(−

√
2

2 )?

f. Determine the exact values of 1−1(− 1
2 ), 1−1(

√
3

2 ), 1−1(0), and 1−1(−1). Use proper
notation to label your results.

4.3.1 The arccosine function

For the cosine function restricted to the domain [0, π] that we considered in Preview Ac-
tivity 4.3.1, the function is strictly decreasing on its domain and thus passes the Horizontal
Line Test. Therefore, this restricted version of the cosine function has an inverse function;
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Chapter 4 Trigonometry

we will call this inverse function the arccosine function.
Definition 4.3.2 Let y � 1(t) � cos(t) be defined on the domain [0, π], and observe 1 :
[0, π] → [−1, 1]. For any real number y that satisfies −1 ≤ y ≤ 1, the arccosine of y,
denoted

arccos(y)
is the angle t satisfying 0 ≤ t ≤ π such that cos(t) � y. ♢

Note particularly that the output of the arccosine function is an angle. In addition, recall
that in the context of the unit circle, an angle measured in radians and the corresponding
arc length along the unit circle are numerically equal. This is why we use the “arc” in “ar-
ccosine”: given a value −1 ≤ y ≤ 1, the arccosine function produces the corresponding arc
(measured counterclockwise from (1, 0)) such that the cosine of that arc is y.

We recall that for any function with an inverse function, the inverse function reverses the
process of the original function. We know that “y � cos(t)” can be read as saying “y is
the cosine of the angle t”. Changing perspective and writing the equivalent statement “t �
arccos(y)”, we read this statement as “t is the angle whose cosine is y”. Just as y � f (t) and
t � f −1(y) say the same thing for a function and its inverse in general,

y � cos(t) and t � arccos(y)

say the same thing for any angle t that satisfies 0 ≤ t ≤ π. We also use the equivalent
notation t � cos−1(y) interchangeably with t � arccos(y). We read “t � cos−1(y)” as “t is
the angle whose cosine is y” or “t is the inverse cosine of y”. Key properties of the arccosine
function can be summarized as follows.

Properties of the arccosine function.

• The restricted cosine function, y �

1(t) � cos(t), is defined on the do-
main [0, π] with range [−1, 1]. This
function has an inverse function that
we call the arccosine function, de-
noted t � 1−1(y) � arccos(y).

• The domain of y � 1−1(t) �

arccos(t) is [−1, 1] with range [0, π].

• The arccosine function is always de-
creasing on its domain.

• At right, a plot of the restricted co-
sine function (in light blue) and its
corresponding inverse, the arccosine
function (in dark blue).

-1

3

-1 3

y

t

(0,1)

(1,0)

(π

2
,0)

(0, π

2
)

(π,−1)

(−1,π)

y = cos(t)

y = arccos(t)

Just as the natural logarithm function allowed us to rewrite exponential equations in an
equivalent way (for instance, y � e t and t � ln(y) say the exact same thing), the arccosine
function allows us to do likewise for certain angles and cosine outputs. For instance, saying
cos(π2 ) � 0 is the same as writing π2 � arccos(0), which reads “π2 is the angle whose cosine is
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4.3 Inverses of trigonometric functions

0”. Indeed, these relationships are reflected in the plot above, where we see that any point
(a , b) that lies on the graph of y � cos(t) corresponds to the point (b , a) that lies on the graph
of y � arccos(t).

Activity 4.3.2. Use the special points on the unit circle (see, for instance, Figure 2.3.1)
to determine the exact values of each of the following numerical expressions. Do so
without using a computational device.

a. arccos( 1
2 )

b. arccos(
√

2
2 )

c. arccos(
√

3
2 )

d. arccos(− 1
2 )

e. arccos(−
√

2
2 )

f. arccos(−
√

3
2 )

g. arccos(−1)

h. arccos(0)

i. cos(arccos(− 1
2 ))

j. arccos(cos( 7π
6 ))

4.3.2 The arcsine function

We can develop an inverse function for a restricted version of the sine function in a similar
way. As with the cosine function, we need to choose an interval on which the sine function
is always increasing or always decreasing in order to have the function pass the horizontal
line test. The standard choice is the domain [−π2 , π2 ] on which f (t) � sin(t) is increasing and
attains all of the values in the range of the sine function. Thus, we consider f (t) � sin(t) so
that f : [−π2 , π2 ] → [−1, 1] and hence define the corresponding arcsine function.

Definition 4.3.3 Let y � f (t) � sin(t) be defined on the domain [−π2 , π2 ], and observe f :
[−π2 , π2 ] → [−1, 1]. For any real number y that satisfies −1 ≤ y ≤ 1, the arcsine of y,
denoted

arcsin(y)
is the angle t satisfying −π2 ≤ t ≤ π

2 such that sin(t) � y. ♢

Activity 4.3.3. The goal of this activity is to understand key properties of the arc-
sine function in a way similar to our discussion of the arccosine function in Subsec-
tion 4.3.1.

a. Using Definition 4.3.3, what are the domain and range of the arcsine function?

b. Determine the following values exactly: arcsin(−1), arcsin(−
√

2
2 ), arcsin(0),

arcsin( 1
2 ), and arcsin(

√
3

2 ).

c. On the axes provided in Figure 4.3.4, sketch a careful plot of the restricted sine
function on the interval [−π2 , π2 ] along with its corresponding inverse, the arc-
sine function. Label at least three points on each curve so that each point on the
sine graph corresponds to a point on the arcsine graph. In addition, sketch the
line y � t to demonstrate how the graphs are reflections of one another across
this line.
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-1 1

-1

1

y

t

Figure 4.3.4: Axes for plotting the restricted sine function and its inverse, the arcsine
function.

d. True or false: arcsin(sin(5π)) � 5π. Write a complete sentence to explain your
reasoning.

4.3.3 The arctangent function

Finally, we develop an inverse function for a restricted version of the tangent function. We
choose the domain (−π2 , π2 ) on which h(t) � tan(t) is increasing and attains all of the values
in the range of the tangent function.

Definition 4.3.5 Let y � h(t) � tan(t) be defined on the domain (−π2 , π2 ), and observe h :
(−π2 , π2 ) → (−∞,∞). For any real number y, the arctangent of y, denoted

arctan(y)

is the angle t satisfying −π2 < t < π2 such that tan(t) � y. ♢

Activity 4.3.4. The goal of this activity is to understand key properties of the arctan-
gent function.

a. Using Definition 4.3.5, what are the domain and range of the arctangent func-
tion?

b. Determine the following values exactly: arctan(−
√

3), arctan(−1), arctan(0), and
arctan( 1√

3
).

c. A plot of the restricted tangent function on the interval (−π2 , π2 ) is provided in
Figure 4.3.6. Sketch its corresponding inverse function, the arctangent function,
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4.3 Inverses of trigonometric functions

on the same axes. Label at least three points on each curve so that each point
on the tangent graph corresponds to a point on the arctangent graph. In addi-
tion, sketch the line y � t to demonstrate how the graphs are reflections of one
another across this line.

-2

2

-2 2

t =
π

2
t =−

π

2

y

t

Figure 4.3.6: Axes for plotting the restricted sine function and its inverse, the arcsine
function.

d. Complete the following sentence: “as t increases without bound, arctan(t) . . .”.

4.3.4 Summary

• Any function that fails the Horizontal Line Test cannot have an inverse function. How-
ever, for a periodic function that fails the horizontal line test, if we restrict the domain
of the function to an interval that is the length of a single period of the function, we
then determine a related function that does, in fact, have an inverse function. This
makes it possible for us to develop the inverse functions of the restricted cosine, sine,
and tangent functions.

• We choose to define the restricted cosine, sine, and tangent functions on the respective
domains [0, π], [−π2 , π2 ], and (−π2 , π2 ). On each such interval, the restricted function
is strictly decreasing (cosine) or strictly increasing (sine and tangent), and thus has
an inverse function. The restricted sine and cosine functions each have range [−1, 1],
while the restricted tangent’s range is the set of all real numbers. We thus define the
inverse function of each as follows:

i. For any y such that−1 ≤ y ≤ 1, the arccosine of y (denoted arccos(y)) is the angle
t in the interval [0, π] such that cos(t) � y. That is, t is the angle whose cosine is
y.
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ii. For any y such that −1 ≤ y ≤ 1, the arcsine of y (denoted arcsin(y)) is the angle t
in the interval [−π2 , π2 ] such that sin(t) � y. That is, t is the angle whose sine is y.

iii. For any real number y, the arctangent of y (denoted arctan(y)) is the angle t in
the interval (−π2 , π2 ) such that tan(t) � y. That is, t is the angle whose tangent is
y.

• To discuss the properties of the three inverse trigonometric functions, we plot them on
the same axes as their corresponding restricted trigonometric functions. When we do
so, we use t as the input variable for both functions simultaneously so that we can plot
them on the same coordinate axes.

The domain of y � 1−1(t) � arccos(t) is [−1, 1] with corresponding range [0, π], and
the arccosine function is always decreasing. These facts correspond to the domain and
range of the restricted cosine function and the fact that the restricted cosine function
is decreasing on [0, π].
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3

-1 3

y

t

(0,1)

(1,0)

(π

2
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(0, π

2
)

(π,−1)

(−1,π)

y = cos(t)

y = arccos(t)

Figure 4.3.7: The restricted cosine
function (in light blue) and its inverse,
y � 1−1(t) � arccos(t) (in dark blue).
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(−1,−
π
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y = sin(t) y = arcsin(t)

Figure 4.3.8: The restricted sine function
(in light blue) and its inverse,
y � f −1(t) � arcsin(t) (in dark blue).

The domain of y � f −1(t) � arcsin(t) is [−1, 1] with corresponding range [−π2 , π2 ],
and the arcsine function is always increasing. These facts correspond to the domain
and range of the restricted sine function and the fact that the restricted sine function
is increasing on [−π2 , π2 ].

The domain of y � f −1(t) � arctan(t) is the set of all real numbers with corresponding
range (−π2 , π2 ), and the arctangent function is always increasing. These facts corre-
spond to the domain and range of the restricted tangent function and the fact that the
restricted tangent function is increasing on (−π2 , π2 ).
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y = tan(t)

y = arctan(t)

Figure 4.3.9: The restricted tangent function (in light blue) and its inverse,
y � h−1(t) � arctan(t) (in dark blue).

4.3.5 Exercises

1. Without using a calculator, find all solutions to cos(θ) �
√

3
2 in the interval 0 ≤ θ ≤ 2π.

Your answers should be exact values (given as fractions, not decimal approximations).

2. Without using a calculator, find all solutions to sin(θ) �
√

2
2 in the interval 0 ≤ θ ≤ 2π.

Your answers should be exact values (given as fractions, not decimal approximations).

3. Without using a calculator, find all solutions to tan(θ) � 1 in the interval 0 ≤ θ ≤ 2π.
Your answers should be exact values (given as fractions, not decimal approximations).

4. Solve the equations below exactly. Give your answers in radians, and find all possible
values for t in the interval 0 ≤ t ≤ 2π.

(a) sin (t) �
√

3
2 when t �

(b) cos (t) �
√

2
2 when t �

(c) tan (t) � −
√

3 when t �
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5. Use the special points on the unit circle (see, for instance, Figure 2.3.1) to determine
the exact values of each of the following numerical expressions. Do so without using a
computational device.

a. arcsin( 1
2 )

b. arctan(−1)

c. arcsin(−
√

3
2 )

d. arctan(− 1√
3
)

e. arccos(sin(π3 ))

f. cos(arcsin(−
√

3
2 ))

g. tan(arcsin(−
√

2
2 ))

h. arctan(sin(π2 ))

i. sin(arcsin(− 1
2 ))

j. arctan(tan( 7π
4 ))

6. For each of the following claims, determine whether the statement is true or false. If
true, write one sentence to justify your reasoning. If false, give an example of a value
that shows the claim fails.

a. For any y such that −1 ≤ y ≤ 1, sin(arcsin(y)) � y.

b. For any real number t, arcsin(sin(t)) � t.

c. For any real number t, arccos(cos(t)) � t.

d. For any y such that −1 ≤ y ≤ 1, cos(arccos(y)) � y.

e. For any real number y, tan(arctan(y)) � y.

f. For any real number t, arctan(tan(t)) � t.

7. Let’s consider the composite function h(x) � cos(arcsin(x)). This function makes sense
to consider since the arcsine function produces an angle, at which the cosine function
can then be evaluated. In the questions that follow, we investigate how to express h
without using trigonometric functions at all.

a. What is the domain of h? The range of h?

b. Since the arcsine function produces an angle, let’s say that θ � arcsin(x), so that θ
is the angle whose sine is x. By definition, we can picture θ as an angle in a right
trianglewith hypotenuse 1 and a vertical leg of length x, as shown in Figure 4.3.10.
Use the Pythagorean Theorem to determine the length of the horizontal leg as a
function of x.

c. What is the value of cos(θ) as a function of x? What have we shown about h(x) �
cos(arcsin(x))?

d. How about the function p(x) � cos(arctan(x))? How can you reason similarly to
write p in a way that doesn’t involve any trigonometric functions at all? (Hint: let
α � arctan(x) and consider the right triangle in Figure 4.3.11.)
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x1

θ

Figure 4.3.10: The right triangle that
corresponds to the angle θ � arcsin(x).

x

α

1

Figure 4.3.11: The right triangle that
corresponds to the angle α � arctan(x).
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4.4 Finding Angles

Motivating Questions

• How canwe use inverse trigonometric functions to determinemissing angles in right
triangles?

• What situations require us to use technology to evaluate inverse trignometric func-
tions?

In our earlier work in Section 4.1 and Section 4.2, we observed that in any right triangle, if
we know the measure of one additional angle and the length of one additional side, we can
determine all of the other parts of the triangle. With the inverse trigonometric functions that
we developed in Section 4.3, we are now also able to determine the missing angles in any
right triangle where we know the lengths of two sides.

While the original trigonometric functions take a particular angle as input and provide an
output that can be viewed as the ratio of two sides of a right triangle, the inverse trigono-
metric functions take an input that can be viewed as a ratio of two sides of a right triangle
and produce the corresponding angle as output. Indeed, it’s imperative to remember that
statements such as

arccos(x) � θ and cos(θ) � x

say the exact same thing from two different perspectives, and that we read “arccos(x)” as
“the angle whose cosine is x”.

Preview Activity 4.4.1. Consider a right triangle that has one leg of length 3 and
another leg of length

√
3. Let θ be the angle that lies opposite the shorter leg.

a. Sketch a labeled picture of the triangle.

b. What is the exact length of the triangle’s hypotenuse?

c. What is the exact value of sin(θ)?

d. Rewrite your equation from (b) using the arcsine function in the form arcsin(□) �
∆, where □ and ∆ are numerical values.

e. What special angle from the unit circle is θ?

4.4.1 Evaluating inverse trigonometric functions

Like the trigonometric functions themselves, there are a handful of important values of the
inverse trigonometric functions that we can determine exactly without the aid of a com-
puter. For instance, we know from the unit circle (Figure 2.3.1) that arcsin(−

√
3

2 ) � −π3 ,
arccos(−

√
3

2 ) �
5π
6 , and arctan(− 1√

3
) � −π6 . In these evaluations, we have to be careful to

remember that the range of the arccosine function is [0, π], while the range of the arcsine
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function is [−π2 , π2 ] and the range of the arctangent function is (−π2 , π2 ), in order to ensure
that we choose the appropriate angle that results from the inverse trigonometric function.

In addition, there aremany other values atwhichwemaywish to know the angle that results
from an inverse trigonometric function. To determine such values, we use a computational
device (such as Desmos) in order to evaluate the function.

Example 4.4.1
Consider the right triangle pictured
in Figure 4.4.2 and assume we know
that the vertical leg has length 1 and
the hypotenuse has length 3. Let
α be the angle opposite the known
leg. Determine exact and approxi-
mate values for all of the remaining
parts of the triangle.

α

1

3

Figure 4.4.2: A right triangle with one known leg
and known hypotenuse.

