
To Ellen, Joshua and Layla

1

Preface

Today, machine learning is being applied to a growing variety of problems in
a bewildering variety of domains. When doing machine learning, a fundamen-
tal challenge is connecting the abstract mathematics of a particular machine
learning technique to a concrete, real-world problem. This book tackles this
challenge through model-based machine learning. Model-based machine learn-
ing is an approach which focuses on understanding the assumptions encoded in
a machine learning system, and their corresponding impact on the behaviour
of the system. The practice of model-based machine learning involves separat-
ing out these assumptions being made about a real-world situation from the
detailed mathematics of the algorithms needed to do the machine learning.
This approach makes it easier to both understand the behaviour of a machine
learning system and to communicate this to others. Much more detail on what
model-based machine learning is and how it can help are described in the in-
troduction chapter entitled “How can machine learning solve my problem?”.

This book is unusual for a machine learning text book in that we do not
review categories of algorithms or techniques. Instead, we introduce all of the
key ideas through case studies involving real-world applications. Case studies
play a central role because it is only in the context of applications that it makes
sense to discuss modelling assumptions. Each case study chapter introduces a
real-world application and solves it using a model-based approach. In addition,
a first tutorial chapter explores a fictional problem involving a murder mystery.

Only a few building blocks are needed to
construct an infinite variety of models.

Each chapter also serves to introduce a
variety of machine learning concepts, not
as abstract ideas, but as concrete tech-
niques motivated by the needs of the appli-
cation. You can think of these concepts as
the building blocks for constructing mod-
els. Although you will need to invest some
time to understand these concepts fully,
you will soon discover that a huge variety
of models can be constructed from a rela-
tively small number of building blocks. By
working through the case studies in this
book, you will learn what these compo-
nents are and how to use them. The aim
is to give you sufficient appreciation of the

3

4 ■ Model-Based Machine Learning

power and flexibility of model-based approach to allow you to solve your ma-
chine learning problem.

Who this book is for

This book is intended for any technical person who wants to use machine
learning to solve a real-world problem or who wants to understand why an
existing machine learning system behave the way it does. The focus of most of
the book is on designing models to solve problems arising in real case studies.
The final chapter “How to read a model” looks instead at using model-based
machine learning to understand existing machine learning techniques.

Some more mathematically minded readers will want to understand the
details of how models are turned into runnable algorithms. We have separated
these parts of the book, which require more advanced mathematics, into deep-
dive sections. Deep-dive sections are marked with panels like the one below.
These sections are optional – you can read the book without them.
Inference deep-dive
Technical sections which dive into the details of algorithms will be marked
like this. If you just want to focus on modelling, you can skip these sections.

How to read this book

Each case study in this book describes a journey from problem statement to
solution. You probably do not want to follow this journey in a single sitting. To
help with this, each case study is split into sections – we recommend reading
a section at a time and pausing to digest what you have learned at the end of
each section. To help with this, the machine learning concepts introduced in a
section will be highlighted like this and will be reviewed in a small glossary at
the end of each section. We aim to provide enough details of each concept to
allow the case studies to be understood, along with links to external sources,
such as Bishop [2006], where you can get more details if you are interested in
a particular topic.

Each introductory section of the book also includes a self assessment, con-
sisting of hands-on, practical exercises. You can use these exercises to test your
own understanding of the concepts introduced in the corresponding section.
Rather than being purely mathematical exercises, these are generally more
open-ended assessments with the aim of getting into the right mindset for
thinking about assumptions and machine learning model development. Most
exercises are designed to allow self-checking, for example by comparing the
results of one exercise with another. For some exercises, it can be helpful to
work through them with a partner, so you can compare notes on your answers
and discuss any assumptions you have made.

Preface ■ 5

Online book and code

This book has an online version at mbmlbook.com which complements the
paper version and has additional material and functionality. For example, the
online format enables interactive model diagrams, popup definitions of terms
and allows the data behind any plot to be downloaded. The online version
also includes contact details for providing feedback and reporting errata, and
will always be up-to-date with corrections.

In addition, all the results in the book can be reproduced using the ac-
companying source code. This code is open source and is freely available at
github.com/dotnet/mbmlbook.

Acknowledgements

First and foremost, I would like to thank the major contributors without whom
this book would not have happened. Christopher Bishop helped develop the
initial concept and structure for this book and also contributed several chap-
ters. Each case study chapter was a significant machine learning project in
itself, requiring the development of a model to solve a genuine real-world prob-
lem – Tom Diethe, John Guiver and Yordan Zaykov took on these projects:
gathering data, writing code, running experiments, solving problems and pro-
ducing all the results that you see in each chapter. They all also provided
detailed and thoughtful discussion and feedback on the chapters themselves.

The staff at CRC Press have been hugely supportive and helpful in the final
stages of preparing this book for publication. I’d particularly like to thank my
editors, first John Kimmel and later Lara Spieker for their unwavering support
in guiding this book home.

I am grateful to Microsoft for giving me the freedom to work on this
book, as well as providing the stimulating research environment which has al-
lowed me to develop my machine learning skills and understanding for the last
twenty years. My Microsoft colleagues have also been invaluable in providing
detailed feedback on many aspects of this book. In Cambridge, Tom Minka,
Sebastian Blohm, John Bronskill, Andy Gordon, Sam Webster, Alex Spen-
gler, Andrew Fitzgibbon, Elena Pochernina, Matteo Venanzi, Boris Yangel,
Jian Li and Jonathan Tims have all provided valuable discussion and feed-
back on early drafts. I want particularly to thank Pashmina Cameron for her
very detailed and thoughtful feedback which really helped improve the quality
and clarity of many chapters. More widely across Microsoft, Jim Edelen, Alex
Wetmore, Tyler Gill, Max Bovykin, Fedor Zhdanov, Li Deng, Michael Shel-
ton, Emmanuel Gillain and Bahar Bina have provided very useful commentary
especially on the early chapters and on the exercises.

Outside of Microsoft, I am indebted to Angela Simpson and Adnan Cus-
tovic for their collaboration on the project which led to the Chapter 6 case
study on childhood asthma, and also for their comments on that chapter.
Other collaborators in the healthcare AI space, Damian Sutcliffe and Andres
Floto, have also given much valuable feedback on this chapter and others.

6 ■ Model-Based Machine Learning

Thanks also to Dr Sarah Supp for kindly contributing her photo of baked
goods to inspire novel data visualisations in Chapter 2.

The online version of this book was launched early on in the writing process
and has been invaluable in gathering feedback throughout. I owe a debt of
gratitude to Nick Duffield for the graphic design of the online version and
to Andy Slowey, Nathan Jones, Ian Kelly for keeping it up and running over
the years. I am also hugely grateful to Dmitry Kats and Alexander Novikov
for their hard work in open sourcing the accompanying code, and for making
substantial improvements to it in the process.

Very many online readers have corrected typos and provided feedback,
questions and positive comments, all of which has been immensely help-
ful and encouraging. For taking the time to pause reading and write
back, I’d like to thank: Yousry Abdallah, Marius Ackerman, Tauheedul
Ali, Ali Arslan, Luca Baldassarre, Chethan Bhateja, Marcus Blankenship,
Glen Bojsza, Subhash Bylaiah, Aurelien Chauvey, Joh Dokler, Vladislavs
Dovgalecs, Peter Dulimov, Daniel Emaasit, Gordon Erlebacher, Hon Fai
Choi, Tavares Ford, Eric Fung, Shreyas Gite, Chiraag Gohel, Craig Gua,
Guy Hall, Jonathan Holden, Veeresh Inginshetty, Mohammed Jalil, Lin
Jia, Brett Jones, Oleg Karandin, Joakim Grahl Knudsen, Veysel Kocaman,
Michael Landis, John Lataire, Josh Lawrence, Dustin Lee, Vincent Lefoulon,
Ben Lefroy, Mark Legters, Martina Lutterová Štúrova, Andrew MacGinitie,
Tegan Maharaj, John Marino, Kyli McKay-Bishop, Arthur Mota Gonçalves,
Moritz Münst, Takuya Nakazato, Hiske Overweg, Francisco Pereira, Ben-
jamin Poulain, Venkat Ramakrishnan, Martin Roa Villescas, Marwan Sabih,
Hammad Saleem, Lucian Sasu, Yurii Shevchuk, Sphiwe Skhosana, Vivek
Srinivasan, David Steinar Asgrimsson, Gijs Stoeldraaijers, Agnieszka Szefer,
Yousuke Takada, Matthew E. Taylor, Martin Thøgersen, Udit Tidu, Levente
Torok, Benjamin Tran Dinh, Tavi Truman, Edderic Ugaddan, Ron Williams,
Ted Willke, Marat Zaynutdinov and Mark Zhukovsky.

Finally, my deepest gratitude to my wife Ellen for her unflagging support
and inspiration during the many years it has taken to write this book.

Contents

Preface 3

How can machine learning solve my problem? 1

Chapter 1 ■ A Murder Mystery 7

1.1 INCORPORATING EVIDENCE 14

1.2 UPDATING OUR BELIEFS 20

1.2.1 Two rules for working with joint probabilities 21

1.2.2 Inference using the joint distribution 23

1.3 A MODEL OF A MURDER 28

1.3.1 Inference without computing the joint distribution 31

1.4 EXTENDING THE MODEL 37

1.4.1 Incremental inference 40

Chapter 2 ■ Assessing People’s Skills 45

2.1 A MODEL IS A SET OF ASSUMPTIONS 48

2.1.1 Questioning our assumptions 54

2.2 TESTING OUT THE MODEL 57

2.2.1 Doing inference by hand 57

2.2.2 Doing inference by passing messages on the graph 62

2.2.3 Using belief propagation to test out the model 68

2.3 LOOPINESS 73

2.3.1 Loopy belief propagation 74

2.3.2 Applying loopy belief propagation to our model 77

2.4 MOVING TO REAL DATA 82

2.4.1 Visualising the data 83

2.4.2 A factor graph for the whole test 86

7

8 ■ Contents

2.4.3 Our first results 88

2.5 DIAGNOSING THE PROBLEM 92

2.5.1 Checking the inference algorithm 92

2.5.2 Working out what is wrong with the model 95

2.6 LEARNING THE GUESS PROBABILITIES 99

2.6.1 Representing uncertainty in continuous values 99

2.6.2 Measuring progress 104

2.6.3 A different way of measuring progress 107

2.6.4 Finishing up 109

Interlude: the machine learning life cycle 115

Chapter 3 ■ Meeting Your Match 117

3.1 MODELLING THE OUTCOME OF GAMES 120

3.1.1 Modelling how well someone plays 121

3.1.2 Computing the probability of winning 126

3.2 INFERRING THE PLAYERS’ SKILLS 132

3.2.1 Modelling skills 132

3.2.2 Inference in the TrueSkill model 135

3.2.3 A problem with using exact inference 139

3.3 A SOLUTION: EXPECTATION PROPAGATION 146

3.3.1 Applying expectation propagation 151

3.3.2 Multiple games 153

3.4 EXTENSIONS TO THE CORE MODEL 159

3.4.1 What if a game can end in a draw? 159

3.4.2 What if we have more than two players in a game? 161

3.4.3 What if the games are played by teams? 164

3.5 ALLOWING THE SKILLS TO VARY 168

3.5.1 Reproducing the problem 168

3.5.2 The final model 172

Chapter 4 ■ Uncluttering Your Inbox 175

4.1 COLLECTING AND MANAGING EMAIL DATA 177

4.1.1 Learning from confidential data 178

4.2 A MODEL FOR CLASSIFICATION 182

Contents ■ 9

4.2.1 A one-feature classification model 183

4.3 MODELLING MULTIPLE FEATURES 192

4.3.1 Features are part of the model 195

4.4 DESIGNING A FEATURE SET 199

4.4.1 Features with many states 199

4.4.2 Numeric features 201

4.4.3 Features with many, many states 202

4.4.4 An initial feature set 205

4.5 EVALUATING AND IMPROVING THE FEATURE SET 207

4.5.1 Parallel and sequential schedules 207

4.5.2 Visualising the learned weights 208

4.5.3 Evaluating reply prediction 210

4.5.4 Understanding the user’s experience 213

4.5.5 Improving the feature set 217

4.6 LEARNING AS EMAILS ARRIVE 222

4.6.1 Modelling a community of users 223

4.6.2 Solving the cold start problem 227

4.6.3 Final testing and changes 232

Chapter 5 ■ Making Recommendations 237

5.1 LEARNING ABOUT PEOPLE AND MOVIES 239

5.1.1 Characterizing movies 239

5.1.2 A model of a trait 241

5.2 MULTIPLE TRAITS AND MULTIPLE PEOPLE 245

5.2.1 Learning from many people at once 249

5.3 TRAINING OUR RECOMMENDER 253

5.3.1 Getting to know our data 253

5.3.2 Training on MovieLens data 254

5.4 OUR FIRST RECOMMENDATIONS 259

5.4.1 Evaluating our predictions 260

5.4.2 How many traits should we use? 262

5.5 MODELLING STAR RATINGS 264

5.5.1 Results with star ratings 266

5.6 ANOTHER COLD START PROBLEM 271

5.6.1 Adding features to our model 274

10 ■ Contents

5.6.2 Results with features 277

5.6.3 Final thoughts 278

Chapter 6 ■ Understanding Asthma 281

6.1 A MODEL OF ALLERGIES 283

6.1.1 Modelling test results 284

6.1.2 Modelling tests through time 286

6.1.3 Completing the model 288

6.1.4 Reviewing our assumptions 289

6.2 TRYING OUT THE MODEL 296

6.2.1 Working with missing data 296

6.2.2 Some initial results 299

6.3 COMPARING ALTERNATIVE MODELS 305

6.3.0.1 Model where the drug had no effect 306

6.3.0.2 Model where the drug did have an effect 307

6.3.0.3 Selecting between the two models 307

6.3.1 Comparing the two models using Bayesian model
selection 309

6.3.1.1 Computing the evidence for the ‘no ef-
fect’ model 309

6.3.1.2 Computing the evidence for the ‘has ef-
fect’ model 311

6.3.1.3 Computing the Bayes factor for the ‘has
effect’ model over the ‘no effect’ model 312

6.4 MODELLING WITH GATES 315

6.4.1 Using gates for model selection 317

6.4.2 Expectation propagation in factor graphs with
gates 317

6.4.2.1 Adding in gates 318

6.5 DISCOVERING SENSITIZATION CLASSES 327

6.5.1 Testing the model with two classes 328

6.5.2 Exploring more sensitization classes 329

Chapter 7 ■ Harnessing the Crowd 337

7.1 A MODEL OF A CROWD WORKER 340

Contents ■ 11

7.1.1 A simpler setting 342

7.1.2 Using more than two labels 345

7.1.3 Incorporating crowd worker labels 347

7.1.4 Completing the model 348

7.2 TRYING OUT THE WORKER MODEL 352

7.3 CORRECTING FOR WORKER BIASES 357

7.3.1 Evaluating our biased worker model 359

7.3.2 Comparing more and less flexible models 362

7.4 COMMUNITIES OF WORKERS 364

7.4.1 Results of the community model 366

7.4.2 Results with less training data 368

7.5 MAKING USE OF THE TWEETS 370

7.5.1 Results with words 372

7.5.2 Wrapping up 374

Chapter 8 ■ How to Read a Model 377

8.1 LATENT DIRICHLET ALLOCATION 379

8.1.1 Exploring the assumptions in LDA 380

8.1.2 Extensions to LDA 383

8.2 DECISION TREE 385

8.2.1 Factor graph for a decision tree 385

8.2.2 What assumptions are being made? 388

8.2.3 Decision forest 389

8.3 PRINCIPAL COMPONENT ANALYSIS 392

8.3.1 Computing the principal components 392

8.3.2 A factor graph for PCA 393

8.3.3 The assumptions built in to PCA 395

8.3.4 Extensions to PCA 397

8.4 K-MEANS CLUSTERING 400

8.4.1 The k-means algorithm 400

8.4.2 A model for k-means 401

8.4.3 Some hidden assumptions in k-means 403

8.4.4 Problems with k-means 403

Afterword 409

12 ■ BIBLIOGRAPHY

Bibliography 411

How can machine learning

solve my problem?

As machine learning researchers, there’s a question that we get asked in some
form almost every day:

“How can machine learning solve my problem?”

In this book we answer this question by example. We do not just list ma-
chine learning techniques and concepts – instead we describe a series of case
studies, all the way through from problem statement to working solution. Ma-
chine learning concepts are explained as they arise in the context of solving
each problem. The case studies we present are all real examples from within
Microsoft, along with an initial case study which introduces some core con-
cepts. We also look at real problems encountered during each case study, how
they were detected, how they were diagnosed and how they were overcome.
The aim is to explain not just what machine learning methods are, but also
how to create, debug and evolve them to solve your problem.

How does a model-based approach help?

When trying to solve a problem using machine learning, the fundamental
challenge is to connect the abstract mathematics of machine learning to the
concrete, real world problem domain. In this book we apply an approach
called model-based machine learning. which focuses on understanding
this connection. This understanding then helps with developing effective ma-
chine learning systems, interpreting their behaviour and solving the various
problems that arise during the process.

The core idea at the heart of model-based machine learning is that all
the assumptions about the problem domain are made explicit in the form
of a model. In fact, a model is just made up of this set of assumptions,
expressed in a precise mathematical form. These assumptions effectively build
up a description of the world which can then be used to learn or reason about
it. For example, in the next chapter we build a model to help us solve a simple
murder mystery. The assumptions of the model include the list of suspects,
the possible murder weapons, and the tendency for particular weapons to be
preferred by different suspects.

In model-base machine learning, the model is then used to create a bespoke

1

2 ■ Model-Based Machine Learning

algorithm to answer a particular question about the problem domain, such
as making a prediction or performing some reasoning. Model-based machine
learning can be applied to pretty much any problem, and its general-purpose
approach means you don’t need to learn a huge number of machine learning
algorithms and techniques.

So why do the assumptions of the model play such a key role? Well it
turns out that machine learning cannot generate solutions purely from data
alone. There are always assumptions built into any machine learning algo-
rithm, although sometimes these assumptions are far from explicit. Different
algorithms correspond to different sets of assumptions. In cases when the as-
sumptions are unclear, the only way to decide which algorithm will give the
best results is to try each in turn. This is time-consuming and inefficient, and
it requires software implementations of all of the algorithms being compared.
And if none of the algorithms tried gives good results, it is even harder to
work out how to create a better algorithm.

Models versus algorithms

Let’s look more closely at the relationship between models and algorithms. We
can think of a machine learning algorithm as a monolithic box which takes in
data and produces results. The algorithm must necessarily make assumptions,
since it is these assumptions that distinguish a particular algorithm from any
other. However, given just the algorithm, those assumptions are implicit and
opaque.

Now consider the model-based approach. The model comprises the set
of assumptions we are making about the problem domain. To get from the
model to a set of predictions we need to take the data and compute those
variables whose values we wish to know. This computational process is called
inference. There are several techniques available for doing inference, as we
shall discuss during the course of this book. The combination of the model
and the inference procedure together define a machine learning algorithm, as
illustrated in Figure 1.

Although there are various choices for the inference method, by decoupling
the model from the inference we are able to apply the same inference method
to a wide variety of models. To illustrate this point, every single case study in
this book will be solved using just one inference method.

Model-based machine learning can be used to do any perform machine
learning task, such as classification (Chapter 4) or clustering (Chapter 6),
whilst providing additional insight and control over how these tasks are per-
formed. Solving these tasks using model-based machine learning provides a
way to handle extensions to the task or to improve accuracy, by making
changes to the model – we will look at an example of this in Chapter 4.
Additionally, the assumptions you are making about the problem domain are
laid out clearly in the model, so it is easier to work out why one model works
better than another, to communicate to someone else what a model is doing,

Introduction ■ 3

Machine learning algorithm

Model
(application specific)

Inference method
(generic)

A S S U M P T I O N S

FIGURE 1: In the model-based view of machine learning, a custom algorithm
is created by combining a model and an inference method. Here the coloured
shapes within the model represent the assumptions comprising that specific
model. Changes to the assumptions give rise to different machine learning
algorithms, even when the inference method is kept fixed.

and to understand what’s happening when things go wrong. Using models also
makes it easier to share other people’s solutions in order to adapt, extend, or
combine them.

An example: deep learning

In recent years, deep learning has become the dominant approach to machine
learning to such an extent that, to many people, deep learning is machine
learning. What is less well known is that deep learning is an example of model-
based machine learning, where the model being used is a neural network.
Assumptions about the problem domain are encoded in the architecture of the
neural network and in the choice of activation function for the neurons. No
matter what neural network model is chosen, the same inference methods can
be applied. For example, a neural network is usually trained using some kinds
of stochastic gradient descent (SGD) method. Combining a particular
neural network with SGD effectively gives a custom algorithm for training to
solve a particular machine learning problem.

Figure 2 illustrates how deep learning has made use of model-based ma-
chine learning. One of the first breakthroughs in deep learning was when deep
neural networks were used for object recognition in images [Krizhevsky et al.,
2012]. The particular architecture of neural network chosen for this task en-
coded assumptions about the nature of objects in images – for example, that

4 ■ Model-Based Machine Learning

Model
neural network

A S S U M P T I O N S

Inference
SGD

Object recognition

(a)

Model
neural network

A S S U M P T I O N S

Inference
SGD

Speech recognition

(b)

Model
neural network

A S S U M P T I O N S

Inference
SGD

Machine translation

(c)

FIGURE 2: In deep learning, different neural network models encode different
assumptions about the task they are used for, illustrated here as different
icons within each model. For example, the architecture of a neural network
for object recognition encodes the assumption that objects look similar no
matter where in the image they appear. Although the neural network models
are different for different tasks, the same inference methods can be applied.
Here, stochastic gradient descent (SGD) can be applied to train any of these
models. Since the models are similar and the inference methods are the same,
deep learning can be rapidly applied to new problem domains.

objects look similar no matter where in the image they appear. Combined
with a suitable inference method, this gave a custom algorithm for object
recognition which achieved unprecedented accuracy. For speech recognition
this assumption does not make sense and so different architectures were used
which made more appropriate assumptions – for example, that a particular
word may be spoken quickly or slowly. However, other assumptions encoded
in the form of the neural network were retained, since they are broadly ap-
plicable to many problem domains. The ability to retain many aspects of the
neural network while making targeted changes has allowed deep learning to be
applied to many different application areas relatively quickly , including ma-
chine translation [Sutskever et al., 2014]. Arguably, it is this ability, building
on its model-based foundations, that has enabled the deep learning revolution.

Introduction ■ 5

Tools for model-based machine learning

The decomposition of an algorithm into a model and a separate inference
method has another powerful consequence. It becomes possible to create a
software framework which will generate the machine learning algorithm au-
tomatically, given only the definition of the model and a choice of inference
method. This allows the applications developer to focus on the creation of the
model, which is domain-specific, and frees them from needing to be an expert
on the inner workings of the inference procedure.

For more than fifteen years we have been working on such a software
framework at Microsoft Research, called Infer.NET [Minka et al., 2014].
Because a model consists simply of a set of assumptions it can be expressed
in very compact code, which is relatively easy to understand and modify. The
corresponding code for the algorithm, which is generally much more complex,
is then produced automatically. All of the models in this book were created
using Infer.NET, and the corresponding model source code is available online.
However, these solutions could equally be implemented by hand or by using
an alternative model-based framework – they are not specific to Infer.NET.
Examples of alternative software frameworks that implement the model-based
machine learning philosophy include BUGS [Lunn et al., 2000] and Stan [Stan
Development Team, 2014].