Solution. Becauseweknow the hypotenuse and the side opposite α, we observe that sin(α) �
1
3 . Rewriting this statement using inverse function notation, we have equivalently that α �

arcsin( 1
3 ), which is the exact value of α. Since this is not one of the known special angles on

the unit circle, we can find a numerical estimate of α using a computational device. Enter-
ing arcsin(1/3) in Desmos, we find that α ≈ 0.3398 radians. Note well: whatever device we
use, we need to be careful to use degree or radian mode as dictated by the problem we are
solving. We will always work in radians unless stated otherwise.

We can now find the remaining leg’s length and the remaining angle’s measure. If we let x
represent the length of the horizontal leg, by the Pythagorean Theorem we know that

x2
+ 12

� 32,

and thus x2 � 8 so x �
√

8 ≈ 2.8284. Calling the remaining angle β, since α + β �
π
2 , it

follows that
β �
π
2 − arcsin

(
1
3

)
≈ 1.2310.

□

Activity 4.4.2. For each of the following different scenarios, draw a picture of the situ-
ation and use inverse trigonometric functions appropriately to determine the missing
information both exactly and approximately.

a. Consider a right triangle with legs of length 11 and 13. What are the measures
(in radians) of the non-right angles and what is the length of the hypotenuse?

b. Consider an angle α in standard position (vertex at the origin, one side on the
positive x-axis) for which we know cos(α) � − 1

2 and α lies in quadrant III. What
is the measure of α in radians? In addition, what is the value of sin(α)?

c. Consider an angle β in standard position for which we know sin(β) � 0.1 and β
lies in quadrant II. What is the measure of β in radians? In addition, what is the
value of cos(β)?
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4.4.2 Finding angles in applied contexts

Now that we have developed the (restricted) sine, cosine, and tangent functions and their
respective inverses, in any setting in which we have a right triangle together with one side
length and any one additional piece of information (another side length or a non-right angle
measurement), we can determine all of the remaining pieces of the triangle. In the activities
that follow, we explore these possibilities in a variety of different applied contexts.

Activity 4.4.3. A roof is being built with a “7-12 pitch.” Thismeans that the roof rises 7
inches vertically for every 12 inches of horizontal span; in otherwords, the slope of the
roof is 7

12 . What is the exact measure (in degrees) of the angle the roof makes with the
horizontal? What is the approximate measure? What are the exact and approximate
measures of the angle at the peak of the roof (made by the front and back portions of
the roof that meet to form the ridge)?

Activity 4.4.4. On a baseball diamond (which is a square with 90-foot sides), the third
baseman fields the ball right on the line from third base to home plate and 10 feet
away from third base (towards home plate). When he throws the ball to first base,
what angle (in degrees) does the line the ball travels make with the first base line?
What angle does it make with the third base line? Draw a well-labeled diagram to
support your thinking.

What angles arise if he throws the ball to second base instead?

Activity 4.4.5. A camera is tracking the launch of a SpaceX rocket. The camera is
located 4000’ from the rocket’s launching pad, and the camera elevates in order to
keep the rocket in focus. At what angle θ (in radians) is the camera tilted when the
rocket is 3000’ off the ground? Answer both exactly and approximately.

Now, rather than considering the rocket at a fixed height of 3000’, let its height vary
and call the rocket’s height h. Determine the camera’s angle, θ as a function of h, and
compute the average rate of change of θ on the intervals [3000, 3500], [5000, 5500],
and [7000, 7500]. What do you observe about how the camera angle is changing?

4.4.3 Summary

• Anytime we know two side lengths in a right triangle, we can use one of the inverse
trigonometric functions to determine the measure of one of the non-right angles. For
instance, if we know the values of opp and adj in Figure 4.4.3, then since

tan(θ) �
opp
adj ,

it follows that θ � arctan( oppadj ).
If we instead know the hypotenuse and one of the two legs, we can use either the
arcsine or arccosine function accordingly.
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adj

opp
hyp

θ

Figure 4.4.3: Finding an angle from knowing the legs in a right triangle.

• For situations other than angles or ratios that involve the 16 special points on the unit
circle, technology is required in order to evaluate inverse trignometric functions. For
instance, from the unit circle we know that arccos( 1

2 ) � π
3 (exactly), but if we want to

know arccos( 1
3 ), we have to estimate this value using a computational device such as

Desmos. We note that “arccos( 1
3 )” is the exact value of the angle whose cosine is 1

3 .

4.4.4 Exercises

1. If cos(ϕ) � 0.7087 and 3π/2 ≤ ϕ ≤ 2π, approximate the following to four decimal
places.

(a) sin(ϕ)
(b) tan(ϕ)

2. Suppose sin θ �
x
7 and the angle θ is in the first quadrant. Write algebraic expressions

for cos(θ) and tan(θ) in terms of x.

(a) cos(θ)
(b) tan(θ)

3. Using inverse trigonometric functions, find a solution to the equation cos(x) � 0.7 in
the interval 0 ≤ x ≤ 4π. Then, use a graph to find all other solutions to this equation
in this interval. Enter your answers as a comma separated list.

4. At an airshow, a pilot is flying low over a runway while maintaining a constant altitude
of 2000 feet and a constant speed. On a straight path over the runway, the pilot observes
on her laser range-finder that the distance from the plane to a fixed building adjacent
to the runway is 7500 feet. Five seconds later, she observes that distance to the same
building is now 6000 feet.

a. What is the angle of depression from the plane to the building when the plane is
7500 feet away from the building? (The angle of depression is the angle that the
pilot’s line of sight makes with the horizontal.)

b. What is the angle of depression when the plane is 6000 feet from the building?
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c. How far did the plane travel during the time between the two different observa-
tions?

d. What is the plane’s velocity (in miles per hour)?
5. On a calm day, a photographer is filming a hot air balloon. When the balloon launches,

the photographer is stationed 850 feet away from the balloon.
a. When the balloon is 200 feet off the ground, what is the angle of elevation of the

camera?

b. When the balloon is 275 feet off the ground, what is the angle of elevation of the
camera?

c. Let θ represent the camera’s angle of elevation when the balloon is at an arbitrary
height h above the ground. Express θ as a function of h.

d. Determine AV[200,275] for θ (as a function of h) and write at least one sentence to
carefully explain the meaning of the value you find, including units.

6. Consider a right triangle where the two legs measure 5 and 12 respectively and α is the
angle opposite the shorter leg and β is the angle opposite the longer leg.

a. What is the exact value of cos(α)?

b. What is the exact value of sin(β)?

c. What is the exact value of tan(β)? of tan(α)?

d. What is the exact radian measure of α? approximate measure?

e. What is the exact radian measure of β? approximate measure?

f. True or false: for any two angles θ and γ such that θ + γ �
π
2 (radians), it follows

that cos(θ) � sin(γ).
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4.5 Other Trigonometric Functions and Identities

Motivating Questions

• What are the other 3 trigonometric functions and how are they related to the cosine,
sine, and tangent functions?

• How do the graphs of the secant, cosecant, and cotangent functions behave and how
do these graphs compare to the cosine, sine, and tangent functions’ graphs?

• What is a trigonometric identity and why are identities important?

The sine and cosine functions, originally defined in the context of a point traversing the unit
circle, are also central in right triangle trigonometry. They enable us to find missing infor-
mation in right triangles in a straightforwardwaywhenwe knowone of the non-right angles
and one of the three sides of the triangle, or two of the sides where one is the hypotenuse. In
addition, we defined the tangent function in terms of the sine and cosine functions, and the
tangent function offers additional options for finding missing information in right triangles.
We’ve also seeen how the inverses of the restricted sine, cosine, and tangent functions enable
us to find missing angles in a wide variety of settings involving right triangles.

One of the powerful aspects of trigonometry is that the subject offers us the opportunity to
view the same idea from many different perspectives. As one example, we have observed
that the functions f (t) � cos(t) and 1(t) � sin(t +

π
2 ) are actually the same function; as

another, for t values in the domain (−π2 , π2 ), we know that writing y � tan(t) is the same as
writing t � arctan(y). Which perspective we choose to take often depends on context and
given information.

While almost every question involving trigonometry can be answered using the sine, cosine,
and tangent functions, sometimes it is convenient to use three related functions that are
connected to the other three possible arrangements of ratios of sides in right triangles.

Definition 4.5.1 The secant, cosecant, and cotangent functions.
• For any real number t for which cos(t) , 0, we define the secant of t, denoted sec(t),

by the rule

sec(t) � 1
cos(t) .

• For any real number t for which sin(t) , 0, we define the cosecant of t, denoted csc(t),
by the rule

csc(t) � 1
sin(t) .

• For any real number t for which sin(t) , 0, we define the cotangent of t, denoted cot(t),
by the rule

cot(t) � cos(t)
sin(t) .

♢
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Note particularly that like the tangent function, the secant, cosecant, and cotangent are also
defined completely in terms of the sine and cosine functions. In the context of a right triangle
with an angle θ, we know how to think of sin(θ), cos(θ), and tan(θ) as ratios of sides of the
triangle. We can now do likewise with the other trigonometric functions:

sec(θ) � 1
cos(θ) �

1
adj
hyp

�
hyp
adj

csc(θ) � 1
sin(θ) �

1
opp
hyp

�
hyp
opp

cot(θ) � cos(θ)
sin(θ) �

adj
hyp
opp
hyp

�
adj
opp

adj

opp
hyp

θ

Figure 4.5.2: A right
triangle with angle θ.

With these three additional trigonometric functions, we now have expressions that address
all six possible combinations of two sides of a right triangle in a ratio.

Preview Activity 4.5.1. Consider a right triangle with hypotenuse of length 61 and
one leg of length 11. Let α be the angle opposite the side of length 11. Find the exact
length of the other leg and then determine the value of each of the six trigonometric
functions evaluated at α. In addition, what are the exact and approximate measures
of the two non-right angles in the triangle?

4.5.1 Ratios in right triangles

Because the sine and cosine functions are used to define each of the other four trigonometric
functions, it follows that we can translate information known about the other functions back
to information about the sine and cosine functions. For example, if we know that in a certain
triangle csc(α) � 5

3 , it follows that sin(α) � 3
5 . From there we can reason in the usual way to

determine missing information in the given triangle.

It’s also often possible to view given information in the context of the unit circle. With the
earlier given information that csc(α) � 5

3 , it’s natural to view α as being the angle in a right
triangle that lies opposite a leg of length 3 with the hypotenuse being 5, since csc(α) � hyp

opp .
The Pythagorean Theorem then tells us the leg adjacent to α has length 4, as seen in △OPQ

in Figure 4.5.3. But we could also view sin(α) �
3
5 as sin(α) �

3
5
1 , and thus think of the

right triangle has having hypotenuse 1 and vertical leg 3
5 . This triangle is similar to the

originally considered 3-4-5 right triangle, but can be viewed as lying within the unit circle.
The perspective of the unit circle is particularly valuable when ratios such as

√
3

2 ,
√

2
2 , and 1

2
arise in right triangles.
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α

4

3
5

1 3/5

4/5O Q

P

Figure 4.5.3: A 3-4-5 right triangle.

Activity 4.5.2. Suppose that β is an angle in standard positionwith its terminal side in
quadrant II and you know that sec(β) � −2. Without using a computational device in
anyway, determine the exact values of the other five trigonmetric functions evaluated
at β.

4.5.2 Properties of the secant, cosecant, and cotangent functions

Like the tangent function, the secant, cosecant, and cotangent functions are defined in terms
of the sine and cosine functions, so we can determine the exact values of these functions at
each of the special points on the unit circle. In addition, we can use our understanding of the
unit circle and the properties of the sine and cosine functions to determine key properties
of these other trigonometric functions. We begin by investigating the secant function.

Using the fact that sec(t) �
1

cos(t) , we note that anywhere cos(t) � 0, the value of sec(t) is
undefined. We denote such instances in the following table by “u”. At all other points, the
value of the secant function is simply the reciprocal of the cosine function’s value. Since
| cos(t)| ≤ 1 for all t, it follows that | sec(t)| ≥ 1 for all t (for which the secant’s value is
defined). Table 4.5.4 and Table 4.5.5 help us identify trends in the secant function. The sign
of sec(t) matches the sign of cos(t) and thus is positive in Quadrant I, negative in Quadrant
II, negative in Quadrant III, and positive in Quadrant IV.

t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

cos(t) 1
√

3
2

√
2

2
1
2 0 − 1

2 −
√

2
2 −

√
3

2 −1
sec(t) 1 2√

3

√
2 2 u −2 −

√
2 − 2√

3
−1

Table 4.5.4: Values of the cosine and secant functions at special points on the unit circle
(Quadrants I and II).
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t 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

cos(t) −
√

3
2 −

√
2

2 − 1
2 0 1

2

√
2

2

√
3

2 0
sec(t) − 2√

3
−
√

2 −2 u 2
√

2 2√
3

1

Table 4.5.5: Values of the cosine and secant functions at special points on the unit circle
(Quadrants III and IV).

In addition, we observe that as t-values in the first quadrant get closer to π
2 , cos(t) gets

closer to 0 (while being always positive). Since the numerator of the secant function is al-
ways 1, having its denominator approach 0 (while the denominator remains positive) means
that sec(t) increases without bound as t approaches π2 from the left side. Once t is slightly
greater than π2 in Quadrant II, the value of cos(t) is negative (and close to zero). This makes
the value of sec(t) decrease without bound (negative and getting further away from 0) for t
approaching π2 from the right side. We therefore see that p(t) � sec(t) has a vertical asymp-
tote at t �

π
2 ; the periodicity and sign behavior of cos(t) mean this asymptotic behavior of

the secant function will repeat.

Plotting the data in the table along with the expected asymptotes and connecting the points
intuitively, we see the graph of the secant function in Figure 4.5.6.

-3.0

-1.5

1.5

3.0

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4 2π
9π

4

5π

2
−

π

4
−

π

2

y

t

p(t) = sec(t)

Figure 4.5.6: A plot of the secant function with special points that come from the unit
circle, plus the cosine function (dotted, in light blue).
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We see from both the table and the graph that the secant function has period P � 2π. We
summarize our recent work as follows.

Properties of the secant function.

For the function p(t) � sec(t),
• its domain is the set of all real numbers except t � π

2 ± kπ where k is any whole
number;

• its range is the set of all real numbers y such that |y | ≥ 1;

• its period is P � 2π.

Activity 4.5.3. In this activity, we develop the standard properties of the cosecant
function, q(t) � csc(t).

-3.0

-1.5

1.5

3.0

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4 2π
9π

4

5π

2
−

π

4
−

π

2

y

t

y = sin(t)

Figure 4.5.7: Axes for plotting q(t) � csc(t).

a. Complete Table 4.5.8 and Table 4.5.9 to determine the exact values of the cose-
cant function at the special points on the unit circle. Enter “u” for any value at
which q(t) � csc(t) is undefined.
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t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sin(t) 0 1
2

√
2

2

√
3

2 1
√

3
2

√
2

2
1
2 0

csc(t)

Table 4.5.8: Values of the sine function at special points on the unit circle (Quadrants
I and II).

t 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

sin(t) − 1
2 −

√
2

2 −
√

3
2 −1 −

√
3

2 −
√

2
2 − 1

2 0
csc(t)

Table 4.5.9: Values of the sine function at special points on the unit circle (Quadrants
III and IV).

b. In which quadrants is q(t) � csc(t) positive? negative?

c. At what t-values does q(t) � csc(t) have a vertical asymptote? Why?

d. What is the domain of the cosecant function? What is its range?

e. Sketch an accurate, labeled graph of q(t) � csc(t) on the axes provided in Fig-
ure 4.5.7, including the special points that come from the unit circle.

f. What is the period of the cosecant function?

Activity 4.5.4. In this activity, we develop the standard properties of the cotangent
function, r(t) � cot(t).

a. Complete Table 4.5.10 and Table 4.5.11 to determine the exact values of the
cotangent function at the special points on the unit circle. Enter “u” for any
value at which r(t) � cot(t) is undefined.

t 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sin(t) 0 1
2

√
2

2

√
3

2 1
√

3
2

√
2

2
1
2 0

cos(t) 1
√

3
2

√
2

2
1
2 0 − 1

2 −
√

2
2 −

√
3

2 −1
tan(t) 0 1√

3
1 3√

3
u − 3√

3
−1 − 1√

3
0

cot(t)

Table 4.5.10: Values of the sine function at special points on the unit circle.
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t 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

sin(t) − 1
2 −

√
2

2 −
√

3
2 −1 −

√
3

2 −
√

2
2 − 1

2 0
cos(t) −

√
3

2 −
√

2
2 − 1

2 0 1
2

√
2

2

√
3

2 0
tan(t) 1√

3
1 3√

3
u − 3√

3
−1 − 1√

3
0

cot(t)

Table 4.5.11: Values of the sine function at special points on the unit circle.

b. In which quadrants is r(t) � cot(t) positive? negative?

c. At what t-values does r(t) � cot(t) have a vertical asymptote? Why?

d. What is the domain of the cotangent function? What is its range?

e. Sketch an accurate, labeled graph of r(t) � cot(t) on the axes provided in Fig-
ure 4.5.12, including the special points that come from the unit circle.