As well as these general-purpose software frameworks, there has been enor-
mous effort put in developing software specifically for neural network models,
such as Tensorflow [Abadi et al., 2016] and PyTorch [Paszke et al., 2019]. Such
frameworks embody the model-based machine learning approach by allowing
the neural network to be described through a model description, such as in an
ONNX file [Bai et al., 2019]. In this way, a custom neural network model can
be trained or applied automatically, by any of the range of tools that support
the ONNX format. This portability and ease-of-use are consequences of the
model-based approach to machine learning.

Now that we have explained the concept of model-based machine learning,
let’s see an example of it being used. On to the first case study!

REVIEW OF CONCEPTS

model-based machine learning An approach to machine learning where
all the assumptions about the problem domain are made explicit in the form
of a model. This model is then used to create a model-specific algorithm to
learn or reason about the domain. The algorithm creation part of this process
can be automated.

model A set of assumptions about a problem domain, expressed in a precise
mathematical form, that is used to create a machine learning solution.

algorithm A series of instructions used to solve a problem or perform a

6 ■ Model-Based Machine Learning

computation. Usually an algorithm is applied to some input data to produce
some output.

inference The process of using a machine learning model to perform a task
given some data. For example, inference may be applied to a model to make
predictions or to learn from, or reason about, data.

deep learning An approach to machine learning which makes use of neural
network models with many layers.

stochastic gradient descent A common inference method for training a
neural network model.

Infer.NET A software framework developed at Microsoft Research Cam-
bridge which can do model-based machine learning automatically given a
model definition. Available for download at dotnet.github.io/infer.

CHA PT E R 1

A Murder Mystery

As the clock strikes midnight in the Old Tudor Mansion, a raging
storm rattles the shutters and fills the house with the sound of
thunder. The dead body of Mr Black lies slumped on the floor of
the library, blood still oozing from the fatal wound. Quick to arrive
on the scene is the famous sleuth Dr Bayes, who observes that
there were only two other people in the Mansion at the time of the
murder. So who committed this dastardly crime? Was it the fine
upstanding pillar of the establishment Major Grey? Or was it the
mysterious and alluring femme fatale Miss Auburn?

We begin our study of model-based machine
learning by investigating a murder. Although
seemingly simple, this murder mystery will in-
troduce many of the key concepts that we will
use throughout the book. You can reproduce all
results in this chapter for yourself using the com-
panion source code [Diethe et al., 2019].

The goal in tackling this mystery is to work
out the identity of the murderer. Having only just
discovered the body, we are very uncertain as
to whether the murder was committed by Miss
Auburn or Major Grey. Over the course of inves-
tigating the murder, we will use clues discovered
at the crime scene to reduce this uncertainty as
to who committed the murder.

Immediately we face our first challenge, which is that we have to be able
to handle quantities whose values are uncertain. In fact the need to deal
with uncertainty arises throughout our increasingly data-driven world. In most
applications, we will start off in a state of considerable uncertainty and, as we
get more data, become increasingly confident. In a murder mystery, we start
off very uncertain who the murderer is and then slowly get more and more
certain as we uncover more clues. Later in the book, we will see many more

7

8 ■ Model-Based Machine Learning

(a) Major Grey (b) Miss Auburn

FIGURE 1.1: Is the murderer Major Grey or Miss Auburn? Probabilities allow
us to express how certain we are that a particular suspect is the murderer.

examples where we need to represent uncertainty: when two players play each
other in Xbox live it is more likely that the stronger player will win, but this
is not guaranteed; we can be fairly sure that a user will reply to a particular
email but we can never be certain.

Consequently, we need a principled framework for quantifying uncertainty
which will allow us to create applications and build solutions in ways that
can represent and process uncertain values. Fortunately, there is a simple
framework for manipulating uncertain quantities which uses probability to
quantify the degree of uncertainty. Many people are familiar with the idea of
probability as the frequency with which a particular event occurs. For example,
we might say that the probability of a coin landing heads is 50% which means
that in a long run of flips, the coin will land heads approximately 50% of the
time. In this book we will be using probabilities in a much more general sense
to quantify uncertainty, even for situations, such as a murder, which occur
only once.

Let us apply the concept of probability to our murder mystery. The prob-
ability that Miss Auburn is the murderer can range from 0% to 100%, where
0% means we are certain that Miss Auburn is innocent, while 100% means
we are certain that she committed the murder. We can equivalently express
probabilities on a scale from 0 to 1, where 1 is equivalent to 100%. From what
we know about our two characters, we might think it is unlikely that someone
with the impeccable credentials of Major Grey could commit such a heinous
crime, and therefore our suspicion is directed towards the enigmatic Miss
Auburn. Therefore, we might assume that the probability that Miss Auburn
committed the crime is 70%, or equivalently 0.7.

To express this assumption, we need to be precise about what this 70%

A Murder Mystery ■ 9

probability is referring to. We can do this by representing the identity of the
murderer with a random variable – this is a variable (a named quantity)
whose value we are uncertain about. We can define a random variable called
murderer which can take one of two values: it equals either Auburn or Grey.
Given this definition of murderer, we can write our 70% assumption in the
form

P (murderer = Auburn) = 0.7 (1.1)

where the notation P () denotes the probability of the quantity contained
inside the brackets. Thus equation (1.1) can be read as “the probability that
the murderer was Miss Auburn is 70%”. Our assumption of 70% for the prob-
ability that Auburn committed the murder may seem rather arbitrary – we
will work with it for now, but in the next chapter we shall see how such
probabilities can be learned from data.

We know that there are only two potential culprits and we are also assum-
ing that only one of these two suspects actually committed the murder (in
other words, they did not act together). Based on this assumption, the prob-
ability that Major Grey committed the crime must be 30%. This is because
the two probabilities must add up to 100%, since one of the two suspects must
be the murderer. We can write this probability in the same form as above:

P (murderer = Grey) = 0.3. (1.2)

We can also express the fact that the two probabilities add up to 1.0:

P (murderer = Grey) + P (murderer = Auburn) = 1. (1.3)

This is an example of the normalization constraint for probabilities, which
states that the probabilities of all possible values of a random variable must
add up to 1.

If we write down the probabilities for all possible values of our random
variable murderer, we get:

P (murderer = Grey) = 0.3

P (murderer = Auburn) = 0.7. (1.4)

Written together this is an example of a probability distribution, because
it specifies the probability for every possible state of the random variable
murderer. We use the notation P (murderer) to denote the distribution over
the random variable murderer. This can be viewed as a shorthand notation
for the combination of P (murderer = Auburn) and P (murderer = Grey).
As an example of using this notation, we can write the general form of the
normalization constraint: ∑

murderer

P (murderer) = 1 (1.5)

where the symbol ‘
∑

’ means ‘sum’ and the subscript ‘murderer’ indicates

10 ■ Model-Based Machine Learning

that the sum is over the states of the random variable murderer, i.e. Auburn
and Grey. Using this notation, the states of a random variable do not need to
be listed out – very useful if there are a lot of possible states!

At this point it is helpful to introduce a pictorial representation of a prob-
ability distribution that we can use to explain some of the later calculations.
Figure 1.2 shows a square of area 1.0 which has been divided in proportion
to the probabilities of our two suspects being the murderer. The square has a

0.301.00

0.30

0.70

0.70

Murderer

FIGURE 1.2: Representation of probabilities using areas. The grey area rep-
resents the probability that Major Grey is the murderer and the red area
represents the probability that Miss Auburn is the murderer.

total area of 1.0 because of the normalization constraint, and is divided into
two regions. The region on the left has an area of 0.3, corresponding to the
probability that Major Grey is the murderer, while the region on the right
has an area of 0.7, corresponding to the probability that Miss Auburn is the
murderer. The diagram therefore provides a simple visualization of these prob-
abilities. If we pick a point at random within the square, then the probability
that it will land in the region corresponding to Major Grey is 0.3 (or equiva-
lently 30%) and the probability that it will land in the region corresponding
to Miss Auburn is 0.7 (or equivalently 70%). This process of picking a value
for a random variable, such that the probability of picking a particular value
is given by a certain distribution is known as sampling. Sampling can be very
useful for understanding a probability distribution or for generating synthetic
data sets – later in this book we will see examples of both of these.

The Bernoulli distribution

The technical term for this type of distribution over a two-state random vari-
able is a Bernoulli distribution, which is usually defined over the two states

A Murder Mystery ■ 11

true and false. For our murder mystery, we can use true to mean Auburn

and false to mean Grey. Using these states, a Bernoulli distribution over the
variable murderer with a 0.7 probability of true (Auburn) and a 0.3 proba-
bility of false (Grey) is written Bernoulli(murderer; 0.7). More generally, if
the probability of murderer being true is some number p, we can write the
distribution of murderer as Bernoulli(murderer; p).

Often when we are using probability distributions it will be unambiguous
which variable the distribution applies to. In such situations we can sim-
plify the notation and instead of writing Bernoulli(murderer; p) we just write
Bernoulli(p). It is important to appreciate that is just a shorthand notation
and does not represent a distribution over p. Since we will be referring to dis-
tributions frequently throughout this book, it is very useful to have this kind
of shorthand, to keep notation clear and concise.

We can use the Bernoulli distribution with different values of the proba-
bility to represent different judgements or assessments of uncertainty, rang-
ing from complete ignorance through to total certainty. For example, if we
had absolutely no idea which of our suspects was guilty, we could assign
P (murderer) = Bernoulli(murderer; 0.5) or equivalently P (murderer) =
Bernoulli(0.5). In this case both states have probability 50%. This is an ex-
ample of a uniform distribution in which all states are equally probable.
At the other extreme, if we were absolutely certain that Auburn was the mur-
derer, then we would set P (murderer) = Bernoulli(1), or if we were certain
that Grey was the murderer then we would have P (murderer) = Bernoulli(0).
These are examples of a point mass, which is a distribution where all of the
probability is assigned to one value of the random variable. In other words,
we are certain about the value of the random variable.

So, using this new terminology, we have chosen the probability distribution
over murderer to be Bernoulli(0.7). Next, we will show how to relate different
random variables together to start solving the murder.

REVIEW OF CONCEPTS

probability A measure of uncertainty which lies between 0 and 1, where 0
means impossible and 1 means certain. Probabilities are often expressed as a
percentages (such as 0%, 50% and 100%).

random variable A variable (a named quantity) whose value is uncertain.

normalization constraint The constraint that the probabilities given by
a probability distribution must add up to 1 over all possible values of the
random variable. For example, for a Bernoulli(p) distribution the probability
of true is p and so the probability of the only other state false must be 1−p.

probability distribution A function which gives the probability for every

12 ■ Model-Based Machine Learning

possible value of a random variable. Written as P (A) for a random variable A.

sampling Randomly choosing a value such that the probability of picking
any particular value is given by a probability distribution. This is known
as sampling from the distribution. For example, here are 10 samples from
a Bernoulli(0.7) distribution: false, true, false, false, true, true, true,
false, true and true. If we took a very large number of samples from a
Bernoulli(0.7) distribution then the percentage of the samples equal to true

would be very close to 70%.

Bernoulli distribution A probability distribution over a two-valued (bi-
nary) random variable. The Bernoulli distribution has one parameter p which
is the probability of the value true and is written as Bernoulli(p). As an ex-
ample, Bernoulli(0.5) represents the uncertainty in the outcome of a fair coin
toss.

uniform distribution A probability distribution where every possible value
is equally probable. For example, Bernoulli(0.5) is a uniform distribution since
true and false both have the same probability (of 0.5) and these are the only
possible values.

point mass A distribution which gives probability 1 to one value and
probability 0 to all other values, which means that the random variable is
certain to have the specified value. For example, Bernoulli(1) is a point mass
indicating that the variable is certain to be true.

A Murder Mystery ■ 13

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

1.1 To get familiar with thinking about probabilities, estimate the probabil-
ity of the following events, expressing each probability as a percentage.

a. After visiting a product page on Amazon, a user chooses to buy the
product.

b. After receiving an email, a user chooses to reply to it.

c. It will rain tomorrow where you live.

d. When a murder is committed, the murderer turns out to be a member
of the victim’s family.

Given your estimates, what is the probability of these events not hap-
pening? (remember the normalization constraint). If you can, compare
your estimates for these probabilities with someone else’s and discuss
where and why you disagree.

1.2 Write your answers to question 1.1 as Bernoulli distributions over suit-
ably named random variables, using both the long and short forms.

1.3 Suppose I am certain that it will rain tomorrow where you live. What
Bernoulli distribution represents my belief? What would the distribution
be if instead I am certain that it will not rain tomorrow? What if I am
completely unsure if it would rain or not?

1.4 For one of the events in question 1.1, write a program to print out 100
samples from a Bernoulli distribution with your estimated probability
of the event happening (if you’re not a programmer, you can use a
spreadsheet instead). To sample from a Bernoulli(p) you first need a
random number between 0 and 1 (RAND in Excel or random number
functions in any programming language can give you this). To get one
sample you then see if the random number is less than p – in which case
the sample is true, otherwise false. What proportion of the samples are
true? You should find this is close to the parameter p. If you increase to
1,000 or 10,000 samples, you should find that the proportion gets closer
and closer to p. We’ll see why this happens later in the book.

14 ■ Model-Based Machine Learning

1.1 INCORPORATING EVIDENCE

Dr Bayes searches the mansion thoroughly. She finds that the only
weapons available are an ornate ceremonial dagger and an old
army revolver. “One of these must be the murder weapon”, she
concludes.

So far, we have considered just one random variable: murderer. But now
that we have some new information about the possible murder weapons, we
can introduce a new random variable, weapon, to represent the choice of mur-
der weapon. This new variable can take two values: revolver or dagger.
Given this new variable, the next step is to use probabilities to express its
relationship to our existing murderer variable. This will allow us to reason
about how these variables affect each other and to make progress in solving
the murder.

Suppose Major Grey were the murderer. We might believe that the prob-
ability of his choosing a revolver rather than a dagger for the murder is, say,
90% on the basis that he would be familiar with the use of such a gun from
his time in the army. But if instead Miss Auburn were the murderer, we might
think the probability of her using a revolver would be much smaller, say 20%,
since she might be unfamiliar with the operation of a weapon which went out
of use before she was born. This means that the probability distribution over
the random variable weapon depends on whether the murderer is Major Grey
or Miss Auburn. This is known as a conditional probability distribution
because the probability values it gives vary depending on another random vari-
able, in this case murderer. If Major Grey were the murderer, the conditional
probability of choosing the revolver can be expressed like so:

P (weapon = revolver|murderer = Grey) = 0.9. (1.1)

Here the quantity on the left side of this equation is read as “the probability
that the weapon is the revolver given that the murderer is Grey”. It describes
a probability distribution over the quantity on the left side of the vertical
‘conditioning’ bar (in this case the value of weapon) which depends on the
value of any quantities on the right hand side of the bar (in this case the value
of murderer). We also say that the distribution over weapon is conditioned on
the value of murderer.

Since the only other possibility for the weapon is a dagger, the probability
that Major Grey would choose the dagger must be 10%, and hence

P (weapon = dagger|murderer = Grey) = 0.1. (1.2)

Again, we can also express this information in pictorial form, as shown in Fig-
ure 1.3. Here we see a square with a total area of 1.0. The upper region, with
area 0.9, corresponds to the conditional probability of the weapon being the
revolver, while the lower region, with area 0.1, corresponds to the conditional

A Murder Mystery ■ 15

0.90

0.10

0.90

0.10

1.00

FIGURE 1.3: Representation of the probabilities for the two weapons, condi-
tional on Major Grey being the murderer.

probability of the weapon being the dagger. If we pick a point at random uni-
formly from within the square (in other words, sample from the distribution),
there is a 90% probability that the weapon will be the revolver.

Now suppose instead that it was Miss Auburn who committed the murder.
Recall that we considered the probability of her choosing the revolver was 20%.
We can therefore write

P (weapon = revolver|murderer = Auburn) = 0.2. (1.3)

Again, the only other choice of weapon is the dagger and so

P (weapon = dagger|murderer = Auburn) = 0.8. (1.4)

This conditional probability distribution can be represented pictorially as
shown in Figure 1.4.

We can combine all of the above information into the more compact form

P (weapon = revolver|murderer) =

{
0.9 if murderer = Grey

0.2 if murderer = Auburn.
(1.5)

This can be expressed in an even more compact form as P (weapon|murderer).
As before, we have a normalization constraint which is a consequence of the
fact that, for each of the suspects, the weapon used must have been either the
revolver or the dagger. This constraint can be written as∑

weapon

P (weapon|murderer) = 1 (1.6)

where the sum is over the two states of the random variable weapon, that is for

16 ■ Model-Based Machine Learning

0.20

0.80

0.20

0.80

1.00

FIGURE 1.4: Representation of the probabilities for the two weapons, condi-
tional on Miss Auburn being the murderer.

weapon=revolver and for weapon=dagger, with murderer held at any fixed
value (Grey or Auburn). Notice that we do not expect that the probabilities
add up to 1 over the two states of the random variable murderer, which is
why the two numbers in equation (1.5) do not add up to 1. These probabilities
do not need to add up to 1, because they refer to the probability that the
revolver was the murder weapon in two different circumstances: if Grey was
the murderer and if Auburn was the murderer. For example, the probability
of choosing the revolver could be high in both circumstances or low in both
circumstances – so the normalization constraint does not apply.

Conditional probabilities can be written in the form of a conditional
probability table (CPT) – which is the form we will often use in this book.
For example, the conditional probability table for P (weapon|murderer) looks
like this:

murderer weapon=revolver weapon=dagger

Auburn 0.200 0.800

Grey 0.900 0.100

TABLE 1.1: The conditional probability table for P (weapon|murderer). Table
columns correspond to values of the conditioned variable weapon, rows corre-
spond to values of the conditioning variable murderer, and table cells contain
the conditional probability values. The normalization constraint means that
the values in any row must add up to 1. We have also added blue bars to the
table to provide a visual indication of the probability values.

As we just discussed, the normalization constraint means that the proba-

A Murder Mystery ■ 17

bilities in the rows of Table 1.1 must add up to 1, but not the probabilities in
the columns.

Independent variables

We have assumed that the probability of each choice of weapon changes de-
pending on the value of murderer. We say that these two variables are depen-
dent. More commonly, we tend to focus on what variables do not affect each
other, in which case we say they are independent variables. Consider for
example, whether it is raining or not outside the Old Tudor Mansion at the
time of the murder. It is reasonable to assume that this variable raining has
no effect whatsoever on who the murderer is (nor is itself affected by who the
murderer is). So we have assumed that the variables murderer and raining

are independent. You can test this kind of assumption by asking the question
“Does learning about the one variable, tell me anything about the other vari-
able?”. So in this case, the question is “Does learning whether it was raining
or not, tell me anything about the identity of the murderer?”, for which a
reasonable answer is “No”.

If we tried to write down a conditional probability for P (raining|murderer),
then it would give the same probability for raining whether murderer was
Grey or Auburn. If this were not true, learning about one variable would tell
us something about the other variable, through a change in its probability
distribution. We can express independence between these two variables math-
ematically.

P (raining|murderer) = P (raining) (1.7)

What this equation says is that the probability of raining given knowledge of
the murderer is exactly the same as the probability of raining without taking
into account murderer. In other words, the two variables are independent.
This also holds the other way around:

P (murderer|raining) = P (murderer) (1.8)

Independence is an important concept in model-based machine learning, since
any variable we do not explicitly include in our model is assumed to be inde-
pendent of all variables in the model. We will see further examples of inde-
pendence later in this chapter.

Let us take a moment to recap what we have achieved so far. In the first
section, we specified the probability that the murderer was Major Grey (and
therefore the complementary probability that the murderer was Miss Auburn).
In this section, we also wrote down the probabilities for different choices of
weapon for each of our suspects. In the next section, we will see how we can
use all these probabilities to incorporate evidence from the crime scene and
reason about the identity of the murderer.

18 ■ Model-Based Machine Learning

REVIEW OF CONCEPTS

conditional probability distribution A probability distribution over
some random variable A which changes its value depending on some other
variable B, written as P (A|B). For example, if the probability of choosing each
murder weapon (weapon) depends on who the murderer is (murderer), we can
capture this in the conditional probability distribution P (weapon|murderer).
Conditional probability distributions can also depend on more than one vari-
able, for example P (A|B, C, D).

conditional probability table A table which defines a conditional proba-
bility, where the columns correspond to values of the conditioned variable and
rows correspond to the values of the conditioning variable(s). For any setting
of the conditioning variable(s), the probabilities over the conditioned variable
must add up to 1 – so the values in any row must add up to 1. For example,
here is a conditional probability table capturing the conditional probability of
weapon given murderer:

murderer weapon=revolver weapon=dagger

Auburn 0.200 0.800

Grey 0.900 0.100

independent variables Two random variables are independent if learning
about one does not provide any information about the other. Mathematically,
two variables A and B are independent if

P (A|B) = P (A)

P (B|A) = P (B)

This is an important concept in model-based machine learning, since all vari-
ables in the model are assumed to be independent of any variable not in the
model.

A Murder Mystery ■ 19

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

1.1 To get familiar with thinking about conditional probabilities, estimate
conditional probability tables for each of the following.

a. The probability of being late for work, conditioned on whether or
not traffic is bad.

b. The probability a user replies to an email, conditioned on whether
or not he knows the sender.

c. The probability that it will rain on a particular day, conditioned on
whether or not it rained on the previous day.

Ensure that the rows of your conditional probability tables add up to
one. If you can, compare your estimates for these probabilities with
someone else’s and discuss where and why you disagree.

1.2 Pick an example, like one of the ones above, from your life or work. You
should choose an example where one binary (two-valued) variable affects
another. Estimate the conditional probability table that represents how
one of these variables affects the other.

1.3 For one of the events in question 1.1, write a program to print out 100
samples of the conditioned variable for each value of the conditioning
variable. Print the samples side by side and compare the proportion of
samples in which the event occurs for when the conditioning variable
is true to when it is false. Does the frequency of events look consistent
with your common sense in each case? If not, go back and refine your
conditional probability table and try again.

20 ■ Model-Based Machine Learning

1.2 UPDATING OUR BELIEFS

Searching carefully around the library, Dr Bayes spots a bullet
lodged in the book case. “Hmm, interesting”, she says, “I think
this could be an important clue”.

So it seems that the murder weapon was the re-
volver, not the dagger. Our intuition is that this new
evidence points more strongly towards Major Grey
than it does to Miss Auburn, since the Major, due
to his age and military background, is more likely to
have experience with a revolver than Miss Auburn.
But how can we use this information?

A convenient way to think about the probabilities
we have looked at so far is as a description of the
process by which we believe the murder took place,
taking account of the various sources of uncertainty. So, in this process, we
first pick the murderer with the help of Figure 1.2. This shows that there is
a 30% chance of choosing Major Grey and a 70% chance of choosing Miss
Auburn. Let us suppose that Miss Auburn was the murderer. We can then
refer to Figure 1.4 to pick which weapon she used. There is a 20% chance that
she would have used the revolver and an 80% chance that she would have used
the dagger. Let’s consider the event of Miss Auburn picking the revolver. The
probability of choosing Miss Auburn and the revolver is therefore 70% × 20%
= 14%. This is the joint probability of choosing Auburn and revolver. If we
repeat this exercise for the other three combinations of murderer and weapon

we obtain the joint probability distribution over the two random variables,
which we can illustrate pictorially as seen in Figure 1.5.