-3

3

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4 2π
9π

4

5π

2
−

π

4
−

π

2

y

t

h(t) = tan(t)

Figure 4.5.12: Axes for plotting r(t) � cot(t).

f. On intervals where the function is defined at every point in the interval, is r(t) �
cot(t) always increasing, always decreasing, or neither?
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g. What is the period of the cotangent function?

h. How would you describe the relationship between the graphs of the tangent
and cotangent functions?

4.5.3 A few important identities

An identity is an equation that is true for all possible values of x for which the involved
quantities are defined. An example of a non-trigonometric identity is

(x + 1)2 � x2
+ 2x + 1,

since this equation is true for every value of x, and the left and right sides of the equation
are simply two different-looking but entirely equivalent expressions.

Trigonometric identities are simply identities that involve trigonometric functions. While
there are a large number of such identities one can study, we choose to focus on those that
turn out to be most useful in the study of calculus. The most important trigonometric iden-
tity is the fundamental trigonometric identity, which is a trigonometric restatement of the
Pythagorean Theorem.

The fundamental trigonometric identity.

For any real number θ,
cos2(θ) + sin2(θ) � 1. (4.5.1)

Identities are important because they enable us to view the same idea frommultiple perspec-
tives. For example, the fundamental trigonometric identity allows us to think of cos2(θ) +
sin2(θ) as simply 1, or alternatively, to view cos2(θ) as the same quantity as 1 − sin2(θ).
There are two related Pythagorean identities that involve the tangent, secant, cotangent,
and cosecant functions, which we can derive from the fundamental trigonometric identity
by dividing both sides by either cos2(θ) or sin2(θ). If we divide both sides of Equation (4.5.1)
by cos2(θ) (and assume that cos(θ) , 0), we see that

1 +
sin2(θ)
cos2(θ) �

1
cos2(θ) ,

or equivalently,
1 + tan2(θ) � sec2(θ).

A similar argument dividing by sin2(θ) (while assuming sin(θ) , 0) shows that

cot2(θ) + 1 � csc2(θ).

These identities prove useful in calculus when we develop the formulas for the derivatives
of the tangent and cotangent functions.
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In calculus, it is also beneficial to know a couple of other standard identities for sums of
angles or double angles. We simply state these identities without justification. For more
information about them, see Section 10.4 in College Trigonometry, by Stitz and Zeager¹.

• For all real numbers α and β, cos(α + β) � cos(α) cos(β) − sin(α) sin(β).

• For all real numbers α and β, sin(α + β) � sin(α) cos(β) + cos(α) sin(β).

• For any real number θ, cos(2θ) � cos2(θ) − sin2(θ).

• For any real number θ, sin(2θ) � 2 sin(θ) cos(θ).

Activity 4.5.5. In this activity, we investigate how a sum of two angles identity for the
sine function helps us gain a different perspective on the average rate of change of the
sine function.

Recall that for any function f on an interval [a , a + h], its average rate of change is

AV[a ,a+h] �
f (a + h) − f (a)

h
.

a. Let f (x) � sin(x). Use the definition of AV[a ,a+h] to write an expression for the
average rate of change of the sine function on the interval [a + h , a].

b. Apply the sum of two angles identity for the sine function,

sin(α + β) � sin(α) cos(β) + cos(α) sin(β),

to the expression sin(a + h).

c. Explain why your work in (a) and (b) together with some algebra shows that

AV[a ,a+h] � sin(a) · cos(h) − 1
h

− cos(a)sin(h)
h

.

d. In calculus, we move from average rate of change to instantaneous rate of change
by letting h approach 0 in the expression for average rate of change. Using a
computational device in radian mode, investigate the behavior of

cos(h) − 1
h

as h gets close to 0. What happens? Similarly, how does sin(h)
h behave for small

values of h? What does this tell us about AV[a ,a+h] for the sine function as h
approaches 0?

¹More information on Stitz and Zeager’s free texts can be found at http://stitz-zeager.com/.
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4.5.4 Summary

• The secant, cosecant, and cotangent functions are respectively defined as the recipro-
cals of the cosine, sine, and tangent functions. That is,

sec(t) � 1
cos(t) , csc(t) � 1

sin(t) , and cot(t) � 1
tan(t) .

• The graph of the cotangent function is similar to the graph of the tangent function,
except that it is decreasing on every interval on which it is defined at every point in
the interval and has vertical asymptotes wherever tan(t) � 0 and is zero wherever
tan(t) has a vertical asymptote.
The graphs of the secant and cosecant functions are different from the cosine and sine
functions’ graphs in several ways, including that their range is the set of all real num-
bers y such that y ≥ 1 and they have vertical asymptotes wherever the cosine and sine
function, respectively, are zero.

• A trigonometric identity is an equation involving trigonometric functions that is true
for every value of the variable for which the trigonometric functions are defined. For
instance, tan2(t) + 1 � sec2(t) for every real number t except t �

π
2 ± kπ. Identities

offer us alternate perspectives on the same function. For instance, the function f (t) �
sec2(t) − tan2(t) is the same (at all points where f is defined) as the function whose
value is always 1.

4.5.5 Exercises

1. Find the exact value of each without using a calculator:

a) tan
( 7π

4
)

b) tan
( 5π

4
)

c) cot
( 5π

3
)

d) sec
( 3π

4
)

e) csc
(
π
3
)

2. Suppose the angle θ is in the first quadrant, 0 ≤ θ ≤ π/2, and cos(θ) � 1
8 . Find exact

values (as fractions, not decimal approximations) for the following.

(a) csc(θ)
(b) cot(θ)

3. Suppose the angle θ is in the fourth quadrant, 3π
2 ≤ θ ≤ 2π, and tan(θ) � −2

3 . Find
exact values (as fractions, not decimal approximations) for the following.

(a) sec(θ)
(b) sin(θ)
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4. Let β be an angle in quadrant II that satisfies cos(β) � − 12
13 . Determine the values of the

other five trigonometric functions evaluated at β exactly and without evaluating any
trigonometric function on a computational device.

How do your answers change if β that lies in quadrant III?
5. For each of the following transformations of standard trigonometric functions, use your

understanding of transformations to determine the domain, range, asymptotes, and
period of the function, with careful justification. Then, check your results using Desmos
or another graphing utility.

a. f (t) � 5 sec(t − π2 ) + 3

b. 1(t) � − 1
3 csc(2t) − 4

c. h(t) � −7 tan(t + π4 ) + 1

d. j(t) � 1
2 cot(4t) − 2

6. In a right triangle with hypotenuse 1 and vertical leg x, with angle θ opposite x, deter-
mine the simplest expression you can for each of the following quantities in terms of
x.

a. sin(θ)

b. sec(θ)

c. csc(θ)

d. tan(θ)

e. cos(arcsin(x))

f. cot(arcsin(x))
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CHAPTER 5
Polynomial and Rational Functions

5.1 Infinity, limits, and power functions

Motivating Questions

• How canwe use limit notation to succinctly express a function’s behavior as the input
increases without bound or as the function’s value increases without bound?

• What are some important limits and trends involving ∞ that we can observe for fa-
miliar functions such as ex , ln(x), x2, and 1

x ?

• What is a power function and how does the value of the power determine the func-
tion’s overall behavior?

In Section 3.2, we compared the behavior of the exponential functions p(t) � 2t and q(t) �
( 1

2 )t , and observed in Figure 3.2.5 that as t increases without bound, p(t) also increases with-
out bound, while q(t) approaches 0 (while having its value be always positive). We also
introduced shorthand notation for describing these phenomena, writing

p(t) → ∞ as t → ∞

and

q(t) → 0 as t → ∞.

It’s important to remember that infinity is not itself a number. We use the “∞” symbol to
represent a quantity that gets larger and larger with no bound on its growth.

We also know that the concept of infinity plays a key role in understanding the graphical
behavior of functions. For instance, we’ve seen that for a function such as F(t) � 72−45e−0.05t ,
F(t) → 72 as t → ∞, since e−0.05t → 0 as t increases without bound. The function F can be
viewed as modeling the temperature of an object that is initially F(0) � 72− 45 � 27 degrees
that eventually warms to 72 degrees. The line y � 72 is thus a horizontal asymptote of the
function F.

In Preview 5.1.1, we review some familiar functions and portions of their behavior that in-
volve ∞.
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Preview Activity 5.1.1. Complete each of the following statements with an appropri-
ate number or the symbols ∞ or −∞. Do your best to do so without using a graphing
utility; instead use your understanding of the function’s graph.

a. As t → ∞, e−t → .

b. As t → ∞, ln(t) → .

c. As t → ∞, e t → .

d. As t → 0+, e−t → . (When we write t → 0+, this means that we are letting
t get closer and closer to 0, but only allowing t to take on positive values.)

e. As t → ∞, 35 + 53e−0.025t → .

f. As t → π
2
−, tan(t) → . (When we write t → π

2
−, this means that we are

letting t get closer and closer to π2
−, but only allowing t to take on values that

lie to the left of π2 .)

g. As t → π
2
+, tan(t) → . (When we write t → π

2
+, this means that we are

letting t get closer and closer to π2
+, but only allowing t to take on values that

lie to the right of π2 .)

5.1.1 Limit notation

When observing a pattern in the values of a function that correspond to letting the inputs get
closer and closer to a fixed value or letting the inputs increase or decrease without bound,
we are often interested in the behavior of the function “in the limit”. In either case, we are
considering an infinite collection of inputs that are themselves following a pattern, and we
ask the question “how can we expect the function’s output to behave if we continue?”

For instance, we have regularly observed that “as t → ∞, e−t → 0,” which means that by
allowing t to get bigger and bigger without bound, we can make e−t get as close to 0 as we’d
like (without e−t ever equalling 0, since e−t is always positive).

Similarly, as seen in Figure 5.1.1 and Figure 5.1.2, we can make such observations as e t → ∞
as t → ∞, ln(t) → ∞ as t → ∞, and ln(t) → −∞ as t → 0+. We introduce formal limit
notation in order to be able to express these patterns even more succinctly.

Definition 5.1.3 Let L be a real number and f be a function. If we can make the value of f (t)
as close to L as we want by letting t increase without bound, we write

lim
t→∞

f (t) � L

and say that the limit of f as t increases without bound is L.

If the value of f (t) increases without bound as t increases without bound, we instead write

lim
t→∞

f (t) � ∞.

Finally, if f doesn’t increase without bound, doesn’t decrease without bound, and doesn’t
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Figure 5.1.1: Plots of y � e t and y � e−t .
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Figure 5.1.2: Plots of y � e t and y � ln(t).

approach a single value L as t → ∞, we say that f does not have a limit as t → ∞. ♢

Weuse limit notation in related, naturalways to express patternswe see in function behavior.
For instance, we write t → −∞ when we let t decrease without bound, and f (t) → −∞ if f
decreases without bound. We can also think about an input value t approaching a value a
at which the function f is not defined. As one example, we write

lim
t→0+

ln(t) � −∞

because the natural logarithm function decreases without bound as input values get closer
and close to 0 (while always being positive), as seen in Figure 5.1.2.

In the situation where limt→∞ f (t) � L, this tells us that f has a horizontal asymptote at
y � L since the function’s value approaches this fixed number as t increases without bound.
Similarly, if we can say that limt→a f (t) � ∞, this shows that f has a vertical asymptote
at x � a since the function’s value increases without bound as inputs approach the fixed
number a.

For now, we are going to focus on the long-range behavior of certain basic, familiar functions
andwork to understand how they behave as the input increases or decreaseswithout bound.
Above we’ve used the input variable t in most of our previous work; going forward, we’ll
regularly use x as well.

Activity 5.1.2. Complete the Table 5.1.4 by entering “∞,” “−∞,” “0,” or “no limit” to
identify how the function behaves as either x increases or decreases without bound.
As much as possible, work to decide the behavior without using a graphing utility.
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f (x) limx→∞ f (x) limx→−∞ f (x)

ex

e−x

ln(x)
x

x2

x3

x4

1
x

1
x2

sin(x)

Table 5.1.4: Some familiar functions and their limits as x → ∞ or x → −∞.

5.1.2 Power functions

To date, we have worked with several families of functions: linear functions of form y �

mx + b, quadratic functions in standard form, y � ax2 + bx + c, the sinusoidal (trigono-
metric) functions y � a sin(k(x − b)) + c or y � a cos(k(x − b)) + c, transformed exponential
functions such as y � aekx+c, and transformed logarithmic functions of form y � a ln(x)+c.
For trigonometric, exponential, and logarithmic functions, it was essential that we first un-
derstood the behavior of the basic parent functions sin(x), cos(x), ex , and ln(x). In order to
build on our prior work with linear and quadratic functions, we now consider basic func-
tions such as x, x2, and additional powers of x.

Definition 5.1.5 A function of the form f (x) � xp where p is any real number is called a
power function. ♢

We first focus on the case where p is a natural number (that is, a positive whole number).

Activity 5.1.3. Point your browser to the Desmos worksheet at http://gvsu.edu/s/
0zu. In what follows, we explore the behavior of power functions of the form y � xn

where n ≥ 1.
a. Press the “play” button next to the slider labeled “n.” Watch at least two loops

of the animation and then discuss the trends that you observe. Write a careful
sentence each for at least two different trends.

b. Click the icons next to each of the following 8 functions so that you can see all
of y � x, y � x2, . . ., y � x8 graphed at once. On the interval 0 < x < 1, how do
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the graphs of xa and xb compare if a < b?

c. Uncheck the icons on each of the 8 functions to hide their graphs. Click the
settings icon to change the domain settings for the axes, and change them to
−10 ≤ x ≤ 10 and −10, 000 ≤ y ≤ 10, 000. Play the animation through twice
and then discuss the trends that you observe. Write a careful sentence each for
at least two different trends.

d. Click the icons next to each of the following 8 functions so that you can see all
of y � x, y � x2, . . ., y � x8 graphed at once. On the interval x > 1, how do the
graphs of xa and xb compare if a < b?

In the situation where the power p is a negative integer (i.e., a negative whole number),
power functions behave very differently. This is because of the property of exponents that
states

x−n
�

1
xn

so for a power function such as p(x) � x−2, we can equivalently consider p(x) � 1
x2 . Note

well that for these functions, their domain is the set of all real numbers except x � 0. Like
with power functions with positive whole number powers, we want to know how power
functions with negative whole number powers behave as x increases without bound, as
well as how the functions behave near x � 0.

Activity 5.1.4. Point your browser to the Desmos worksheet at http://gvsu.edu/s/
0zv. In what follows, we explore the behavior of power functions y � xn where
n ≤ −1.

a. Press the “play” button next to the slider labeled “n.” Watch two loops of the
animation and then discuss the trends that you observe. Write a careful sentence
each for at least two different trends.

b. Click the icons next to each of the following 8 functions so that you can see all
of y � x−1, y � x−2, . . ., y � x−8 graphed at once. On the interval 1 < x, how do
the functions xa and xb compare if a < b? (Be careful with negative numbers
here: e.g., −3 < −2.)

c. How do your answers change on the interval 0 < x < 1?

d. Uncheck the icons on each of the 8 functions to hide their graphs. Click the
settings icon to change the domain settings for the axes, and change them to
−10 ≤ x ≤ 10 and −10, 000 ≤ y ≤ 10, 000. Play the animation through twice
and then discuss the trends that you observe. Write a careful sentence each for
at least two different trends.

e. Explain why limx→∞ 1
xn � 0 for any choice of n � 1, 2, . . ..
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5.1.3 Summary

• The notation

lim
x→∞

f (x) � L

means that we can make the value of f (x) as close to L as we’d like by letting x be
sufficiently large. This indicates that the value of f eventually stops changing much
and tends to a single value, and thus y � L is a horizontal asymptote of the function
f .