0.27

0.03

0.90

0.10

0.30

0.14

0.56

0.20

0.80

0.70

Murderer

FIGURE 1.5: Representation of the joint probabilities for the two random
variables murderer and weapon.

A Murder Mystery ■ 21

Figure 1.6 below shows how this joint distribution was constructed from the
previous distributions we have defined. We have taken the left-hand slice of the
P (murderer) square corresponding to Major Grey, and divided it vertically
in proportion to the two regions of the conditional probability square for
Grey. Likewise, we have taken the right-hand slice of the P (murderer) square
corresponding Miss Auburn, and divided it vertically in proportion to the two
regions of the conditional probability square for Auburn.

0.27

0.03

0.14

0.56

=

0.30 0.70

×

0.90

0.10

0.20

0.80

P (weapon, murderer) P (murderer) P (weapon|murderer)

FIGURE 1.6: The joint distribution for our two-variable model, shown as a product of two factors.

We denote this joint probability distribution by P (weapon, murderer),
which should be read as “the probability of weapon and murderer”. In gen-
eral, the joint distribution of two random variables A and B can be written
P (A, B) and specifies the probability for each possible combination of settings
of A and B. Because probabilities must sum to one, we have∑

A

∑
B

P (A, B) = 1. (1.1)

Here the notation
∑

A denotes a sum over all possible states of the random
variable A, and likewise for B. This corresponds to the total area of the square
in Figure 1.5 being 1, and arises because we assume the world consists of
one, and only one, combination of murderer and weapon. Picking a point ran-
domly in this new square corresponds to sampling from the joint probability
distribution.

1.2.1 Two rules for working with joint probabilities

We’d like to use our joint probability distribution to update our beliefs about
who committed the murder, in the light of this compelling new evidence.
To do this, we need to introduce two important rules for working with joint
distributions.

From the discussion above, we see that our joint probability distribution is
obtained by taking the probability distribution over murderer and multiplying
by the conditional distribution of weapon. This can be written in the form

P (weapon, murderer) = P (murderer)P (weapon|murderer). (1.2)

22 ■ Model-Based Machine Learning

Equation (1.2) is an example of a very important result called the product
rule of probability. The product rule says that the joint distribution of A and
B can be written as the product of the distribution over A and the conditional
distribution of B conditioned on the value of A, in the form

P (A, B) = P (A)P (B|A). (1.3)

Now suppose we sum up the values in the two left-hand regions of Fig-
ure 1.5 corresponding to Major Grey. Their total area is 0.3, as we expect
because we know that the probability of Grey being the murderer is 0.3. The
sum is over the different possibilities for the choice of weapon, so we can
express this in the form∑

weapon

P (weapon, murderer = Grey) = P (murderer = Grey). (1.4)

Similarly, the entries in the second column, corresponding to the murderer
being Miss Auburn, must add up to 0.7. Combining these together we can
write ∑

weapon

P (weapon, murderer) = P (murderer). (1.5)

This is an example of the sum rule of probability, which says that the
probability distribution over a random variable A is obtained by summing the
joint distribution P (A, B) over all values of B

P (A) =
∑
B

P (A, B). (1.6)

In this context, the distribution P (A) is known as the marginal distribution
for A and the act of summing out B is called marginalisation. We can equally
apply the sum rule to marginalise over the murderer to find the probability
that each of the weapons was used, irrespective of who used them. If we sum
the areas of the top two regions of Figure 1.5 we see that the probability of
the weapon being the revolver was 0.27+0.14 = 0.41, or 41%. Similarly, if we
add up the areas of the bottom two regions we see that the probability that
the weapon was the dagger is 0.03 + 0.56 = 0.59 or 59%. The two marginal
probabilities then add up to 1, which we expect since the weapon must have
been either the revolver or the dagger.

The sum and product rules are very general. They apply not just when
A and B are binary random variables, but also when they are multi-state
random variables, and even when they are continuous (in which case the sums
are replaced by integrations). Furthermore, A and B could each represent sets
of several random variables. For example, if B ≡ {C, D}, then from the product
rule (1.3) we have

P (A, C, D) = P (A)P (C, D|A) (1.7)

A Murder Mystery ■ 23

and similarly the sum rule (1.6) gives

P (A) =
∑
C

∑
D

P (A, C, D). (1.8)

The last result is particularly useful since it shows that we can find the
marginal distribution for a particular random variable in a joint distribution
by summing over all the other random variables, no matter how many there
are.

Together, the product rule and sum rule provide the two key results that
we will need throughout the book in order to manipulate and calculate proba-
bilities. It is remarkable that the rich and powerful complexity of probabilistic
reasoning is all founded on these two simple rules.

1.2.2 Inference using the joint distribution

We now have the tools that we need to incorporate the fact that the weapon
was the revolver. Intuitively, we expect that this should increase the proba-
bility that Grey was the murderer but to confirm this we need to calculate
that updated probability. The process of computing revised probability distri-
butions after we have observed the values of some of the random variables, is
called probabilistic inference. Inference is the cornerstone of model-based
machine learning – it can be used for reasoning about a situation, learning
from data, making predictions – in fact any machine learning task can be
achieved using inference.

We can do inference using the joint probability distribution shown in Fig-
ure 1.5. Before we observe which weapon was used to commit the crime, all
points within this square are equally likely. Now that we know the weapon
was the revolver, we can rule out the two lower regions corresponding to the
weapon being the dagger, as illustrated in Figure 1.7.

Because all points in the remaining two regions are equally likely, we see
that the probability of the murderer being Major Grey is given by the fraction
of the remaining area given by the grey box on the left.

P (murderer = Grey|weapon = revolver) =
0.27

0.27 + 0.14
≃ 0.66

in other words a 66% probability. This is significantly higher than the 30%
probability we had before observing that the weapon used was the revolver.
We see that our intuition is therefore correct and it now looks more likely that
Grey is the murderer rather than Auburn. The probability that we assigned to
Grey being the murderer before seeing the evidence of the bullet is sometimes
called the prior probability (or just the prior), while the revised probability
after seeing the new evidence is called the posterior probability (or just
the posterior).

The probability that Miss Auburn is the murderer is similarly given by

P (murderer = Auburn|weapon = revolver) =
0.14

0.27 + 0.14
≃ 0.34.

24 ■ Model-Based Machine Learning

0.270.90

0.10

0.30

0.14 0.20

0.80

0.70

Murderer

FIGURE 1.7: This shows the joint distribution from Figure 1.5 in which the
regions corresponding to the dagger have been eliminated.

Because the murderer is either Grey or Auburn these two probabilities again
sum to 1. We can capture this pictorially by re-scaling the regions in Figure 1.7
to give the diagram shown in Figure 1.8.

We have seen that, as new data, or evidence, is collected we can use the
product and sum rules to revise the probabilities to reflect changing levels of
uncertainty. The system can be viewed as having learned from that data.

So, after all this hard work, have we finally
solved our murder mystery? Well, given the evi-
dence so far it appears that Grey is more likely to
be the murderer, but the probability of his guilt
currently stands at 66% which feels too small for
a conviction. But how high a probability would
we need? To find an answer we turn to William
Blackstone’s principle [Blackstone, 1765]:

“Better that ten guilty persons escape
than one innocent suffer.”

We therefore need a probability of guilt for our
murderer which exceeds 10

10+1 ≈ 91%. To achieve
this level of proof we will need to gather more evidence from the crime scene,
and to make a corresponding extension to our joint probability in order to
incorporate this new evidence. We’ll look at how to do this in the next section.

REVIEW OF CONCEPTS

joint probability A probability distribution over multiple variables which

A Murder Mystery ■ 25

0.661.00

0.66

0.34

0.34

Murderer

FIGURE 1.8: Representation of the posterior probabilities that Grey or
Auburn was the murderer, given that the weapon is the revolver.

gives the probability of the variables jointly taking a particular configuration of
values. For example, P (A, B, C) is a joint distribution over the random variables
A, B, and C.

product rule of probability The rule that the joint distribution of A and
B can be written as the product of the distribution over A and the conditional
distribution of B conditioned on the value of A, in the form

P (A, B) = P (A)P (B|A).

sum rule of probability The rule that the probability distribution over a
random variable A is obtained by summing the joint distribution P (A, B) over
all values of B

P (A) =
∑
B

P (A, B).

marginal distribution The distribution over a random variable computed
by using the sum rule to sum a joint distribution over all other variables in
the distribution.

marginalisation The process of summing a joint distribution to compute
a marginal distribution.

probabilistic inference The process of computing probability distributions
over certain specified random variables, usually after observing the value of
other random variables.

26 ■ Model-Based Machine Learning

prior probability The probability distribution over a random variable
before seeing any data. Careful choice of prior distributions is an important
part of model design.

posterior probability The updated probability distribution over a random
variable after some data has been taken into account. The aim of inference is
to compute posterior probability distributions over variables of interest.

A Murder Mystery ■ 27

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

1.1 Check for yourself that the joint probabilities for the four areas in Fig-
ure 1.5 are correct and confirm that their total is 1. Use this figure to
compute the posterior probability over murderer, if the murder weapon
had been the dagger rather than the revolver.

1.2 Choose one of the following scenarios (continued from the previous self
assessment) or choose your own scenario

a. Whether you are late for work, depending on whether or not traffic
is bad.

b. Whether a user replies to an email, depending on whether or not he
knows the sender.

c. Whether it will rain on a particular day, depending on whether or
not it rained on the previous day.

For your selected scenario, pick a suitable prior probability for the con-
ditioning variable (for example, whether the traffic is bad, whether the
user knows the sender, whether it rained the previous day). Recall the
conditional probability table that you estimated in the previous self
assessment. Using the prior and this conditional distribution, use the
product rule to calculate the joint distribution over the two variables in
the scenario. Draw this joint distribution pictorially, like the example of
Figure 1.5. Make sure you label each area with the probability value,
and that these values all add up to 1.

1.3 Now assume that you know the value of the conditioned variable, for
example, assume that you are late for work on a particular day. Now
compute the posterior probability of the conditioning variable, for ex-
ample, the probability that the traffic was bad on that day. You can
achieve this using your diagram from the previous question, by crossing
out the areas that don’t apply and finding the fraction of the remaining
area where the conditioning event happened.

1.4 For your joint probability distribution, write a program to print out
1,000 joint samples of both variables. Compute the fraction of samples
that have each possible pair of values. Check that this is close to your
joint probability table. Now change the program to only print out those
samples which are consistent with your known value from the previous
question (for example, samples where you are late for work). What frac-
tion of these samples have each possible pair of values now? How does
this compare to your answer to the previous question?

28 ■ Model-Based Machine Learning

1.3 A MODEL OF A MURDER

To solve the murder, we need to incorporate more evidence from the crime
scene. Each new piece of evidence will add another random variable into our
joint distribution. To manage this growing number of variables, we will now
introduce the central concept of this book: the probabilistic model. A prob-
abilistic model consists of:

• A set of random variables,

• A joint probability distribution over these variables (i.e. a distribution
that assigns a probability to every configuration of these variables such
that the probabilities add up to 1 over all possible configurations).

Once we have a probabilistic model, we can reason about the variables it
contains, make predictions, learn about the values of some random variables
given the values of others, and in general, answer any possible question that
can be stated in terms of the random variables included in the model. This
makes a probabilistic model an incredibly powerful tool for doing machine
learning.