Similarly, the notation

lim
x→a

f (x) � ∞

means that we can make the value of f (x) as large as we’d like by letting x be suffi-
ciently close, but not equal, to a. This unbounded behavior of f near a finite value a
indicates that f has a vertical asymptote at x � a.

• We summarize some key behavior of familiar basic functions with limits as x increases
without bound in Table 5.1.6.

f (x) limx→∞ f (x) limx→−∞ f (x)
ex ∞ 0

e−x 0 ∞
ln(x) ∞ NA¹

x ∞ −∞
x2 ∞ ∞
x3 ∞ −∞
x4 ∞ ∞
1
x 0 0
1
x2 0 0

sin(x) no limit² no limit

Table 5.1.6: Some familiar functions and their limits as x → ∞ or x → −∞.

Additionally, Table 5.1.7 summarizes some key familiar function behavior where the
function’s output increases or decreases without bound as x approaches a fixed num-
ber not in the function’s domain.

¹Because the domain of the natural logarithm function is only positive real numbers, it doesn’t make sense to
even consider this limit.

²Because the sine function neither increases without bound nor approaches a single value, but rather keeps
oscillating through every value between −1 and 1 repeatedly, the sine function does not have a limit as x → ∞.
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f (x) limx→a− f (x) limx→a+ f (x)

ln(x) NA limx→0+ ln(x) � −∞
1
x limx→0−

1
x � −∞ limx→0+

1
x � ∞

1
x2 limx→0−

1
x2 � ∞ limx→0+

1
x2 � ∞

tan(x) limx→ π
2
− tan(x) � ∞ limx→ π

2
+ tan(x) � −∞

sec(x) limx→ π
2
− sec(x) � ∞ limx→ π

2
+ sec(x) � −∞

csc(x) limx→0− sec(x) � −∞ limx→0+ sec(x) � ∞

Table 5.1.7: Some familiar functions and their limits involving∞ as x → a where a is not in
the function’s domain.

• A power function is a function of the form f (x) � xp where p is any real number. For
the two cases where p is a positive whole number or a negative whole number, it is
straightforward to summarize key trends in power functions’ behavior.

◦ If p � 1, 2, 3, . . ., then the domain of f (x) � xp is the set of all real numbers, and as
x → ∞, f (x) → ∞. For the limit as x → −∞, it matters whether p is even or odd:
if p is even, f (x) → ∞ as x → −∞; if p is odd, f (x) → −∞ as x → ∞. Informally,
all power functions of form f (x) � xp where p is a positive even number are “U-
shaped”, while all power functions of form f (x) � xp where p is a positive odd
number are “chair-shaped”.

◦ If p � −1,−2,−3, . . ., then the domain of f (x) � xp is the set of all real numbers
except x � 0, and as x → ±∞, f (x) → 0. This means that each such power
function with a negative whole number exponent has a horizontal asymptote of
y � 0. Regardless of the value of p (p � −1,−2,−3, . . .), limx→0+ f (x) � ∞. But
when we approach 0 from the negative side, it matters whether p is even or odd:
if p is even, f (x) → ∞ as x → 0−; if p is odd, f (x) → −∞ as x → 0−. Informally,
all power functions of form f (x) � xp where p is a negative odd number look
similar to 1

x , while all power functions of form f (x) � xp where p is a negative
even number look similar to 1

x2 .

5.1.4 Exercises

1. Find the long run behavior of each of the following functions.

(a) As x → −∞, −6x−3 →
(b) As x → ∞,

(
14 − 6x3) →

2. Find:

(a) lim
t→−∞

( 1
t2 + 3)

(b) lim
t→∞

3 1
y
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3. Is the function 1(x) �
(
−x3)5

9 a power function? If it is, write it in the form 1(x) � kxp .

4. We’ve observed that several different familiar functions growwithout bound as x → ∞,
including f (x) � ln(x), 1(x) � x2, and h(x) � ex . In this exercise, we compare and
contrast how these three functions grow.

a. Use a computational device to compute decimal expressions for f (10), 1(10), and
h(10), as well as f (100), 1(100), and h(100). What do you observe?

b. For each of f , 1, and h, how large an input is needed in order to ensure that the
function’s output value is at least 1010? What do these values tell us about how
each function grows?

c. Consider the new function r(x) � 1(x)
h(x) �

x2

ex . Compute r(10), r(100), and r(1000).
What do the results suggest about the long-range behavior of r? What is surpris-
ing about this, in light of the fact that both x2 and ex grow without bound?

5. Consider the familiar graph of f (x) � 1
x , which has a vertical asypmtote at x � 0 and

a horizontal asymptote at y � 0, as pictured in Figure 5.1.8. In addition, consider the
similarly-shaped function 1 shown in Figure 5.1.9, which has vertical asymptote x � −1
and horizontal asymptote y � −2.

-4 -2 2 4

-4

-2

2

4

y =
1

x

Figure 5.1.8: A plot of y � f (x) � 1
x .

-4 -2 2 4

-4

-2

2

4

y = g(x)

Figure 5.1.9: A plot of a related function
y � 1(x).

a. How can we view 1 as a transformation of f ? Explain, and state how 1 can be
expressed algebraically in terms of f .

b. Find a formula for 1 as a function of x. What is the domain of 1?

c. Explain algebraically (using the form of 1 from (b)) why limx→∞ 1(x) � −2 and
limx→−1+ 1(x) � ∞.

d. What if a function h (again of a similar shape as f ) has vertical asymptote x � 5
and horizontal asymtote y � 10. What is a possible formula for h(x)?
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e. Suppose that r(x) �
1

x+35 − 27. Without using a graphing utility, how do you
expect the graph of r to appear? Does it have a horizontal asymptote? A vertical
asymptote? What is its domain?

6. Power functions can have powers that are not whole numbers. For instance, we can
consider such functions as f (x) � x2.4, 1(x) � x2.5, and h(x) � x2.6.

a. Compare and contrast the graphs of f , 1, and h. How are they similar? How are
they different? (There is a lot you can discuss here.)

b. Observe that we can think of f (x) � x2.4 as f (x) � x24/10 � x12/5. In addition,
recall by exponent rules that we can also view f as having the form f (x) � 5√x12.
Write 1 and h in similar forms, and explain why 1 has a different domain than f
and h.

c. How do the graphs of f , 1, and h compare to the graphs of y � x2 and y � x3?
Why are these natural functions to use for comparison?

d. Explore similar questions for the graphs of p(x) � x−2.4, q(x) � x−2.5, and r(x) �
x−2.6.
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5.2 Polynomials

Motivating Questions

• What properties of a polynomial function canwe deduce from its algebraic structure?

• What is a sign chart and how does it help us understand a polynomial function’s
behavior?

• Howdo zeros ofmultiplicity other than 1 impact the graph of a polynomial function?

We know that linear functions are the simplest of all functions we can consider: their graphs
have the simplest shape, their average rate of change is always constant (regardless of the
interval chosen), and their formula is elementary. Moreover, computing the value of a linear
function only requires multiplication and addition.

If we think of a linear function as having formula L(x) � b + mx, and the next-simplest
functions, quadratic functions, as having form Q(x) � c + bx + ax2, we can see immediate
parallels between their respective forms and realize that it’s natural to consider slightlymore
complicated functions by adding additional power functions.

Indeed, if we instead view linear functions as having form

L(x) � a0 + a1x

(for some constants a0 and a1) and quadratic functions as having form

Q(x) � a0 + a1x + a2x2

(for some constants a0, a1, and a2), then it’s natural to think about more general functions of
this same form, but with additional power functions included.

Definition 5.2.1 Given real numbers a0 , a1 , . . . , an where an , 0, we say that the function

P(x) � a0 + a1x + a2x2
+ · · · + an−1xn−1

+ an xn

is a polynomial of degree n. In addition, we say that the values of ai are the coefficients of
the polynomial and the individual power functions ai x i are the terms of the polynomial.
Any value of x for which P(x) � 0 is called a zero of the polynomial. ♢

Example 5.2.2 The polyomial function P(x) � 3−7x+4x2−2x3+9x5 has degree 5, its constant
term is 3, and its linear term is −7x. □

Since a polynomial is simply a sum of constant multiples of various power functions with
positive integer powers, we often refer to those individual terms by referring to their indi-
vidual degrees: the linear term, the quadratic term, and so on. In addition, since the domain
of any power function of the form p(x) � xn where n is a positive whole number is the set
of all real numbers, it’s also true the the domain of any polynomial function is the set of all
real numbers.
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Preview Activity 5.2.1. Point your browser to the Desmos worksheet at
http://gvsu.edu/s/0zy. There you’ll find a degree 4 polynomial of the form p(x) �
a0 + a1x + a2x2 + a3x3 + a4x4, where a0 , . . . , a4 are set up as sliders. In the questions
that follow, you’ll experimentwith different values of a0 , . . . , a4 to investigate different
possible behaviors in a degree 4 polynomial.

a. What is the largest number of distinct points at which p(x) can cross the x-axis?
For a polynomial p, we call any value r such that p(r) � 0 a zero of the polyno-
mial. Report the values of a0 , . . . , a4 that lead to that largest number of zeros for
p(x).

b. What other numbers of zeros are possible for p(x)? Said differently, can you get
each possible number of fewer zeros than the largest number that you found in
(a)? Why or why not?

c. We say that a function has a turning point if the function changes from de-
creasing to increasing or increasing to decreasing at the point. For example,
any quadratic function has a turning point at its vertex.
What is the largest number of turningpoints that p(x) (the function in theDesmos
worksheet) can have? Experimentwith the sliders, and report values of a0 , . . . , a4
that lead to that largest number of turning points for p(x).

d. What other numbers of turning points are possible for p(x)? Can it have no
turning points? Just one? Exactly two? Experiment and explain.

e. What long-range behavior is possible for p(x)? Said differently, what are the
possible results for lim

x→−∞
p(x) and lim

x→∞
p(x)?

f. What happens when we plot y � a4x4 in and compare p(x) and a4x4? How do
they look when we zoom out? (Experiment with different values of each of the
sliders, too.)

5.2.1 Key results about polynomial functions

Our observations in Preview Activity 5.2.1 generalize to polynomials of any degree. In par-
ticular, it is possible to prove the following general conclusions regarding the number of
zeros, the long-range behavior, and the number of turning points any polynomial of degree
n.

The Fundamental Theorem of Algebra.

For any degree n polynomial p(x) � a0 + a1x + · · · + an−1xn−1 + an xn , has at most n
real zeros.¹

¹We can actually say even more: if we allow the zeros to be complex numbers, then every degree n polynomial
has exactly n zeros, provided we count zeros according to their multiplicity. For example, the polynomial p(x) �
(x − 1)2 � x2 − 2x + 1 because it has a zero of multiplicity two at x � 1.
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We know that each of the power functions x, x2, . . ., xn grow without bound as x → ∞.
Intuitively, we sense that x5 grows faster than x4 (and likewise for any comparison of a
higher power to a lower one). This means that for large values of x, the most important
term in any polynomial is its highest order term, as we saw in Preview Activity 5.2.1 when
we compared p(x) � a0 + a1x + a2x2 + a3x3 + a4x4 and y � a4x4.

The long-range behavior of a polynomial.

For any degree n polynomial p(x) � a0 + a1x + · · · + an−1xn−1 + an xn , its long-range
behavior is the same as its highest-order term q(x) � an xn . Thus, any polynomial
of even degree appears “U-shaped” (∪ or ∩, like x2 or −x2) when we zoom way out,
and any polynomial of odd degree appears “chair-shaped” (like x3 or −x3) when we
zoom way out.

In Figure 5.2.4, we see how the degree 7 polynomial pictured there (and in Figure 5.2.3 as
well) appears to look like q(x) � −x7 as we zoom out.
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4

8

y = p(x)

Figure 5.2.3: Plot of a degree 7 polynomial
function p.
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Figure 5.2.4: Plot of the same degree 7
polynomial function p, but zoomed out.

Finally, a key idea from calculus justifies the fact that themaximumnumber of turning points
of a degree n polynomial is n − 1, as we conjectured in the degree 4 case in Preview Activ-
ity 5.2.1. Moreover, the only possible numbers of turning points must have the same parity
as n−1; that is, if n−1 is even, then the number of turning pointsmust be even, and if instead
n − 1 is odd, the number of turning points must also be odd. For instance, for the degree 7
polynomial in Figure 5.2.3, we know that it is chair-shaped, with one end up and one end
down. There could be zero turning points and the function could always decrease. But if
there is at least one, then there must be a second, since if there were only one the function
would decrease and then increase without turning back, which would force the graph to
appear U-shaped.
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The turning points of a polynomial.

For any degree n polynomial p(x) � a0 + a1x + · · · + an−1xn−1 + an xn , if n is even,
its number of turning points is exactly one of n − 1, n − 3, . . ., 1, and if n is odd, its
number of turning points is exactly one of n − 1, n − 3, . . ., 0.

Activity 5.2.2. By experimentingwith coefficients in Desmos, find a formula for a poly-
nomial function that has the stated properties, or explain why no such polynomial
exists. (If you enter p(x)=a+bx+cx^2+dx^3+fx^4+gx^5 in Desmos², you’ll get prompted
to add sliders that make it easy to explore a degree 5 polynomial.)

a. A polynomial p of degree 5 with exactly 3 real zeros, 4 turning points, and such
that limx→−∞ p(x) � +∞ and limx→∞ p(x) � −∞.

b. A polynomial p of degree 4 with exactly 4 real zeros, 3 turning points, and such
that limx→−∞ p(x) � +∞ and limx→∞ p(x) � −∞.

c. A polynomial p of degree 6 with exactly 2 real zeros, 3 turning points, and such
that limx→−∞ p(x) � −∞ and limx→∞ p(x) � −∞.

d. A polynomial p of degree 5 with exactly 5 real zeros, 3 turning points, and such
that limx→−∞ p(x) � +∞ and limx→∞ p(x) � −∞.

5.2.2 Using zeros and signs to understand polynomial behavior

Just like a quadratic function can be written in different forms (standard: q(x) � ax2+ bx+ c,
vertex: q(x) � a(x − h)2 + k, and factored: q(x) � a(x − r1)(x − r2)), it’s possible to write
a polynomial function in different forms and to gain information about its behavior from
those different forms. In particular, if we know all of the zeros of a polynomial function, we
can write its formula in factored form, which gives us a deeper understanding of its graph.

The Zero Product Property states that if two or more numbers are multiplied together and
the result is 0, then at least one of the numbers must be 0. We use the Zero Product Property
regularly with polynomial functions. If we can determine all n zeros of a degree n polyno-
mial, and we call those zeros r1, r2, . . ., rn , we can write

p(x) � an(x − r1)(x − r2) · · · (x − r2).

Moreover, if we are given a polynomial in this factored form, we can quickly determine its
zeros. For instance, if p(x) � 2(x +7)(x +1)(x −2)(x −5), we know that the only way p(x) � 0
is if at least one of the factors (x + 7), (x + 1), (x − 2), or (x − 5) equals 0, which implies
that x � −7, x � −1, x � 2, or x � 5. Hence, from the factored form of a polynomial, it is
straightforward to identify the polynomial’s zeros, the x-values at which its graph crosses
the x-axis. We can also use the factored form of a polynomial to develop what we call a sign
chart, which we demonstrate in Example 5.2.5.

²We skip using e as one of the constants since Desmos reserves e as the Euler constant.
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Example 5.2.5 Consider the polynomial function p(x) � k(x − 1)(x − a)(x − b). Suppose we
know that 1 < a < b and that k < 0. Fully describe the graph of p without the aid of a
graphing utility.

Solution. Since p(x) � k(x − 1)(x − a)(x − b), we immediately know that p is a degree 3
polynomial with 3 real zeros: x � 1, a , b. We are given that 1 < a < b and in addition that
k < 0. If we expand the factored form of p(x), it has form p(x) � kx3 + · · ·, and since we
know that when we zoom out, p(x) behaves like kx3, we know that with k < 0 it follows
limx→−∞ p(x) � +∞ and limx→∞ p(x) � −∞.

Since p is degree 3 and we know it has zeros at x � 1, a , b , we know there are no other
locations where p(x) � 0. Thus, on any interval between two zeros (or to the left of the least
or the right of the greatest), the polynomial cannot change sign. We now investigate, interval
by interval, the sign of the function.

When x < 1, it follows that x − 1 < 0. In addition, since 1 < a < b, when x < 1, x lies to the
left of 1, a, and b, which also makes x − a and x − b negative. Moreover, we know that the
constant k < 0. Hence, on the interval x < 1, all four terms in p(x) � k(x−1)(x− a)(x− b) are
negative, which we indicate by writing “− − −−” in that location on the sign chart pictured
in Figure 5.2.6.

In addition, since there are an even number of negative terms in the product, the overall
product’s sign is positive, which we indicate by the single “+” beneath “− − −−”, and by
writing “POS” below the coordinate axis.

sign(p)

−−−−

+

POS 1

−+−−

−

NEG a

−++−

+

POS b

−+++

−

NEG

p(x) = k(x−1)(x−a)(x−b)

Figure 5.2.6: A sign chart for the polynomial function p(x) � k(x − 1)(x − a)(x − b).

We now proceed to the other intervals created by the zeros. On 1 < x < a, the term (x − 1)
has become positive, since x > 1. But both x − a and x − b are negative, as is the constant
k, and thus we write “− + −−” for this interval, which has overall sign “−”, as noted in the
figure. Similar reasoning completes the diagram.

From all of the information we have deduced about p, we conclude that regardless of the
locations of a and b, the graph of p must look like the curve shown in Figure 5.2.7.
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y = p(x)

1 a b

Figure 5.2.7: The graph of the polynomial function p(x) � k(x − 1)(x − a)(x − b).

□

Activity 5.2.3. Consider the polynomial function given by

p(x) � 4692(x + 1520)(x2
+ 10000)(x − 3471)2(x − 9738).

a. What is the degree of p? How can you tell without fully expanding the factored
form of the function?

b. What can you say about the sign of the factor (x2 + 10000)?

c. What are the zeros of the polynomial p?

d. Construct a sign chart for p by using the zeros you identified in (b) and then
analyzing the sign of each factor of p.

e. Without using a graphing utility, construct an approximate graph of p that has
the zeros of p carefully labeled on the x-axis.

f. Use a graphing utility to check your earlier work. What is challenging or mis-
leading when using technology to graph p?

5.2.3 Multiplicity of polynomial zeros

In Activity 5.2.3, we found that one of the zeros of the polynomial p(x) � 4692(x+1520)(x2+
10000)(x − 3471)2(x − 9738) leads to different behavior of the function near that zero than
we’ve seen in other situations. We now consider the more general situation where a poly-
nomial has a repeated factor of the form (x − r)n . When (x − r)n is a factor of a polynomial
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-1 2

-1

2

g(x) = x
3(x−1)

Figure 5.2.8: A plot of 1(x) � x3(x − 1) with zero x � 0 of multiplicity 3 and x � 1 of
multiplicity 1.

p, we say that p has a zero of multiplicity n at x � r.

To see the impact of repeated factors, we examine a collection of degree 4 polynomials that
each have 4 real zeros. We start with the simplest of all, the function f (x) � x4, whose zeros
are x � 0, 0, 0, 0. Because the factor “x−0” is repeated 4 times, the zero x � 0 hasmultiplicity
4.

Next we consider the degree 4 polynomial 1(x) � x3(x − 1), which has a zero of multiplicity
3 at x � 0 and a zero of multiplicity 1 at x � 1. Observe that in Figure 5.2.9, the up-close
plot near the zero x � 0 of multiplicity 3, the polynomial function 1 looks similar to the
basic cubic polynomial −x3. In addition, in Figure 5.2.10, we observe that if we zoom in
even futher on the zero of multiplicity 1, the function 1 looks roughly linear, like a degree
1 polynomial. This type of behavior near repeated zeros turns out to hold in other cases as
well.

Figure 5.2.9: A plot of 1(x) � x3(x − 1)
zoomed in on the zero x � 0 of
multiplicity 3.

Figure 5.2.10: A plot of 1(x) � x3(x − 1)
zoomed in on the zero x � 1 of
multiplicity 1.
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If we next let h(x) � x2(x − 1)2, we see that h has two distinct real zeros, each of multiplicity
2. The graph of h in Figure 5.2.11 shows that h behaves similar to a basic quadratic function
near each of those zeros and thus shows U-shaped behavior nearby. If instead we let k(x) �
x2(x − 1)(x + 1), we see approximately linear behavior near x � −1 and x � 1 (the zeros of
multiplicity 1), and quadratic (U-shaped) behavior near x � 0 (the zero of multiplicity 2), as
seen in Figure 5.2.12.

-1 2

-1

2

h(x) = x
2(x−1)2

Figure 5.2.11: Plot of h(x) � x2(x − 1)2
with zeros x � 0 and x � 1 of
multiplicity 2.

-1 2

-1

2

k(x) = x
2(x+1)(x−1)

Figure 5.2.12: Plot of
k(x) � x2(x − 1)(x + 1) with zeros x � 0
of multiplicity 2 and x � −1 and x � 1 of
multiplicity 1.

Finally, if we consider m(x) � (x + 1)x(x − 1)(x − 2), which has 4 distinct real zeros each
of multiplicity 1, we observe in Figure 5.2.13 that zooming in on each zero individually, the
function demonstrates approximately linear behavior as it passes through the x-axis.

-1 2

-1

2

m(x) = (x+1)x(x−1)(x−2)

Figure 5.2.13: Plot of m(x) � (x + 1)x(x − 1)(x − 2) with 4 distinct zeros of multiplicity 1.

Our observations with polynomials of degree 4 in the various figures above generalize to
polynomials of any degree.
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Polynomial zeros of multiplicity n.

If (x − r)n is a factor of a polynomial p, then x � r is a zero of p of multiplicity n, and
near x � r the graph of p looks like either −xn or xn does near x � 0. That is, the
shape of the graph near the zero is determined by the multiplicity of the zero.

Activity 5.2.4. For each of the following prompts, try to determine a formula for a
polynomial that satisfies the given criteria. If no such polynomial exists, explain why.

a. A polynomial f of degree 10 whose zeros are x � −12 (multiplicity 3), x � −9
(multiplicity 2), x � 4 (multiplicity 4), and x � 10 (multiplicity 1), and f satisfies
f (0) � 21. What can you say about the values of limx→−∞ f (x) and limx→∞ f (x)?

b. A polynomial p of degree 9 that satisfies p(0) � −2 and has the graph shown in
Figure 5.2.14. Assume that all of the zeros of p are shown in the figure.

c. A polynomial q of degree 8 with 3 distinct real zeros (possibly of different mul-
tiplicities) such that q has the sign chart in Figure 5.2.15 and satisfies q(0) � −10.

-8 -4 4 8

-8

-4

4

8

y = p(x)

Figure 5.2.14: A degree 9 polynomial p.

sign(q) −

NEG −2

−

NEG 3

+

POS 9

−

NEG

Figure 5.2.15: A sign chart for the
polynomial q.

d. A polynomial q of degree 9 with 3 distinct real zeros (possibly of different mul-
tiplicities) such that q satisfies the sign chart in Figure 5.2.15 and satisfies q(0) �
−10.

e. A polynomial p of degree 11 that satisfies p(0) � −2 and p has the graph shown
in Figure 5.2.14. Assume that all of the zeros of p are shown in the figure.

5.2.4 Summary

• From a polynomial function’s algebraic structure, we can deduce several key traits of
the function.
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◦ If the function is in standard form, say

p(x) � a0 + a1x + a2x2
+ · · · + an−1xn−1

+ an xn ,

we know that its degree is n and that when we zoom out, p looks like an xn and
thus has the same long-range behavior as an xn . Thus, p is chair-shaped if n is
odd and U-shaped if n is even. Whether limn→∞ p(x) is +∞ or −∞ depends on
the sign of an .

◦ If the function is in factored form, say

p(x) � an(x − r1)(x − r2) · · · (x − rn)

(where the ri ’s are possibly not distinct and possibly complex), we can quickly
determine both the degree of the polynomial (n) and the locations of its zeros, as
well as their multiplicities.

• A sign chart is a visual way to identify all of the locations where a function is zero
along with the sign of the function on the various intervals the zeros create. A sign
chart gives us an overall sense of the graph of the function, but without concerning
ourselves with any specific values of the function besides the zeros. For a sample sign
chart, see Figure 5.2.6.

• When a polynomial p has a repeated factor such as

p(x) � (x − 5)(x − 5)(x − 5) � (x − 5)3,

we say that x � 5 is a zero of multiplicity 3. At the point x � 5 where p will cross
the x-axis, up close it will look like a cubic polynomial and thus be chair-shaped. In
general, if (x − r)n is a factor of a polynomial p so that x � r is a zero of multiplicity n,
the polynomial will behave near x � r like the polynomial xn behaves near x � 0.

5.2.5 Exercises

1. Are the functions below polynomials? If they are, find their degree.

f (x) � 6x + 4

1(x) � x6 + 4

2. Are the functions below polynomials? If they are, find their degree.

f (x) � 6x3.7 + 2

1(x) � 6x2 + 3.7

h(x) � 2x−6 + 3.7
3. Let y � 9x6 − 3961x2 + 6 .

(a) What power function does the function above resemble?

(b) Describe the long-run behavior of the polynomial.

y goes to as x → ∞
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y goes to as x → −∞.

4. Let y � 8x3 + 6x4

x−6 − 7x5 + 1.

(a) What power function does the function above resemble?

(b) Describe the long-run behavior of the polynomial.

y goes to as x → ∞.

y goes to as x → −∞.

5. Estimate the zero(s) of f (x) � x4 + 16x3 + 93x2 + 231x + 206.

6. Suppose f (x) � x2 (7 − 8x9) .
(a) Find roots of f (x).
(b) As x → ∞, f (x) →
(b) As x → −∞, f (x) →

7. Suppose f (x) � (5 − 6x)(2x − 4)2.
(a) Find the roots of f (x).
(b) As x → ∞, f (x) →
(b) As x → −∞, f (x) →

8. Consider the polynomial function given by

p(x) � 0.0005(x + 21.7)3(x − 20.9)2(x − 31.4)(x2
+ 100).

(a) What is the degree of p?

(b) What are the real zeros of p? State them with multiplicity.

(c) Construct a carefully labeled sign chart for p(x).

(d) Plot the function p in Desmos. Are the zeros obvious from the graph? How do
you have to adjust the window in order to tell? Even in an adjusted window, can
you tell them exactly from the graph?

(e) Now consider the related but different polynomial

q(x) � −0.0005(x + 21.7)3(x − 20.9)2(x − 31.4)(x2
+ 100)(x − 92.3).

What is the degree of q? What are the zeros of q? What is obvious from its graph
and what is not?

9. Consider the (non-polynomial) function r(x) � e−x2(x2 + 1)(x − 2)(x − 3).
(a) What are the zeros of r(x)? (Hint: is e□ ever equal to zero?)

(b) Construct a sign chart for r(x).

(c) Plot r(x) in Desmos. Is the sign and overall behavior of r obvious from the plot?
Why or why not?
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(d) From the graph, what appears to be the value of limx→∞ r(x)? Why is this sur-
prising in light of the behavior of f (x) � (x2 + 1)(x − 2)(x − 3) as x → ∞?

10. In each following question, find a formula for a polynomial with certain properties,
generate a plot that demonstrates you’ve found a functionwith the given specifications,
and write several sentences to explain your thinking.
(a) A quadratic function q has zeros at x � 7 and x � 11 and its y-value at its vertex

is 42.

(b) A polynomial r of degree 4 has zeros at x � 3 and x � 5, both of multiplicity 2,
and the function has a y-intercept at the point (0, 28).

(c) A polynomial f has degree 11 and the following zeros: zeros of multiplicity 1
at x � 3 and x � 5, zeros of multiplicity 2 at x � 2 and x � 3, and a zero of
multiplicity 3 at x � 1. In addition, limx→∞ f (x) � −∞.

(d) A polynomial 1 has its graph given in Figure 5.2.16 below. Determine a possible
formula for 1(x) where the polynomial you find has the lowest possible degree
to match the graph. What is the degree of the function you find?

-2 2

-4

4

y = g(x) (2,1.25)

Figure 5.2.16: A polynomial function 1.

11. Like we have worked to understand families of functions that involve parameters such
as p(t) � a cos(k(t − b))+ c and F(t) � a + be−kt , we are often interested in polynomials
that involve one or more parameters and understanding how those parameters affect
the function’s behavior.

For example, let a > 0 be a positive constant, and consider p(x) � x3 − a2x.

(a) What is the degree of p?

(b) What is the long-term behavior of p? State your responses using limit notation.

(c) In terms of the constant a, what are the zeros of p?
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(d) Construct a carefully labeled sign chart for p.

(e) How does changing the value of a affect the graph of p?
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5.3 Modeling with polynomial functions

5.3 Modeling with polynomial functions

Motivating Questions

• Why do polynomials arise naturally in the study of problems involving the volume
and surface area of three-dimensional containers such as boxes and cylinders?

• How can polynomial functions be used to approximate non-polynomial curves and
functions?

Polynomial functions are the simplest of all functions in mathematics in part because they
only involvemultiplication and addition. In any applied settingwherewe can formulate key
ideas using only those arithmetic operations, it’s natural that polynomial functions model
the corresponding phenomena. For example, in Activity 1.2.2, we saw that for a spherical
tank of radius 4 m filling with water, the volume of water in the tank at a given instant, V ,
is a function of the depth, h, of the water in the tank at the same moment according to the
formula

V � f (h) � π3 h2(12 − h).

The function f is a polynomial of degree 3 with a repeated zero at h � 0 and an additional
zero at h � 12. Because the tank has a radius of 4, its total height is h, and thus the model
V � f (h) � π

3 h2(12 − h) is only valid on the domain 0 ≤ h ≤ 8. This polynomial function
tells us how the volume of water in the tank changes as h changes.

In other similar situations where we consider the volume of a box, tank, or other three-
dimensional container, polynomial functions frequently arise. To develop a model function
that represents a physical situation, we almost always begin by drawing one or more dia-
grams of the situation and then introduce one or more variables to represent quantities that
are changing. From there, we explore relationships that are present andwork to express one
of the quantities in terms of the other(s).

Preview Activity 5.3.1. A piece of cardboard that is 12×18 (each measured in inches)
is being made into a box without a top. To do so, squares are cut from each corner of
the cardboard and the remaining sides are folded up.

a. Let x be the side length of the squares being cut from the corners of the card-
board. Draw a labeled diagram that shows the given information and the vari-
able being used.

b. Determine a formula for the function V whose output is the volume of the box
that results from a square of size x × x being cut from each corner of the card-
board.

c. What familiar kind of function is V?

d. What is the largest size of a square that could be cut from the cardboard and
still have a resulting box?

e. What are the zeros of V? What is the domain of the model V in the context of
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the rectangular box?

5.3.1 Volume, surface area, and constraints

In Preview Activity 5.3.1, we worked with a rectangular box being built by folding card-
board. One of the key principles we needed to use was the fact that the volume of a rectan-
gular box of length l, width w, and height h is

V � lwh. (5.3.1)

l

w

h

Figure 5.3.1: A rectangular box.

r

h

Figure 5.3.2: A circular cylinder.
One way to remember the formula for the area of a rectangular box is “area of the base times
the height”. This principle extends to other three-dimensional shapes that have constant
cross-sectional area. For instance, the volume of a circular cylinder with radius r and height
h is

V � πr2h (5.3.2)

since the area of the base is πr2.

We’ll also often consider the surface area of a three-dimensional container. For a rectangular
box with side lengths of l, w, and h, its surface area consists of 3 pairs of rectangles: the top
and bottom, each of area lw, the two sides that are the front and back when we look right at
the box, each of area lh, and the remaining two sides of area wh. Thus the total surface area
of the box is

SA � 2lw + 2lh + 2wh. (5.3.3)

For a circular cylinder, its surface area is the sum of the areas of the top and bottom (πr2

each), plus the area of the “sides”. If we think of cutting the cylinder vertically and unfurling
it, the resulting figure is a rectangle whose dimensions are the height of the cylinder, h, by
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the circumference of the base, 2πr. The rectangle’s area is therefore 2πr · h, and hence the
total surface area of a cylinder is

SA � 2πr2
+ 2πrh. (5.3.4)

Each of the volume and surface area equations (Equation (5.3.1), Equation (5.3.2), Equa-
tion (5.3.3), and Equation (5.3.4)) involve only multiplication and addition, and thus have
the potential to result in polynomial functions. At present, however, each of these equations
involves at least two variables. The inclusion of additional constraints can enable us to use
these formulas to generate polynomial functions of a single variable.