We can think of a probabilistic model as a set of assumptions we are mak-
ing about the problem we are trying to solve, where any assumptions involving
uncertainty are expressed using probabilities. The best way to understand how
this is done, and how the model can be used to reason and make predictions,
is by looking at example models. In this chapter, we give the example of a
probabilistic model of a murder. In later chapters, we shall build a variety
of more complex models for other applications. All the machine learning ap-
plications in this book will be solved solely through the use of probabilistic
models.

So far we’ve constructed a model of with two random variables: murderer
and weapon. For this two-variable model, we were able to write the joint
distribution pictorially, like so:

0.27

0.03

0.14

0.56

=

0.30 0.70

×

0.90

0.10

0.20

0.80

P (weapon, murderer) P (murderer) P (weapon|murderer)

FIGURE 1.9: The joint distribution for our two-variable model, shown as a product of two factors.

Unfortunately, if we increase the number of random variables in our model
beyond two (or maybe three), we cannot represent the joint distribution using

A Murder Mystery ■ 29

murderer

weapon

P(murderer)

P(weapon|murderer)

FIGURE 1.10: Factor graph for the murder mystery model. The model con-
tains two random variables murderer and weapon, shown as white nodes, and
two factors P (murderer) and P (weapon|murderer), shown as black squares.

this pictorial notation. But in real models there will typically be anywhere
from hundreds to hundreds of millions of random variables. We need a different
notation to represent and work with such large joint distributions.

The notation that we will use exploits the fact that most joint distributions
can be written as a product of a number of terms or factors each of which
refers to only a small number of variables. For example, our joint distribution
above is the product of two factors: P (murderer) which refers to one variable
and P (weapon|murderer) which refers to two variables. Even for joint distri-
butions with millions of variables, the factors which make up the distribution
usually refer to only a few of these variables. As a result, we can represent
a complex joint distribution using a factor graph [Kschischang et al., 2001]
that shows which factors make up the distribution and what variables those
factors refer to.

Figure 1.10 shows a factor graph for the two-variable joint distribution
above. There are two types of node in the graph: a variable node for each
variable in the model and a factor node for each factor in the joint distribu-
tion. Variable nodes are shown as white ellipses (or rounded boxes) containing
the name of the variable. Factor nodes are small black squares, labelled with
the factor that they represent. We connect each factor node to the variable
nodes that it refers to. For example, the P (murderer) factor node is connected
only to the murderer variable node since that is the only variable it refers to,
whilst P (weapon|murderer) connects to both the weapon and murderer vari-
able nodes, since it refers to both variables. Finally, if the factor defines a
distribution over one of its variables, we draw an arrow on the edge point-
ing to that variable (the child variable). If the factor defines a conditional
distribution, the other edges from that factor connect to the variables being
conditioned on (the parent variables) and do not have arrows.

The factor graph of Figure 1.10 provides a complete description of our joint
probability, since it can be found by computing the product of the distributions
represented by the factor nodes. As we look at more complex factor graphs

30 ■ Model-Based Machine Learning

throughout the book, it will always hold that the joint probability distribution
over the random variables (represented by the variable nodes) can be written
as the product of the factors (represented by the factor nodes). The joint
distribution gives a complete specification of a model, because it defines the
probability for every possible combination of values for all of the random
variables in the model. Notice that in Figure 1.9 the joint distribution was
represented explicitly, but in the factor graph it is represented only indirectly,
via the factors.

Since we want our factor graphs to tell us as much as possible about
the joint distribution, we should label the factors as precisely as possible.
For example, since we know that P (murderer) defines a prior distribution of
Bernoulli(0.7) over murderer, we can label the factor “Bernoulli(0.7)”. We do
not need to mention the murderer variable in the factor label since the factor
is only connected to the murderer variable node, and so the distribution must
be over murderer. This allows more informative labelling of the factor graph,
like so:

murderer

weapon

Bernoulli(0.7)

P(weapon|murderer)

FIGURE 1.11: Factor graph representation of the murder mystery model with
the Bernoulli prior over murderer labelled explicitly.

In this book, we will aim to label factors in our factor graphs so that the
function represented by each factor is as clear as possible.

There is one final aspect of factor graph notation that we need to cover.
When doing inference in our two-variable model, we observed the random
variable weapon to have the value revolver. This step of observing random
variables is such an important one in model-based machine learning that we
introduce a special graphical notation to depict it. When a random variable is
observed, the corresponding node in the factor graph is shaded (and sometimes
also labelled with the observed value), as shown for our murder mystery in
Figure 1.12.

Representing a probabilistic model using a factor graph gives many bene-
fits:

• It provides a simple way to visualize the structure of a probabilistic
model and see which variables influence each other.

A Murder Mystery ■ 31

weapon=revolver

murderer

Bernoulli(0.7)

P(weapon|murderer)

FIGURE 1.12: The factor graph for the murder mystery, with the weapon

node shaded to indicate that this random variable has been observed, and is
fixed to the value revolver.

• It can be used to motivate and design new models, by making appropri-
ate modifications to the graph.

• The assumptions encoded in the model can be clearly seen and commu-
nicated to others.

• Insights into the properties of a model can be obtained by operations
performed on the graph.

• Computations on the model (such as inference) can be performed by
efficient algorithms that exploit the factor graph structure.

We shall illustrate these points in the context of specific examples throughout
this book.

1.3.1 Inference without computing the joint distribution

Having observed the value of weapon, we previously computed the full joint
distribution and used it to evaluate the posterior distribution of murderer.
However, for most real-world models it is not possible to do this, since the
joint distribution would be over too many variables to allow it to be computed
directly. Instead, now that we have our joint distribution represented as a
product of factors, we can arrive at the same result by using only the individual
factors – in a way which is typically far more efficient to compute. The key
lies in applying the product and sum rules of probability in an appropriate
way. From the product rule (1.2) we have

P (weapon, murderer) = P (weapon|murderer)P (murderer). (1.1)

However, by symmetry we can equally well write

P (weapon, murderer) = P (murderer|weapon)P (weapon). (1.2)

32 ■ Model-Based Machine Learning

Equating the right-hand sides of these two equations and re-arranging we
obtain

P (murderer|weapon) = P (weapon|murderer)P (murderer)

P (weapon)
. (1.3)

This is an example of Bayes’ theorem or Bayes’ rule [Bayes, 1763] which
plays a fundamental role in many inference calculations (see Panel 1.1). Here
P (murderer) is the prior probability distribution over the random variable
murderer and is one of the things we specified when we defined our model
for the murder mystery. Similarly, P (weapon|murderer) is also something we
specified, and is called the likelihood function and should be viewed as
a function of the random variable murderer. The quantity on the left-hand
side P (murderer|weapon) is the posterior probability distribution over the
murderer random variable, i.e. the distribution after we have observed the
evidence of the revolver.

The denominator P (weapon) in equation (1.3) plays the role of a nor-
malization constant and ensures that the left hand side of Bayes’ theorem is
correctly normalized (i.e. adds up to 1 when summed over all possible states
of the random variable murderer). It can be computed from the prior and the
likelihood using

P (weapon) =
∑

murderer

P (weapon|murderer)P (murderer) (1.4)

which follows from the product and sum rules. When working with Bayes’
rule, it is sometimes useful to drop this denominator P (weapon) and instead
write

P (murderer|weapon) ∝ P (weapon|murderer)P (murderer) (1.5)

where ∝ means that the left-hand side is proportional to the right-hand side
(i.e. they are equal up to a constant that does not depend on the value of
murderer). We do not need to compute the denominator because the nor-
malization constraint tells us that the conditional probability distribution
P (murderer|weapon) must add up to one across all values of murderer. Once
we have evaluated the right hand side of (1.5) to give a number for each of
the two values of murderer, we can scale these two numbers so that they sum
up to one, to get the resulting posterior distribution.

Now let us apply Bayes’ rule to the murder mystery problem. We know that
weapon=revolver, so we can evaluate the right hand side of equation (1.5)
for both murderer=Grey and murderer=Auburn giving:

P (murderer = Grey|weapon = revolver) ∝ 0.3× 0.9 = 0.27

P (murderer = Auburn|weapon = revolver) ∝ 0.7× 0.2 = 0.14.

A Murder Mystery ■ 33

These numbers sum to 0.41. To get probabilities, we need to scale both num-
bers to sum to 1 (by dividing by 0.41) which gives:

P (murderer = Grey|weapon = revolver) =
0.27

0.41
≃ 0.66

P (murderer = Auburn|weapon = revolver) =
0.14

0.41
≃ 0.34.

This is the same result as before. Although we have arrived at the same result
by a different route, this latter approach using Bayes’ theorem is preferable
as we did not need to compute the joint distribution. With only two random

Panel 1.1 – Bayes’ Theorem

Bayes’ theorem allows us to express a conditional probability distribution such
as P (A|B) in terms of the ‘reversed’ conditional distribution P (B|A):

P (A|B) = P (A)P (B|A)
P (B)

. (1.6)

Bayes’ theorem is particularly useful when we want to update the distribu-
tion of some uncertain quantity A when we are given some new information
represented by the random variable B. For instance, in the murder mystery
we want to know the identity of the murderer A and we have just discovered
the choice of weapon B. If we didn’t know B then our knowledge of A would
be described by P (A), which we call the prior. Once we know the value of B
we can compute the revised distribution P (A|B) known as the posterior. They
are related by the reversed conditional distribution P (B|A) which is known as
the likelihood. Note that the likelihood should not be viewed as a probability
distribution over B, because the value of B is assumed to be known, but rather
as a function of the random variable A, and for this reason it is also known
as the likelihood function. Note also that its sum over A does not necessarily
equal 1.
We can also write Bayes’ theorem in words:

posterior =
prior× likelihood

normalizer
. (1.7)

Here the ‘normalizer’ is just the value of P (B) and is the quantity which
ensures that the posterior distribution is normalized. From the sum rule (1.6)
it is given by

P (B) =
∑
A

P (A)P (B|A) (1.8)

and can therefore be computed from the prior and the likelihood function.

34 ■ Model-Based Machine Learning

variables so far in our murder mystery this might not look like a significant
improvement, but as we go to more complex problems we will see that suc-
cessive applications of the rules of probability allows us to work with small
sub-sets of random variables – even in models with millions of variables!

REVIEW OF CONCEPTS

probabilistic model A set of random variables combined with a joint
distribution that assigns a probability to every configuration of these variables.

factors Functions (usually of a small number of variables) which are mul-
tiplied together to give a joint probability distribution (which may be over a
large number of variables). Factors are represented as small black squares in
a factor graph.

factor graph A representation of a probabilistic model which uses a graph
with factor nodes (black squares) for each factor in the joint distribution and
variable nodes (white, rounded) for each variable in the model. Edges connect
each factor node to the variable nodes that it refers to.

variable node A node in a factor graph that represents a random variable
in the model, shown as a white ellipse or rounded box containing the variable
name.

factor node A node in a factor graph that represents a factor in the joint
distribution of a model, shown as a small black square labelled with the factor
name.

child variable For a factor node, the connected variable that the arrow
points to. This indicates that the factor defines a probability distribution over
this variable, possibly conditioned on the other variables connected to this
factor. The child variable for a factor is usually drawn directly below the
factor.

parent variables For a factor node, the connected variable(s) with edges
that do not have arrows pointing to them. When a factor defines a conditional
probability distribution, these are the variables that are conditioned on. The
parent variables for a factor are usually drawn above the factor.

Bayes’ theorem The fundamental theorem that lets us do efficient inference
in probabilistic models. It defines how to update our belief about a random
variable A after receiving new information B, so that we move from our prior
belief P (A) to our posterior belief given B, P (A|B).

P (A|B) = P (A)P (B|A)
P (B)

.

See Panel 1.1 for more details.

A Murder Mystery ■ 35

likelihood function A conditional probability viewed as a function of its
conditioned variable. For example, P (B|A) can be viewed as a function of A
when B is observed and we are interested in inferring A. It is important to
note that this not a distribution over A, since P (B|A) does not have to sum to
1 over all values of A. To get a distribution over A from a likelihood function,
you need to apply Bayes’ theorem (see Panel 1.1).

36 ■ Model-Based Machine Learning

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

1.1 Use Bayes’ theorem to compute the posterior probability over murderer,
for the case that the murder weapon was the dagger rather than the
revolver. Compare this to your answer from the previous self assessment.

1.2 For the scenario you chose in the previous self assessment, draw the
factor graph corresponding to the joint distribution. Ensure that you
label the factors as precisely as possible. Verify that the product of
factors in the factor graph is equal to the joint distribution.

1.3 Repeat the inference task from the previous self assessment (computing
the posterior probability of the conditioning variable) using Bayes’ the-
orem rather than using the joint distribution. Check that you get the
same answer as before.

A Murder Mystery ■ 37

1.4 EXTENDING THE MODEL

Dr Bayes pulls out her trusty magnifying glass and continues her
investigation of the crime scene. As she examines the floor near Mr
Black’s body she discovers a hair lying on top of the pool of blood.
“Aha” exclaims Dr Bayes “this hair must belong to someone who
was in the room when the murder took place!” Looking more closely
at the hair, Dr Bayes sees that it is not the lustrous red of Miss
Auburn’s vibrant locks, nor indeed the jet black of the victim’s hair,
but the distinguished silver of Major Grey!

Now that we are equipped with the concept of
factor graphs, we can extend our model to incor-
porate this additional clue from the crime scene.
The hair is powerful evidence indicating that Ma-
jor Grey was present at the time of the murder,
but there is also the possibility that the hair was
stolen by Miss Auburn and planted at the crime
scene to mislead our perceptive sleuth. As before,
we can capture these thoughts quantitatively us-
ing a conditional probability distribution. Let us
denote the new information by the random vari-
able hair, which takes the value true if Major
Grey’s hair is discovered at the scene of the crime,
and false otherwise. Clearly the discovery of the hair points much more
strongly to Grey than to Auburn, but it does not rule out Auburn completely.

Suppose we think there is a 50% chance that Grey would accidentally leave
one of his hairs at the crime scene if he were the murderer, but that there is
only a 5% chance that Auburn would think to plant a grey hair if she were
the murderer. The conditional probability distribution would then be

P (hair = true|murderer) =

{
0.5 if murderer = Grey

0.05 if murderer = Auburn.
(1.1)

As we have seen before, this is the conditional probability of hair being true

given two different values of murderer, not a probability distribution over
hair, and so the numbers in (1.1) do not have to add up to one.

In writing the conditional probability this way, we have actually made
an additional assumption: that the probability of one of Major Grey’s hairs
being found at the scene of the crime only depends on who committed the
murder, and not anything else – including the choice of weapon that was used
to commit the murder. This assumption has arisen because the conditional
probability in (1.1) does not include weapon in the variables being conditioned
on. Mathematically this assumption can be expressed as

P (hair|weapon, murderer) = P (hair|murderer). (1.2)

38 ■ Model-Based Machine Learning

weapon=revolver hair=true

murderer

P(murderer)

P(weapon|murderer) P(hair|murderer)

FIGURE 1.13: The factor graph for the murder mystery after the addition of
the new evidence. Both the weapon node and the hair node are shaded to
indicate that these random variables have been set to their observed values.
Note the absence of an edge connecting the weapon random variable with the
factor node representing P (hair|murderer).

which says that the distribution of hair is independent of the value of weapon
once we have conditioned on the value of murderer. For this reason it is known
as a conditional independence assumption. Notice that (1.2) has a similar
form to the equations which hold when two variable are independent, e.g.
(1.7), but has an additional conditioning variable on both sides.

The question to ask when considering a conditional independence assump-
tion is “Does learning about one variable, tell me anything about the other
variable, if I knew the value of the conditioning variable?”. In this case that
would be “Does learning about the hair, tell me anything about the choice of
weapon, if I already knew who the murderer was?”. Reasonably, the answer
in this case might be that you could learn a little (for example, the dagger
might mean the murderer had to get closer to the victim and so was more
likely to drop a hair). However, for the sake of simplicity we assume that this
conditional independence assumption holds.

Figure 1.13 shows the factor graph corresponding to our expanded model
with the new hair variable and a new factor representing this conditional dis-
tribution. Our conditional independence assumption has a simple graphical in-
terpretation, namely that there is no edge connecting the weapon node directly
to the factor representing the conditional distribution P (hair|murderer). The
only way to get from the weapon node to the hair node is via the murderer

node. We see that the missing edges in the factor graph capture independence
assumptions built into the model.

There is an alternative graphical representation of a model called a
Bayesian network or Bayes net that emphasises such independence as-
sumptions, at the cost of hiding information about the factors. It provides
less detail about the model than a factor graph, but gives a good ‘big picture’

A Murder Mystery ■ 39

view of which variables directly and indirectly affect each other. See Panel 1.2
for more details.

Given the factor graph of Figure 1.13, we can write down the joint distri-
bution as the product of three terms, one for each factor in the factor graph:

P (murderer, weapon, hair) = P (murderer)P (weapon|murderer)
P (hair|murderer). (1.3)

Check for yourself that each term on the right of equation (1.3) corresponds
to one of the factor nodes in Figure 1.13.

Panel 1.2 – Bayesian Networks

A Bayesian network is a different way of using a graph to represent a prob-
abilistic model [Pearl, 1985, 1988]. In a Bayes net, there are variable nodes
corresponding to each variable in the model, but there are no factor nodes.
Parent variables of a factor are connected directly to the child variable of the
factor, using directed edges (arrows). For example, the Bayes net correspond-
ing to the factor graph of our murder (Figure 1.13) looks like this:

weapon=revolver hair=true

murderer

As this figure shows, by hiding the factors, a Bayes net emphasises which
variables there are and how they influence each other (directly or indirectly).
Bayes nets can be very useful in the early stages of model design when you
want to focus on what variables to include and which will affect each other,
without yet getting into details of precisely how they affect each other.
The disadvantage of using a Bayes net is that it is an incomplete specification
of a model – you also have to write down all the factor functions externally
to the graph and consider the two together as making up the model. For this
reason, we have chosen to use factor graphs in this book, since they provide
a stand-alone description of the model.

40 ■ Model-Based Machine Learning

1.4.1 Incremental inference

We want to compute the posterior distribution over murderer in this new
model, given values of weapon and hair. Given that we have the result from
the previous model, we’d like to make use of it – rather than start again
from scratch. To get our posterior distribution in the previous model, we
conditioned on the value of weapon. To perform incremental inference in this
new model, we can write down Bayes’ rule but condition each term on the
variable weapon:

P (murderer|hair, weapon) = P (murderer|weapon)P (hair|murderer, weapon)
P (hair|weapon)

.

(1.4)
We can use exactly the same trick as we did back in equation (1.5) to drop
the denominator and replace the equals sign with a proportional sign ∝:

P (murderer|weapon, hair) ∝ P (murderer|weapon)P (hair|murderer, weapon).
(1.5)

Remembering that hair and weapon are conditionally indepedent given
murderer, we can use equation (1.2) and drop weapon from the last term:

P (murderer|weapon, hair) ∝ P (murderer|weapon)P (hair|murderer).
(1.6)

Since we know the values of weapon and hair, we can write in these observa-
tions:

P (murderer|weapon = revolver, hair = true) ∝
P (murderer|weapon = revolver)P (hair = true|murderer).(1.7)

We can now compute the new posterior distribution for murderer. As be-
fore, each term depends only on the value of murderer and the overall normal-
ization can be evaluated at the end. Substituting in the posterior we obtained
in Section 1.2.2 and our new conditional probability from equation (1.1) gives:

P (murderer = Grey|weapon = rev., hair = true) ∝ 0.66× 0.50 = 0.33

P (murderer = Auburn|weapon = rev., hair = true) ∝ 0.34× 0.05 = 0.017.

The sum of these two numbers is 0.347, and dividing both numbers by their
sum we obtain the normalized posterior probabilities in the form

P (murderer = Grey|weapon = rev., hair = true) ≃ 0.95

P (murderer = Auburn|weapon = rev., hair = true) ≃ 0.05.

Taking account of all of the available evidence, the probability that Grey is
the murderer is now 95%.

As a recap, we can plot how the probability distribution over murderer

changed over the course of our murder investigation (Figure 1.14). Notice how

A Murder Mystery ■ 41

Prior After observing weapon After observing hair
0

0.2

0.4

0.6

0.8

1

Grey

Auburn

FIGURE 1.14: The evolution of P (murderer) over the course of the murder
investigation.

the probability of Grey being the murderer started out low and increased as
each new piece of evidence stacked against him. Similarly, notice how the
probability of Auburn being the murderer evolved in exactly the opposite
direction, due to the normalization constraint and the assumption that either
one of the two suspects was the murderer. We could seek further evidence, in
the hope that this would change the probability distribution to be even more
confident (although, of course, evidence implicating Auburn would have the
opposite effect). Instead, we will stop here – since 95% is greater than our
threshold of 91% and so enough for a conviction!

The model of the murder that we built up in this chapter contains various
prior and conditional probabilities that we have set by hand. For real applica-
tions, however, we will usually have little idea of how to set such probability
values and will instead need to learn them from data. In the next chapter we
will see how such unknown probabilities can be expressed as random variables,
whose values can be learned using the same probabilistic inference approach
that we just used to solve a murder.

REVIEW OF CONCEPTS

conditional independence Two variables A and B are conditionally inde-
pendent given a third variable C, if learning about A tells us nothing about B
(and vice-versa) in the situation where we know the value of C. Put another
way, it means that the value of A does not directly depend on the value of B,
but only indirectly via the value of C. If A is conditionally independent of B
given C then this can be exploited to simplify its conditional probability like
so:

P (A|B, C) = P (A|C).

For example, the knowledge that a big sporting event is happening nearby
(B) might lead you to expect congestion on your commute (C), which might

42 ■ Model-Based Machine Learning

increase your belief that you will be late for work (A). However, if you listen
to the radio and find out that there is no congestion (so now you know C),
then the knowledge of the sporting event (B) no longer influences your belief in
how late you will be (A). This also applies the other way around, so someone
observing whether you were late (A), who had also learned that there was no
congestion (C) would be none the wiser as to whether a sporting event was
happening (B).

Bayesian network A graphical model where nodes correspond to variables
in the model and where edges show which variables directly influence each
other. Factors are not shown, but the parent variables in a factor are connected
directly to the child variable, using directed edges (arrows). See Panel 1.2.

A Murder Mystery ■ 43

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

1.1 Continuing your chosen scenario from previous self assessments, choose
an additional variable that is affected by the conditioning variable. For
example, if the conditioning variable is ‘the traffic is bad’, then an af-
fected variable might be ‘my boss is late for work’. Draw a factor graph
for a larger model that includes this new variable, as well as the two
previous variables. Define a conditional probability table for the new
factor in the factor graph. Write down any conditional independence
assumptions that you have made in choosing this model, along with a
sentence justifying that choice of assumption.

1.2 Assume that the new variable in your factor graph is observed to have
some particular value of your choice (for example, ‘my boss is late for
work’ is observed to be true). Infer the posterior probability of the con-
ditioning variable (‘the traffic is bad’) taking into account both this new
observation and the observation of the other conditioned variable used
in previous self assessments (for example, the observation that I am late
for work).

1.3 Write a program to print out 1,000 joint samples of all three variables in
your new model. Write down ahead of time how often you would expect
to see each triplet of values and then verify that this approximately
matches the fraction of samples given by your program. Now change
the program to only print out those samples which are consistent with
your both observations from the previous question (for example, samples
where you are late for work AND your boss is late for work). What
fraction of these samples have each possible triplet of values now? How
does this compare to your answer to the previous question?