Activity 5.3.2. According to a shipping company’s regulations, the girth plus the
length of a parcel they transport for their lowest ratemay not exceed 120 inches, where
by girth we mean the perimeter of the smallest end.

Figure 5.3.3: A rectangular parcel with a square end.

Suppose that we want to ship a parcel that has a square end of width x and an overall
length of y, both measured in inches.

a. Label the provided picture, using x for the length of each side of the square end,
and y for the other edge of the package.

b. How does the length plus girth of 120 inches result in an equation (often called
a constraint equation) that relates x and y? Explain, and state the equation.

c. Solve the equation you found in (b) for one of the variables present.

d. Hence determine the volume, V , of the package as a function of a single variable.

e. What is the domain of the function V in the context of the physical setting of
this problem? (Hint: what’s the maximum value of x? the maximum value of
y?)
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Activity 5.3.3. Suppose that we want to construct a cylindrical can using 60 square
inches ofmaterial for the surface of the can. In this context, howdoes the can’s volume
depend on the radius we choose?

Let the cylindrical can have base radius r and height h.

a. Use the formula for the surface area of a cylinder and the given constraint that
the can’s surface area is 60 square inches to write an equation that connects the
radius r and height h.

b. Solve the equation you found in (a) for h in terms of r.

c. Recall that the volume of a cylinder is V � πr2h. Use your work in (b) to write
V as a function of r only and simplify the formula as much as possible.

d. Hence determine the volume, V , of the package as a function of a single variable.

e. What is the domain of the function V in the context of the physical setting of
this problem? (Hint: how does the constraint on surface area provide a largest
possible value for r? Think about the maximum area that can be allocated to
the top and bottom of the can.)

5.3.2 Other applications of polynomial functions

A different use of polynomial functions arises with Bezier curves. The most common type of
Bezier curve used in applications is the cubic Bezier curve, which is a curve given paramet-
rically by a formula of the form (x(t), y(t)), where

x(t) � (1 − t)3x0 + 3(1 − t2)tx1 + 3(1 − t2)tx2 + t3x3

and
y(t) � (1 − t)3 y0 + 3(1 − t2)t y1 + 3(1 − t)t2 y2 + t3 y3).

The curve passes through the points A � (x0 , y0) and B � (x3 , y3) and the points C � (x1 , y1)
and D � (x2 , y2) are called control points. At http://gvsu.edu/s/0zC, you can explore the ef-
fects of moving the control points (in gray) and the points on the curve (in black) to generate
different curves in the plane, similar to the one shown in Figure 5.3.4.

The main issue to realize is that the form of the curve depends on a special family of cubic
polynomials:

(1 − t)3 , 3(1 − t2)t , 3(1 − t2)t , and t3.

These four cubic polynomials play a key role in graphic design and are used in all sorts of
important ways, including in font design, as seen in Figure 5.3.5.

Another important application of polynomial functions is found in how they can be used to
approximate the sine and cosine functions.
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Figure 5.3.4: A cubic Bezier curve with control points
in gray.

Figure 5.3.5: The letter S in
Palatino font, generated by
Bezier curves.

Activity 5.3.4. We understand the theoretical rule behind the function f (t) � sin(t):
given an angle t in radians, sin(t) measures the value of the y-coordinate of the cor-
responding point on the unit circle. For special values of t, we have determined the
exact value of sin(t). For example, sin(π3 ) �

√
3

2 . But note that we don’t have a formula
for sin(t). Instead, we use a button on our calculator or command on our computer to
find values like “sin(1.35).” It turns out that a combination of calculus and polynomial
functions explains how computers determine values of the sine function.

At http://gvsu.edu/s/0zA, you’ll find a Desmos worksheet that has the sine function
already defined, along with a sequence of polynomials labeled T1(x), T3(x), T5(x),
T7(x), . . .. You can see these functions’ graphs by clicking on their respective icons.

a. For what values of x does it appear that sin(x) ≈ T1(x)?

b. For what values of x does it appear that sin(x) ≈ T3(x)?

c. For what values of x does it appear that sin(x) ≈ T5(x)?

d. What overall trend do you observe? How good is the approximation generated
by T19(x)?

e. In a new Desmos worksheet, plot the function y � cos(x) along with the follow-
ing functions: P2(x) � 1− x2

2! and P4(x) � 1− x2

2! +
x4

4! . Based on the patterns with
the coefficients in the polynomials approximating sin(x) and the polynomials
P2 and P4 here, conjecture formulas for P6, P8, and P18 and plot them. Howwell
can we approximate y � cos(x) using polynomials?
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5.3.3 Summary

• Polynomials arise naturally in the study of problems involving the volume and surface
area of three-dimensional containers such as boxes and cylinders because these formu-
las fundamentally involve sums and products of variables. For instance, the volume
of a cylinder is V � πr2h. In the presence of a surface area constraint that tells us that
h �

100−2πr2

2πr , it follows that

V � πr2 100 − 2πr2

2πr
� r(50 − πr2),

which is a cubic polynomial.

• Polynomial functions be used to approximate non-polynomial curves and functions
in many different ways. One example is found in cubic Bezier curves which use a
collection of control points to enable the user to manipulate curves to pass through
select points in such a way that the curve first travels in a certain direction. Another
example is in the remarkable approximation of non-polynomial functions like the sine
function, as given by

sin(x) ≈ x − 1
3! x3

+
1
5! x5 − 1

7! x7,

where the approximation is good for x-values near x � 0.

5.3.4 Exercises

1. You wish to pack a cardboard box inside a wooden crate. In order to have room for the
packing materials, you need to leave a 0.5 ft space around the front, back, and sides of
the box, and a 1 ft space around the top and bottom of the box.

If the cardboard box is x feet long, (x+2) feet wide, and (x−1) feet deep, find a formula
in terms of x for the amount of packing material, M, needed.

2. An open-top box is to be constructed from a 6 in by 14 in rectangular sheet of tin by
cutting out squares of equal size at each corner, then folding up the resulting flaps. Let
x denote the length of the side of each cut-out square. Assume negligible thickness.

(a) Find a formula for the volume, V , of the box as a function of x.

(b) For what values of x does the formula from part (a) make sense in the context of the
problem?

(c) On a separate piece of paper, sketch a graph of the volume function.

(d) What, approximately, is the maximum volume of the box?

3. An open triangular trough, as pictured in Figure 5.3.6 is being contructed from alu-
minum. The trough is to have equilateral triangular ends of side length s and a length
of l. We want the trough to used a fixed 100 square feet of aluminum.
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Figure 5.3.6: A triangular trough.

a. What is the area of one of the equilateral triangle ends as a function of s?

b. Recall that for an object with constant cross-sectional area, its volume is the area
of one of those cross-sections times its height (or length). Hence determine a
formula for the volume of the trough that depends on s and l.

c. Find a formula involving s and l for the surface area of the trough.

d. Use the constraint that we have 100 square feet of available aluminum to generate
an equation that connects s and l and hence solve for l in terms of s.

e. Use your work in (d) and (b) to express the volume of the trough, V , as a function
of l only.

f. What is the domain of the function V in the context of the situation being mod-
eled? Why?

4. A rectangular box is being constructed so that its base is twice as long as it is wide. In
addition, the base and top of the box cost $2 per square foot while the sides cost $1.50
per square foot. If we only want to spend $10 on materials for the box, how can we
write the box’s volume as a function of a single variable? What is the domain of this
volume function? (Hint: first find the box’s surface area in terms of two variables, and
then find an expression for the cost of the box in terms of those same variables. Use the
fact that cost is constrained to solve for one variable in terms of another.)

5. Suppose that we want a cylindrical barrel to hold 8 cubic feet of volume. Let the barrel
have radius r and height h, each measured in feet. How can we write the surface area,
A, of the barrel solely as a function of r?

a. Draw several possible pictures of how the barrel might look. For instance, what
if the radius is very small? Howwill the height appear in comparison? Likewise,
what happens if the height is very small?

b. Use the fact that volume is fixed at 8 cubic feet to state a constraint equation and
solve that equation for h in terms of r.

c. Recall that the surface area of a cylinder is A � 2πr2 + 2πrh. Use your work in (c)
to write A as a function of only r.
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d. What is the domain of A? Why?

e. Explain why A is not a polynomial function of r.
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5.4 Rational Functions

Motivating Questions

• What is a rational function?

• How can we determine key information about a rational function from its algebraic
structure?

• Why are rational functions important?

The average rate of change of a function on an interval always involves a ratio. Indeed, for
a given function f that interests us near t � 2, we can investigate its average rate of change
on intervals near this value by considering

AV[2,2+h] �
f (2 + h) − f (2)

h
.

Suppose, for instance, that f meausures the height of a falling ball at time t and is given by
f (t) � −16t2 + 32t + 48, which happens to be a polynomial function of degree 2. For this
particular function, its average rate of change on [1, 1 + h] is

AV[2,2+h] �
f (2 + h) − f (2)

h

�
−16(2 + h)2 + 32(2 + h) + 48 − (−16 · 4 + 32 · 2 + 48)

h

�
−64 − 64h − 16h2 + 64 + 32h + 48 − (48)

h

�
−64h − 16h2

h
.

Structurally, we observe that AV[2,2+h] is a ratio of the two functions −64h − 16h2 and h.
Moreover, both the numerator and the denominator of the expression are themselves poly-
nomial functions of the variable h. Note that we may be especially interested in what occurs
as h → 0, as these values will tell us the average velocity of the moving ball on shorter and
shorter time intervals starting at t � 2. At the same time, AV[2,2+h] is not defined for h � 0.

Ratios of polynomial functions arise in several different important circumstances. Some-
times we are interested in what happens when the denominator approaches 0, which makes
the overall ratio undefined. In other situations, we may want to know what happens in
the long term and thus consider what happens when the input variable increases without
bound.

Preview Activity 5.4.1. A drug company¹ estimates that to produce a new drug, it
will cost $5 million in startup resources, and that once they reach production, each
gram of the drug will cost $2500 to make.

a. Determine a formula for a function C(q) that models the cost of producing q
grams of the drug. What familiar kind of function is C?
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b. The drug company needs to sell the drug at a price of more than $2500 per gram
in order to at least break even. To investigate how theymight set prices, they first
consider what their average cost per gram is. What is the total cost of producing
1000 grams? What is the average cost per gram to produce 1000 grams?

c. What is the total cost of producing 10000 grams? What is the average cost per
gram to produce 10000 grams?

d. Our computations in (b) and (c) naturally lead us to define the “average cost per
gram” function, A(q), whose output is the average cost of producing q grams of
the drug. What is a formula for A(q)?

e. Explain why another formula for A is A(q) � 2500 +
5000000

q .

f. What can you say about the long-range behavior of A? What does this behavior
mean in the context of the problem?

5.4.1 Long-range behavior of rational functions

The functions AV[2,2+h] �
−64h−16h2

h and A(q) �
5000000+2500q

q are both examples of rational
functions, since each is a ratio of polynomial functions. Formally, we have the following
definition.
Definition 5.4.1 A function r is rational provided that it is possible to write r as the ratio of
two polynomials, p and q. That is, r is rational provided that for some polynomial functions
p and q, we have

r(x) � p(x)
q(x) .

♢

Like with polynomial functions, we are interested in such natural questions as

• What is the long range behavior of a given rational function?

• What is the domain of a given rational function?

• How can we determine where a given rational function’s value is 0?

We begin by focusing on the long-range behavior of rational functions. It’s important first
to recall our earlier work with power functions of the form p(x) � x−n where n � 1, 2, . . ..
For such functions, we know that p(x) � 1

xn where n > 0 and that

lim
x→∞

1
xn � 0

since xn increases without bound as x → ∞. The same is true when x → −∞: limx→−∞ 1
xn �

0. Thus, any time we encounter a quantity such as 1
x3 , this quantity will approach 0 as x

¹This activity is based on p. 457ff in Functions Modeling Change, by Connally et al.
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increases without bound, and this will also occur for any constant numerator. For instance,

lim
x→∞

2500
x2 � 0

since 2500 times a quantity approaching 0 will still approach 0 as x increases.

Activity 5.4.2. Consider the rational function r(x) � 3x2−5x+1
7x2+2x−11 .

Observe that the largest power of x that’s present in r(x) is x2. In addition, because of
the dominant terms of 3x2 in the numerator and 7x2 in the denominator, both the nu-
merator and denominator of r increase without bound as x increases without bound.
In order to understand the long-range behavior of r, we choose to write the function
in a different algebraic form.

a. Note that we can multiply the formula for r by the form of 1 given by 1 �

1
x2
1

x2
.

Do so, and distribute and simplify as much as possible in both the numerator
and denominator to write r in a different algebraic form.

b. Having rewritten r, we are in a better position to evaluate limx→∞ r(x). Using
our work from (a), we have

lim
x→∞

r(x) � lim
x→∞

3 − 5
x +

1
x2

7 +
2
x − 11

x2

.

What is the exact value of this limit and why?

c. Next, determine

lim
x→−∞

r(x) � lim
x→−∞

3 − 5
x +

1
x2

7 +
2
x − 11

x2

.

d. Use Desmos to plot r on the interval [−10, 10]. In addition, plot the horizontal
line y �

3
7 . What is the meaning of the limits you found in (b) and (c)?

Activity 5.4.3. Let s(x) � 3x−5
7x2+2x−11 and u(x) � 3x2−5x+1

7x+2 . Note that both the numerator
and denominator of each of these rational functions increases without bound as x →
∞, and in addition that x2 is the highest order term present in each of s and u.

a. Using a similar algebraic approach to our work in Activity 5.4.2, multiply s(x)
by 1 �

1
x2
1

x2
and hence evaluate

lim
x→∞

3x − 5
7x2 + 2x − 11

.

What value do you find?

b. Plot the function y � s(x) on the interval [−10, 10]. What is the graphical mean-
ing of the limit you found in (a)?
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c. Next, use appropriate algebraic work to consider u(x) and evaluate

lim
x→∞

3x2 − 5x + 1
7x + 2 .

What do you find?

d. Plot the function y � u(x) on the interval [−10, 10]. What is the graphical mean-
ing of the limit you computed in (c)?

We summarize and generalize the results of Activity 5.4.2 and Activity 5.4.3 as follows.

The long-term behavior of a rational function.

Let p and q be polynomial functions so that r(x) � p(x)
q(x) is a rational function. Suppose

that p has degree n with leading term an xn and q has degree m with leading term
bm xm for some nonzero constants an and bm . There are three possibilities (n < m,
n � m, and n > m) that result in three different behaviors of r:

a. if n < m, then the degree of the numerator is less than the degree of the de-
nominator, and thus

lim
n→∞

r(x) � lim
n→∞

an xn + · · · + a0
bm xm + · · · + b0

� 0,

which tells us that y � 0 is a horizontal asymptote of r;

b. if n � m, then the degree of the numerator equals the degree of the denomina-
tor, and thus

lim
n→∞

r(x) � lim
n→∞

an xn + · · · + a0
bn xn + · · · + b0

�
an

bn
,

which tells us that y �
an
bn

(the ratio of the coefficients of the highest order terms
in p and q) is a horizontal asymptote of r;

c. if n > m, then the degree of the numerator is greater than the degree of the
denominator, and thus

lim
n→∞

r(x) � lim
n→∞

an xn + · · · + a0
bm xm + · · · + b0

� ±∞,

(where the sign of the limit depends on the signs of an and bm) which tells us
that r is does not have a horizontal asymptote.

In both situations (a) and (b), the value of limx→−∞ r(x) is identical to limx→∞ r(x).
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5.4.2 The domain of a rational function

Because a rational function can be written in the form r(x) �
p(x)
q(x) for some polynomial

functions p and q, we have to be concerned about the possibility that a rational function’s
denominator is zero. Since polynomial functions always have their domain as the set of
all real numbers, it follows that any rational function is only undefined at points where its
denominator is zero.

The domain of a rational function.

Let p and q be polynomial functions so that r(x) �
p(x)
q(x) is a rational function. The

domain of r is the set of all real numbers except those for which q(x) � 0.

Example 5.4.2 Determine the domain of the function r(x) � 5x3+17x2−9x+4
2x3−6x2−8x .

Solution. To find the domain of any rational function, we need to determine where the
denominator is zero. The best way to find these values exactly is to factor the denominator.
Thus, we observe that

2x3 − 6x2 − 8x � 2x(x2 − 3x − 4) � 2x(x + 1)(x − 4).

By the Zero Product Property, it follows that the denominator of r is zero at x � 0, x � −1,
and x � 4. Hence, the domain of r is the set of all real numbers except −1, 0, and 4. □

We note that when it comes to determining the domain of a rational function, the numerator
is irrelevant: all that matters is where the denominator is 0.

Activity 5.4.4. Determine the domain of each of the following functions. In each case,
write a sentence to accurately describe the domain.

a. f (x) � x2 − 1
x2 + 1

b. 1(x) � x2 − 1
x2 + 3x − 4

c. h(x) � 1
x
+

1
x − 1 +

1
x − 2

d. j(x) � (x + 5)(x − 3)(x + 1)(x − 4)
(x + 1)(x + 3)(x − 5)

e. k(x) � 2x2 + 7
3x3 − 12x

f. m(x) � 5x2 − 45
7(x − 2)(x − 3)2(x2 + 9)(x + 1)

5.4.3 Applications of rational functions

Rational functions arise naturally in the study of the average rate of change of a polynomial
function, leading to expressions such as

AV[2,2+h] �
−64h − 16h2

h
.

We will study several subtle issues that correspond to such functions further in Section 5.5.
For now, we will focus on a different setting in which rational functions play a key role.
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In Section 5.3, we encountered a class of problems where a key quantity was modeled by
a polynomial function. We found that if we considered a container such as a cylinder with
fixed surface area, then the volume of the container could be written as a polynomial of a
single variable. For instance, if we consider a circular cylinder with surface area 10 square
feet, then we know that

S � 10 � 2πr2
+ 2πrh

and therefore h �
10−2πr2

2πr . Since the cylinder’s volume is V � πr2h, it follows that

V � πr2h � πr2
(
10 − 2πr2

2πr

)
� r(10 − 2πr2),

which is a polynomial function of r.

What happens if we instead fix the volume of the container and ask about how surface area
can be written as a function of a single variable?

Example 5.4.3 Suppose we want to construct a circular cylinder that holds 20 cubic feet of
volume. How much material does it take to build the container? How can we state the
amount of material as a function of a single variable?

Solution. Neglecting any scrap, the amount of material it takes to construct the container
is its surface area, which we know to be

S � 2πr2
+ 2πrh.

Because we want the volume to be fixed, this results in a constraint equation that enables us
to relate r and h. In particular, since

V � 20 � πr2h,

it follows that we can solve for h and get h �
20
πr2 . Substituting this expression for h in the

equation for surface area, we find that

S � 2πr2
+ 2πr · 20

πr2 � 2πr2
+

40
r
.

Getting a common denominator, we can also write S in the form

S(r) � 2πr3 + 40
r

and thus we see that S is a rational function of r. Because of the physical context of the
problem and the fact that the denominator of S is r, the domain of S is the set of all positive
real numbers. □

Activity 5.4.5. Suppose that we want to build an open rectangular box (that is, with-
out a top) that holds 15 cubic feet of volume. If we want one side of the base to be
twice as long as the other, how does the amount of material required depend on the
shorter side of the base? We investigate this question through the following sequence
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of prompts.
a. Draw a labeled picture of the box. Let x represent the shorter side of the base

and h the height of the box. What is the length of the longer side of the base in
terms of x?

b. Use the given volume constraint to write an equation that relates x and h, and
solve the equation for h in terms of x.

c. Determine a formula for the surface area, S, of the box in terms of x and h.

d. Using the constraint equation from (b) together with your work in (c), write
surface area, S, as a function of the single variable x.

e. What type of function is S? What is its domain?

f. Plot the function S using Desmos. What appears to be the least amount of ma-
terial that can be used to construct the desired box that holds 15 cubic feet of
volume?

5.4.4 Summary

• A rational function is a function whose formula can be written as the ratio of two
polynomial functions. For instance, r(x) � 7x3−5x+16

−4x4+2x3−11x+3 is a rational function.

• Two aspects of rational functions are straightforward to determine for any rational
function. Given r(x) �

p(x)
q(x) where p and q are polynomials, the domain of r is the

set of all real numbers except any values of x for which q(x) � 0. In addition, we can
determine the long-range behavior of r by examining the highest order terms in p and
q:

◦ if the degree of p is less than the degree of q, then r has a horizontal asymptote
at y � 0;

◦ if the degree of p equals the degree of q, then r has a horizontal asymptote at
y �

an
bn
, where an and bn are the leading coefficients of p and q respectively;

◦ and if the degree of p is greater than the degree of q, then r does not have a
horizontal asymptote.

• Two reasons that rational functions are important are that they arise naturally when
we consider the average rate of change on an interval whose length varies and when
we consider problems that relate the volume and surface area of three-dimensional
containers when one of those two quantities is constrained.
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5.4.5 Exercises

1. Find the horizontal asymptote, if it exists, of the rational function below.

1(x) � (−1 − x)(−7 − 2x)
2x2 + 1

2. Compare and discuss the long-run behaviors of the functions below. In each blank,
enter either the constant or the polynomial that the rational function behaves like as
x → ±∞:

f (x) � x3 + 3
x3 − 8

, 1(x) � x2 + 3
x3 − 8

, and h(x) � x4 + 3
x3 − 8

f (x) will behave like the function y � as x → ±∞.

1(x) will behave like the function y � as x → ±∞.

h(x) will behave like the function y � as x → ±∞.

3. Let r(x) � p(x)
q(x) , where p and q are polynomials of degrees m and n respectively.

(a) If r(x) → 0 as x → ∞, then

□ m > n □ m � n □ m < n □ None of the above

(b) If r(x) → k as x → ∞, with k , 0, then

□ m < n □ m > n □ m � n □ None of the above

4. Find all zeros and vertical asymptotes of the rational function

f (x) � x + 6
(x + 9)2 .

(a) The function has zero(s) at x �

(b) The function has vertical asymptote(s) at x �

(c) The function’s long-run behavior is that y → as x → ±∞
(d) On a piece of paper, sketch a graph of this function without using your calculator.

5. Find all zeros and vertical asymptotes of the rational function

f (x) � x2 − 16
−x3 − 16x2 .

(a) The function has x-intercept(s) at x �

(b) The function has y-intercept(s) at y �

(c) The function has vertical asymptote(s) when x �

(d) The function has horizontal asymptote(s) when y �

6. Using the graph of the rational function y � f (x) given in the figure below, evaluate
the limits.
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(a) lim
x→∞

f (x)

(b) lim
x→−∞

f (x)

(c) lim
x→1+

f (x)

(d) lim
x→1−

f (x)

7. The graph below is a vertical and/or horizontal shift of y � 1/x (assume no reflections
or compression/expansions have been applied).

(a) The graph’s equation can be written in the form

f (x) � 1
x + A

+ B

for constants A and B. Based on the graph above, find the values for A and B.

(b) Now take your formula from part (a) and write it as the ratio of two linear polyno-
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mials of the form,
f (x) � Mx + C

x + D
for constants M , C, and D. What are the values of M , C, and D?

(c) Find the exact values of the coordinates of the x- and y-intercepts of the graph.

8. Find all zeros and vertical asymptotes of the rational function

f (x) � x2 − 1
x2 + 1

.

(a) The function has x-intercept(s) at x �

(b) The function has y-intercept(s) at y �

(c) The function has vertical asymptote(s) when x �

(d) The function has horizontal asymptote(s) when y �

9. For each rational function below, determine the function’s domain as well as the exact
value of any horizontal asymptote.

a. f (x) � 17x2 + 34
19x2 − 76

b. 1(x) � 29
53 +

1
x − 2

c. h(x) � 4 − 31x
11x − 7

d. r(x) � 151(x − 4)(x + 5)2(x − 2)
537(x + 5)(x + 1)(x2 + 1)(x − 15)

10. A rectangular box is being constructed so that its base is 1.5 times as long as it is wide.
In addition, suppose that material for the base and top of the box costs $3.75 per square
foot, while material for the sides costs $2.50 per square foot. Finally, we want the box
to hold 8 cubic feet of volume.

a. Draw a labeled picture of the box with x as the length of the shorter side of the
box’s base and h as its height.

b. Determine a formula involving x and h for the total surface area, S, of the box.

c. Use your work from (b) along with the given information about cost to determine
a formula for the total cost, C, oif the box in terms of x and h.

d. Use the volume constraint given in the problem to write an equation that relates
x and h, and solve that equation for h in terms of x.

e. Combine your work in (c) and (d) to write the cost, C, of the box as a function
solely of x.

f. What is the domain of the cost function? How does a graph of the cost function
appear? What does this suggest about the ideal box for the given constraints?
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11. A cylindrical can is being constructed so that its volume is 16 cubic inches. Suppose
that material for the lids (the top and bottom) cost $0.11 per square inch and material
for the “side” of the can costs $0.07 per square inch. Determine a formula for the total
cost of the can as a function of the can’s radius. What is the domain of the function and
why?

Hint. You may find it helpful to ask yourself a sequence of questions like those stated
in Exercise 10).
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5.5 Key features of rational functions

Motivating Questions

• What does it mean to say that a rational function has a “hole” at a certain point, and
what algebraic structure leads to such behavior?

• How do we determine where a rational function has zeros and where it has vertical
asymptotes?

• What does a sign chart reveal about the behavior of a rational function and how do
we develop a sign chart from a given formula?

Because any rational function is the ratio of two polynomial functions, it’s natural to ask
questions about rational functions similar to those we ask about polynomials. With polyno-
mials, it is often helpful to know where the function’s value is zero. In a rational function
r(x) � p(x)

q(x) , we are curious to know where both p(x) � 0 and where q(x) � 0.

Connected to these questions, we want to understand both where a rational function’s out-
put value is zero, as well as where the function is undefined. In addition, from the behavior
of simple rational power functions such as 1

x , we expect that rational functions may not only
have horizontal asymptotes (as investigated in Section 5.4), but also vertical asymptotes. At
first glance, these questions about zeros and vertical asymptotes of rational functions may
appear to be elementary ones whose answers simply depend on where the numerator and
denominator of the rational function are zero. But in fact, rational functions often admit very
subtle behavior that can escape the human eye and the graph generated by a computer.

Preview Activity 5.5.1. Consider the rational function r(x) � x2−1
x2−3x−4 , and let p(x) �

x2 − 1 (the numerator of r(x)) and q(x) � x2 − 3x − 4 (the denominator of r(x)).
a. Reasoning algebraically, for what values of x is p(x) � 0?

b. Again reasoning algebraically, for what values of x is q(x) � 0?

c. Define r(x) in Desmos, and evaluate the function appropriately to find numerical
values for the output of r and hence complete the following tables.

x r(x)
4.1
4.01
4.001
3.9
3.99
3.999

x r(x)
1.1
1.01
1.001
0.9
0.99
0.999

x r(x)
−1.1
−1.01
−1.001
−0.9
−0.99
−0.999

d. Why does r behave the way it does near x � 4? Explain by describing the be-
havior of the numerator and denominator.
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e. Why does r behave the way it does near x � 1? Explain by describing the be-
havior of the numerator and denominator.

f. Why does r behave the way it does near x � −1? Explain by describing the
behavior of the numerator and denominator.

g. Plot r in Desmos. Is there anything surprising or misleading about the graph
that Desmos generates?

5.5.1 When a rational function has a “hole”

Two important features of any rational function r(x) �
p(x)
q(x) are any zeros and vertical as-

ymptotes the function may have. These aspects of a rational function are closely connected
to where the numerator and denominator, respectively, are zero. At the same time, a subtle
related issue can lead to radically different behavior. To understand why, we first remind
ourselves of a few key facts about fractions that involve 0. Because we are working with a
function, we’ll think about fractions whose numerator and denominator are approaching
particular values.

If the numerator of a fraction approaches 0 while the denominator approaches a nonzero
value, then the overall fraction values will approach zero. For instance, consider the se-
quence of values

0.1
0.9 � 0.111111 · · · , 0.01

0.99 � 0.010101 · · · , 0.001
0.999 � 0.001001 · · · .

Because the numerator gets closer and closer to 0 and the denominator stays away from 0,
the quotients tend to 0.

Similarly, if the denominator of a fraction approaches 0 while the numerator approaches a
nonzero value, then the overall fraction increases without bound. If we consider the recip-
rocal values of the sequence above, we see that

0.9
0.1 � 9, 0.99

0.01 � 99, 0.999
0.001 � 999.

Since the denominator gets closer and closer to 0 and the numerator stays away from 0, the
quotients increase without bound.

These two behaviors show how the zeros and vertical asympototes of a rational function
r(x) �

p(x)
q(x) arise: where the numerator p(x) is zero and the denominator q(x) is nonzero,

the function r will have a zero; and where q(x) is zero and p(x) is nonzero, the function will
have a vertical asymptote. What we must be careful of is the special situation where both
the numerator p(x) and q(x) are simultaneously zero. Indeed, if the numerator and denom-
inator of a fraction both approach 0, different behavior can arise. For instance, consider the
sequence

0.2
0.1 � 2, 0.02

0.01 � 2, 0.002
0.001 � 2.
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In this situation, both the numerator and denominator are approaching 0, but the overall
fraction’s value is always 2. This is very different from the two sequences we considered
above. In Example 5.5.1, we explore similar behavior in the context of a particular rational
function.

Example 5.5.1 Consider the rational function r(x) �
x2−1

x2−3x−4 from Preview Activity 5.5.1,
whose numerator is p(x) � x2 − 1 and whose denominator is q(x) � x2 − 3x − 4. Explain
why the graph of r generated by Desmos or another computational device is incorrect, and
also identify the locations of any zeros and vertical asymptotes of r.

Solution. It is helpful with any rational function to factor the numerator and denominator.
We note that p(x) � x2 −1 � (x −1)(x +1) and q(x) � x2 −3x −4 � (x +1)(x −4). The domain
of r is thus the set of all real numbers except x � −1 and x � 4, the set of all points where
q(x) , 0.

Knowing that r is not defined at x � −1, it is natural to study the graph of r near that value.
Plotting the function inDesmos, we get a result similar to the one shown in Figure 5.5.2, which
appears to show no unusual behavior at x � −1, and even that r(−1) is defined. If we zoom
in on that point, as shown in Figure 5.5.3, the technology still fails to visually demonstrate
the fact that r(−1) is not defined. This is because graphing utilities sample functions at a
finite number of points and then connect the resulting dots to generate the curve we see.

-2 2 6 10

-6

-2

2

6

y = r(x)

Figure 5.5.2: A plot of
r(x) � x2−1

x2−3x−4 .

-1

Figure 5.5.3: Zooming in on
r(x) near x � −1.

-1

(−1,0.4)

Figure 5.5.4: How the graph
of r(x) should actually appear
near x � −1.

We know from our algebraic work with the denominator, q(x) � (x + 1)(x − 4), that r is not
defined at x � −1. While the denominator q gets closer and closer to 0 as x approaches −1,
so does the numerator, since p(x) � (x − 1)(x + 1). If we consider values close but not equal
to x � −1, we see results in Table 5.5.5.

x −1.1 −1.01 −1.001
r(x) 0.21

0.51 ≈ 0.4118 0.0201
0.0501 ≈ 0.4012 0.002001

0.005001 ≈ 0.4001

x −0.9 −0.99 −0.999
r(x) −0.19

−0.49 ≈ 0.3878 −0.0199
−0.0499 ≈ 0.3989 −0.001999

−0.004999 ≈ 0.3999

Table 5.5.5: Values of r(x) � x2−1
x2−3x−4 near x � −1.
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5.5 Key features of rational functions

In the table, we see that both the numerator and denominator get closer and closer to 0 as x
gets closer and closer to −1, but that their quotient appears to be getting closer and closer to
y � 0.4. Indeed, we see this behavior in the graph of r, though the graphing utility misses
the fact that r(−1) is actually not defined. A precise graph of r near x � −1 should look
like the one presented in Figure 5.5.4, where we see an open circle at the point (−1, 0.4) that
demonstrates that r(−1) is not defined, and that r does not have a vertical asymptote or zero
at x � −1.

Finally, we also note that p(1) � 0 and q(1) � −6, so at x � 1, r(x) has a zero (its numerator
is zero and its denominator is not). In addition, q(4) � 0 and p(4) � 15 (its denominator is
zero and its numerator is not), so r(x) has a vertical asymptote at x � 4. These features are
accurately represented by the original Desmos graph shown in Figure 5.5.2. □

In the situation where a rational function is undefined at a point but does not have a vertical
asymptote there, we’ll say that the graph of the function has a hole. In calculus, we use limit
notation to identify a hole in a function’s graph. Indeed, having shown in Example 5.5.1 that
the value of r(x) gets closer and closer to 0.4 as x gets closer and closer to −1, we naturally
write lim

x→−1
r(x) � 0.4 as a shorthandway to represent the behavior of r (similar to howwe’ve

written limits involving ∞). This fact, combined with r(−1) being undefined, tells us that
near x � −1 the graph approaches a value of 0.4 but has to have a hole at the point (−1, 0.4),
as shown in Figure 5.5.4. Because we’ll encounter similar behavior with other functions, we
formally define limit notation as follows.

Definition 5.5.6 Let a and L be finite real numbers, and let r be a function defined near x � a,
but not necessarily at x � a itself. If we can make the value of r(x) as close to the number L
as we like by taking x sufficiently close (but not equal) to a, then we write

lim
x→a

r(x) � L

and say that “the limit of r as x approaches a is L”. ♢

The key observations regarding zeros, vertical asymptotes, and holes in Example 5.5.1 apply
to any rational function.

Features of a rational function.

Let r(x) � p(x)
q(x) be a rational function.

• If p(a) � 0 and q(a) , 0, then r(a) � 0, so r has a zero at x � a.

• If q(a) � 0 and p(a) , 0, then r(a) is undefined and r has a vertical asymptote
at x � a.

• If p(a) � 0 and q(a) � 0 and we can show that there is a finite number L such
that

lim
x→a

r(x) � L,

then r(a) is not defined and r has a hole at the point (a , L).¹

¹It is possible for both p(a) � 0 and q(a) � 0 and for r to still have a vertical asymptote at x � a. We explore this
possibility further in Exercise 5.5.4.9.
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Activity 5.5.2. For each of the following rational functions, state the function’s domain
and determine the locations of all zeros, vertical asymptotes, and holes. Provide clear
justification for your work by discussing the zeros of the numerator and denomina-
tor, as well as a table of values of the function near any point where you believe the
function has a hole. In addition, state the value of the horizontal asymptote of the
function or explain why the function has no such asymptote.

a. f (x) � x3 − 6x2 + 5x
x2 − 1

b. 1(x) � 11(x2 + 1)(x − 7)
23(x − 1)(x2 + 4)

c. h(x) � x2 − 8x + 12
x2 − 3x − 18

d. q(x) � (x − 2)(x2 − 9)
(x − 3)(x2 + 4)

e. r(x) � 19(x − 2)(x − 3)2(x + 1)
17(x + 1)(x − 4)2(x − 5)

f. s(x) � 1
x2 + 1

5.5.2 Sign charts and finding formulas for rational functions

Just like with polynomial functions, we can use sign charts to describe the behavior of ra-
tional functions. The only significant difference for their use in this context is that we not
only must include all x-values where the rational function r(x) � 0, but also all x-values at
which the function r is not defined. This is because it is possible for a rational function to
change sign at a point that lies outside its domain, such as when the function has a vertical
asymptote.

Example 5.5.7 Construct a sign chart for the function q(x) �
(x−2)(x2−9)
(x−3)(x−1)2 . Then, graph the

function q and compare the graph and sign chart.

Solution. First, we fully factor q and identify the x-values that are not in its domain. Since
x2 − 9 � (x − 3)(x + 3), we see that

q(x) � (x − 2)(x − 3)(x + 3)
(x − 3)(x − 1)2 .

From the denominator, we observe that q is not defined at x � 3 and x � 1 since those values
make the factors x −3 � 0 or (x −1)2 � 0. Thus, the domain of q is the set of all real numbers
except x � 1 and x � 3. From the numerator, we see that both x � 2 and x � −3 are zeros of
q since these values make the numerator zero while the denominator is nonzero. We expect
that q will have a hole at x � 3 since this x-value is not in the domain and it makes both the
numerator and denominator 0. Indeed, computing values of q for x near x � 3 suggests that

lim
x→3

q(x) � 1.5,

and thus q does not change sign at x � 3.

Thus, we have three different x-values to place on the sign chart: x � −3, x � 1, and x � 2.
We nowanalyze the sign of each of the factors in q(x) � (x−2)(x−3)(x+3)

(x−3)(x−1)2 on the various intervals.
For x < −3, (x − 2) < 0, (x − 3) < 0, (x + 3) < 0, and (x − 1)2 > 0. Thus, for x < −3, the sign
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5.5 Key features of rational functions

of q is − − −
−+ � +

since there are an even number of negative terms in the quotient.

On the interval −3 < x < 1, (x − 2) < 0, (x − 3) < 0, (x + 3) > 0, and (x − 1)2 > 0. Thus, for
these x-values, the sign of q is

− − +

−+ � −.

Using similar reasoning, we can complete the sign chart shown in Figure 5.5.8. A plot of the
function q, as seen in Figure 5.5.9, shows behavior that matches the sign function, as well as
the need to manually identify the hole at (3, 1.5), which is missed by the graphing software.

sign(q)

−−−

−+

+

POS −3

−−+
−+

−

NEG 1

−−+
−+

−

NEG 2

+−+
−+

+

POS

q(x) = (x−2)(x−3)(x+3)
(x−3)(x−1)2

Figure 5.5.8: The sign chart for q.

-4 4

-6

-2

2
y = q(x)

Figure 5.5.9: A plot of q.
In both the sign chart and the figure, we see that q changes sign at each of its zeros, x � −3
and x � 2, and that it does not change as it passes by its vertical asymptote at x � 1. The
reason q doesn’t change sign at the asympotote is because of the repeated factor of (x − 1)2
which is always positive. □

To find a formula for a rational function with certain properties, we can reason in ways that
are similar to our work with polynomials. Since the rational function must have a poly-
nomial expression in both the numerator and denominator, by thinking about where the
numerator and denominator must be zero, we can often generate a formula whose graph
will satisfy the desired properties.

Activity 5.5.3. Find a formula for a rational function that meets the stated criteria as
given by words, a sign chart, or graph. Write several sentences to justify why your
formula matches the specifications. If no such rational function is possible, explain
why.

a. A rational function r such that r has a vertical asymptote at x � −2, a zero at
x � 1, a hole at x � 5, and a horizontal asymptote of y � −3.

b. A rational function u whose numerator has degree 3, denominator has degree 3,
and that has exactly one vertical asymptote at x � −4 and a horizontal asymptote
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Chapter 5 Polynomial and Rational Functions

of y �
3
7 .

c. A rational function w whose formula generates a graph with all of the charac-
teristics shown in Figure 5.5.10. Assume that w(5) � 0 but w(x) > 0 for all other
x such that x > 3.

d. A rational function z whose formula satisfies the sign chart shown in Figure 5.5.11,
and for which z has no horizontal asymptote and its only vertical asymptotes
occur at the middle two values of x noted on the sign chart.

-6 -4 -2 2 4 6

-10

-6

-2

2y = w(x)

Figure 5.5.10: Plot of the
rational function w.

sign(z) +

POS−4

−

NEG−1

+

POS 3

−

NEG 5

−

NEG

Figure 5.5.11: Sign chart for the rational
function z.

e. A rational function f that has exactly two holes, two vertical asymptotes, two
zeros, and a horizontal asymptote.

5.5.3 Summary

• If a rational function r(x) � p(x)
q(x) has the properties that p(a) � 0 and q(a) � 0 and

lim
x→a

r(x) � L,

then r has a hole at the point (a , L). This behavior can occur when there is a matching
factor of (x − a) in both p and q.

• For a rational function r(x) �
p(x)
q(x) , we determine where the function has zeros and

where it has vertical asymptotes by consideringwhere the numerator anddenominator
are 0. In particular, if p(a) � 0 and q(a) , 0, then r(a) � 0, so r has a zero at x � a. And
if q(a) � 0 and p(a) , 0, then r(a) is undefined and r has a vertical asymptote at x � a.

• By writing a rational function’s numerator in factored form, we can generate a sign
chart for the function that takes into account all of the zeros and vertical asymptotes of
the function, which are the only pointswhere the function canpossibly change sign. By
testing x-values in various intervals between zeros and/or vertical asymptotes, we can
determine where the rational function is positive and where the function is negative.
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5.5 Key features of rational functions

5.5.4 Exercises

1. The graph below is a vertical and/or horizontal shift of y � 1/x (assume no reflections
or compression/expansions have been applied).

(a) The graph’s equation can be written
in the form

f (x) � 1
x + A

+ B

for constants A and B. Based on the
graph above, find the values for A and
B.
(b) Now take your formula from part (a)
and write it as the ratio of two linear
polynomials of the form,

f (x) � Mx + C
x + D

for constants M , C, and D. What are the
values of M , C, and D?
(c) Find the exact values of the coordi-
nates of the x- and y-intercepts of the
graph.

2. Find a possible formula for the function graphed below. The x-intercept ismarkedwith
a point located at (1, 0), and the y-intercept is marked with a point located at (0,−0.25).
The asymptotes are y � −1 and x � 4. Give your formula as a reduced rational function.

3. Find a possible formula for the function graphed below. The x-intercepts are marked
with points located at (5, 0) and (−4, 0), while the y-intercept is marked with a point
located at

(
0,− 5

3
)
. The asymptotes are y � −1, x � −3, and x � 4. Give your formula

as a reduced rational function.
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4. Let f (x) � 6x − 6
7x + 4 . Find and simplify f −1(x).

5. Let t be the time in weeks. At time t � 0, organic waste is dumped into a pond. The
oxygen level in the pond at time t is given by

f (t) � t2 − t + 1
t2 + 1

.

Assume f (0) � 1 is the normal level of oxygen.

(a) On a separate piece of paper, graph this function.

(b) What will happen to the oxygen level in the lake as time goes on?

□ The oxygen level will continue to decrease in the long-run.

□ The oxygen level will continue to increase in the long-run.

□ The oxygen level will eventually return to its normal level in the long-run.

□ It cannot be determined based on the given information.

(c) Approximately how many weeks must pass before the oxygen level returns to 80%
of its normal level?

6. For each of the following rational functions, determine, with justification, the exact
locations of all (a) horizontal asymptotes, (b) vertical asymptotes, (c) zeros, and (d)
holes of the function. Clearly show your work and thinking.

a. r(x) � −19(x + 11.3)2(x − 15.1)(x − 17.3)
41(x + 5.7)(x + 11.3)(x − 8.4)(x − 15.1)

b. s(x) � −29(x2 − 16)(x2 + 99)(x − 53)
101(x2 − 4)(x − 13)2(x + 104)
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c. u(x) � −71(x2 − 13x + 36)(x − 58.4)(x + 78.2)
83(x + 58.4)(x − 78.2)(x2 − 12x + 27)

7. Find a formula for a rational function that meets the stated criteria, with justification.
If no such formula is possible, explain why.

a. A rational function r(x) in the form r(x) �
k

x−a + b so that r has a horizontal
asymptote of y � − 3

7 , a vertical asymptote of x �
5
2 , and r(0) � 4.

b. A rational function s(x) that has no horizontal asymptote, has zeros at x � −5 and
x � 3, has a single vertical asymptote at x � −1, and satisfies limx→∞ s(x) � −∞
and limx→−∞ s(x) � +∞.

c. A rational function u(x) that is positive for x < −4, negative for −4 < x < −2,
negative for −2 < x < 1, positive for 1 < x < 5, and negative for x > 5. The only
zeros of u are located at x � −4 and x � −2. In addition, u has a hole at x � 4.

d. A rational function w(x) whose graph is shown in Figure 5.5.12.

-2 2 4 6 8 10

-6

-4

-2

2

4

6

y = w(x)

Figure 5.5.12: A plot of the rational function w.
8. Graph each of the following rational functions and decidewhether or not each function

has an inverse function. If an inverse function exists, find its formula. In addition, state
the domain and range of each function you consider (the original function as well as
its inverse function, if the inverse function exists).

a. r(x) � − 3
x − 4 + 5

b. s(x) � 4 − 3x
7x − 2

c. u(x) � 2x − 1
(x − 1)2

d. w(x) � 11
(x + 4)3 − 7
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9. For each of the following rational functions, identify the location of any potential hole
in the graph. Then, create a table of function values for input values near where the
hole should be located. Use your work to decide whether or not the graph indeed has
a hole, with written justification.

a. r(x) � x2 − 16
x + 4

b. s(x) � (x − 2)2(x + 3)
x2 − 5x − 6

c. u(x) � (x − 2)3(x + 3)
(x2 − 5x − 6)(x − 7)

d. w(x) � x2 + x − 6
(x2 + 5x + 6)(x + 3)

e. True or false: given r(x) � p(x)
q(x) , if p(a) � 0 and q(a) � 0, then r has a hole at x � a.

10. In the questions that follow, we explore the average rate of change of power functions
on the interval [1, x]. To begin, let f (x) � x2 and let A(x) be the average rate of change
of f on [1, x].

a. Explain why A is a rational function of x.

b. What is the domain of A?

c. At the point where A is undefined, does A have a vertical asymptote or a hole?
Justify your thinking clearly.

d. What can you say about the average rate of change of f on [1, x] as x gets closer
and closer (but not equal) to 1?

e. Now let 1(x) � x3 and B(x) be the average rate of change of B on [1, x]. Respond
to prompts (a) - (d) but this time for the function B instead of A.

f. Finally, let h(x) � x3 and C(x) be the average rate of change of C on [1, x]. Respond
to prompts (a) - (d) but this time for the function C instead of A.
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circular functions, 110
composite function, 62
continuously compounded interest, 183
cosecant function, 241
cosine function, 135
cotangent function, 241

Dolbear’s Law, 12
double angle identity, 249

e, 178
exponential function
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doubling time, 198
exponential decay, 155
growth factor, 155
growth rate, 155
with the natural base, e, 178

exponential growth
introduction, 154

function
codomain, 14
definition, 14
dependent variable, 14
domain, 14
exponential, 155
graph, 20
independent variable, 14
introduction to, 13
notation, 14
periodic, 114
range, 14

function arithmetic
difference of, 100
product of, 100
quotient of, 100
sum of, 100

function trends
concave down, 57
concave up, 57
decreasing, 30
increasing, 30

fundamental trigonometric identity, 208

gravity, 55
gravitational constant, 55

harmonic oscillator, 114
horizontal asymptote, 255

increasing
without bound, 166

increasing without bound, 254
infinity, 167
inverse function

definition, 73
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arcsine, 229
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line
y-intercept, 41

linear function, 39
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logarithm
base 10
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base-b

definition, 190
natural

definition, 187
logistic function, 202

natural base, e, 178
Newton’s Law of Cooling, 169

parabola, 53
period, 114
point-slope form, 40
polynomial

coefficients, 262
degree, 262
terms, 262
zero, 262
zero of multiplicity n, 268

polynomial function, 262
zero, 263

power function, 256
Pythagorean Theorem, 208

quadratic function, 51
x-intercepts, 52
y-intercept, 52

radian, 125
radian measure

definition of, 125
rational function, 284

hole, 297
rectangular box

volume, 276

secant function, 241
sign chart, 265
similar triangles, 209
sine function, 134
sinusoidal function

anchor point, 144
sum of two angles identity, 249
surface area

cylinder, 277

tangent function, 217
transformation of a function, 85
trigonometry, 208
turning point, 263

unit circle, 123

vertical asymptote, 255
volume

box, 276
cone, 4
cylinder, 276

Zero Product Property, 265
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