1.4 Consider some other variables that might influence the three variables in
your factor graph. For example, whether or not the traffic is bad might
depend on whether it is raining, or whether there is an event happening
nearby. Without writing down any conditional probabilities or specifying
any factors, draw a Bayes net showing how the new variables influence
your existing variables or each other. Each arrow in your Bayes net
should mean that ”the parent variable directly affects the child variable”
or ”the parent variable (partially) causes the child variable”. If possible,
present your Bayes network to someone else, and discuss it with them to
see if they understand (and agree with) the assumptions you are making
in terms of what variables to include in the model and what conditional
independence assumptions you have made.

CHA PT E R 2

Assessing People’s Skills

Throughout our lives, we are constantly assessing the skills and
abilities of those around us. Who should I hire? Who should play
on the team? Who can I ask for help? How can I best teach this
person? Taking all that we know about someone and working out
what they can and cannot do comes naturally to most of us. But
how can we use model-based machine learning to do this automat-
ically?

In this chapter, we will develop our first model of some real-world data. We
will address the problem of assessing candidates for a job that requires certain
skills. The idea is that candidates will take a multiple-choice test and we will
use model-based machine learning to determine which skills each candidate
has (and with what probability) given their answers in the test. We can then
use this for tasks such as selecting a shortlist of candidates very likely to have
a set of essential skills.

Each question in a test requires certain skills
to answer. For a software development job, these
skills might be knowledge of the programming
language C# or the database query language
SQL. Some of the questions might require mul-
tiple skills in order to be answered correctly. Fig-
ure 2.1 gives some example questions which have
been marked with the skills required to answer
them. Because our model could be used for many
different types of job it must work with different
tests and different skills, as long as these skill an-
notations are provided. It is important that the
system should only use these annotations when presented with a new test –
it must not require any additional information, for example, sample answers
from people with known skills.

In order to assess which skills a candidate has, we will need to analyse their
answers to the test. Since we know the skills needed for each question, this

45

46 ■ Model-Based Machine Learning

Software Development Skills Assessment

1. Which line of code creates a new Shape in C#?

a. Shape shape = new Shape();

b. Shape shape = Shape.new();

c. new Shape shape = Shape();

d. Shape shape = new Shape;

e. Shape shape = Shape();

2. Which SQL command is used to append a new row to a table in a database?

a. ADD

b. INSERT

c. UPDATE

d. SET

e. INPUT

3. After an SQL connection has been established using a SqlConnection object called “sql”, which of the
following will retrieve any rows in the “people” table with the name “bob”?

a. SqlCommand cmd = new SqlCommand("SELECT 'bob' FROM people", sql);

b. SqlCommand cmd = new SqlCommand("SELECT * FROM people WHERE name = 'bob'", sql);

c. SqlCommand cmd = new SqlCommand("SELECT * FROM people WHERE 'bob' IN name", sql);

d. SqlCommand cmd = sql.SqlCommand("SELECT * FROM people WHERE name = 'bob'");

e. SqlCommand cmd = sql.SqlCommand("SELECT 'bob' FROM people");

4. A developer wants to write a piece of software which

SQL

C#

C#, SQL

FIGURE 2.1: Part of a certification test used to assess software development skills. The questions have been
annotated with the skills needed to answer them.

may appear straightforward: we just need to check whether they are getting
all the SQL questions right or all the C# questions wrong. But the real world
is more complicated than this – even if someone knows C# they may make a
mistake or misread a question; even if they do not know SQL they may guess
the right answer by pure luck. In some cases, the test questions may be badly
written or even outright wrong.

The situation is even more complicated for questions that need two (or
more) skills. If someone gets a question that needs two skills right, it suggests
that they are likely to have both skills. If they get it wrong, there are several
possibilities: they could have one skill or the other (but probably not both) or
they could have neither. Assessing which of these is the case requires looking

Assessing People’s Skills ■ 47

at their answers to other questions and trying to find a consistent set of skills
that is likely to give rise to all of the answers considered together. To do this
kind of complex reasoning automatically, we need to design a model of how a
person with particular skills answers a set of questions.

You can recreate all results in this chapter using the companion source
code [Diethe et al., 2019].

48 ■ Model-Based Machine Learning

2.1 A MODEL IS A SET OF ASSUMPTIONS

When designing a model of some data, we must make assumptions about the
process that gave rise to the data. In fact, we can say that the model is the
set of assumptions and the set of assumptions is the model. The relationship
between a model and the assumptions that it represents is so important that
it is worth emphasising:

A model = A set of assumptions about the data

Selecting which assumptions to include in your model is a crucial part of
model design. Incorrect assumptions will lead to models that give inaccurate
predictions, due to these faulty assumptions. However, it is impossible to build
a model without making at least some assumptions.

As you have seen in Chapter 1, in this book we will use factor graphs to
represent our models. As you progress through the book, you will learn how to
construct the factor graph that encodes a chosen set of assumptions. Similarly,
you will learn to look at a factor graph and work out which assumptions it
represents. You can think of a factor graph as being a precise mathematical
representation of a set of assumptions. For example, in Chapter 1 we built up
a factor graph that represented a precise set of assumptions about a murder
mystery. For this application, we need to make assumptions about the process
of a candidate answering some test questions if they have a particular skill
set. This will define the relationship between a candidate’s underlying skills
and their test answers, which we can then invert to infer their skills from the
test answers.

When designing a factor graph, we start by choosing which variables we
want to have in the graph. At the very least, the graph must contain variables
representing the data we actually have (whether the candidate got each ques-
tion right) and any variables that we want to learn about (the skills). As we
shall see, it is often useful to introduce other, intermediate, variables. Hav-
ing chosen the variables, we can start adding factors to our graph to encode
how these variables affect each other in the question-answering process. It is
usually helpful to start with the variables we want to learn about (the skills)
and work through the process to finish with the variables that we can actually
measure (whether the candidate got the questions right).

So, starting with the skill variables, here is our first assumption:

1 A candidate has either mastered each skill or not.

Assumption 1 means that we can represent a candidate’s skill as a binary
(true/false) variable, which is true if the candidate has mastered the skill and
false if they haven’t. Variables which can take one of a fixed set of values
(like all the variables we have seen so far) are called discrete variables. Later
in the chapter, we will encounter continuous variables which can take any

Assessing People’s Skills ■ 49

value in a continuous range of values, such as any real number between 0 and
1. As we shall see, continuous variables are useful for learning the probability
of events, amongst many other uses.

We next need to make an assumption about the prior probability of a
candidate having each of these skills.

2 Before seeing any test results, it is equally likely that a candidate does
or doesn’t have any particular skill.

Assumption 2 means that the prior probability for each skill variable should
be set neutrally to 50%, which is Bernoulli(0.5). To keep our factor graph
small, we will start by considering a single candidate answering the three
questions of Figure 2.1.

The above two assumptions, applied to the csharp and sql skills needed
for these questions, give the following minimal factor graph:

csharp sql

Bernoulli(0.5) Bernoulli(0.5)

FIGURE 2.2: Factor graph showing priors for the binary skill variables csharp
and sql.

Remember that every factor graph represents a joint probability distri-
bution over the variables in the graph. The joint distribution for this factor
graph is:

P (csharp, sql) = Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5). (2.1)

Note that there is a term in the joint probability for every factor (black square)
in the factor graph.

Continuing with the question-answering process, we must now make some
assumptions about how a candidate’s test answers relate to their skills. Sup-
pose they have all the skills for a question, we should still allow that they may
get it wrong some of the time. If we gave some SQL questions to a SQL expert,
how many should we expect them to get right? Probably not all of them, but
perhaps they would get 90% or so correct. We could check this assumption by
asking some real experts to do such a quiz and seeing what scores they get,
but for now we’ll assume that getting one in ten wrong is reasonable:

3 If a candidate has all of the skills needed for a question then they will
usually get the question right, except one time in ten they will make a
mistake.

For questions where the candidate lacks a necessary skill, we may assume that
they guess at random:

50 ■ Model-Based Machine Learning

4 If a candidate doesn’t have all the skills needed for a question, they will
pick an answer at random. Because this is a multiple-choice exam with
five answers, there’s a one in five chance that they get the question right.

Assumption 3 and Assumption 4 tell us how to extend our factor graph
to model the first two questions of Figure 2.1. We need to add in variables
for each question that are true if the candidate got the question right and
false if they got it wrong. Let’s call these variables isCorrect1 for the first
question and isCorrect2 for the second question. Based on our assumptions,
if csharp is true, we expect isCorrect1 to be true unless the candidate
makes a mistake (since the first question only needs the csharp skill). Since
we assume that mistakes happen only one time in ten, the probability that
isCorrect1 is true in this case is 90%. If csharp is false, then we assume
that the candidate will only get the question right by one time in five, which
is 20%. This gives us the following conditional probability table:

csharp isCorrect1=true isCorrect1=false

true 0.900 0.100

false 0.200 0.800

TABLE 2.1: Conditional probability table showing the probability of each
value of isCorrect1 conditioned on each of the two values of csharp.

We will call the factor representing this conditional probability table
AddNoise since the output is a ‘noisy’ version of the input. Because our as-
sumptions apply equally to all skills, we can use the same factor to relate
sql to isCorrect2. This gives the following factor graph for the first two
questions:

csharp sql

isCorrect1 isCorrect2

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

FIGURE 2.3: Factor graph for the first two questions in our test.

We can write down the joint probability distribution represented by this

Assessing People’s Skills ■ 51

graph by including the two new terms for the AddNoise factors:

P (csharp, sql, isCorrect1, isCorrect2) = (2.2)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5)

AddNoise(isCorrect1|csharp) AddNoise(isCorrect2|sql).

Modelling the third question is more complicated since this question re-
quires both the csharp and sql skills. Assumption 3 and Assumption 4
refer to whether a candidate has “all the skills needed for a question”. So
for question 3, we need to include a new intermediate variable to represent
whether the candidate has both the csharp and sql skills. We will call this
binary variable hasSkills, which we want to be true if the candidate has
both skills needed for the question and false otherwise. We achieve this by
putting in an And factor connecting the two skill variables to the hasSkills
variable. The And factor is defined so that And(C|A, B) is 1 if C is equal to
A AND B and 0 otherwise. In other words, it forces the child variable C to be
equal to (A AND B). A factor like And , where the child has a unique value
given the parents, is called a deterministic factor (see Panel 2.1).

Here’s a partial factor graph showing how the And factor can be used to
make the hasSkills variable that we need:

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

And

FIGURE 2.4: The And factor is a deterministic factor which constrains
hasSkills to be true if csharp and sql are both true, and to be false in
all other cases.

The joint probability distribution for this factor graph is:

P (csharp, sql, hasSkills) = (2.3)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5) And(hasSkills|csharp, sql).

The new And factor means that we now have a new And term in the joint
probability distribution.

Now we can put everything together to build a factor graph for all three
questions. We just need to connect hasSkills to our isCorrect3 variable,
once again using an AddNoise factor:

52 ■ Model-Based Machine Learning

csharp sql

isCorrect1 isCorrect2

hasSkills

isCorrect3

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.5: Factor graph for the three multiple choice questions of Fig-
ure 2.1.

Panel 2.1 – Deterministic factors

When building a model, we often want to include a variable which is a fixed
function of some other variables in the model. For example, we may want a
binary variable to be true if all of some other binary variables are true (AND)
or if any of them are true (OR). For a continuous variable, we may want it to
be the sum or product of some other continuous variables.
We can achieve this by putting a deterministic factor in our factor graph.
The conditional probability distribution for a deterministic factor always has
a value of either 1 or 0. It is 1 if the child variable is equal to the desired
function of the parent variables and 0 otherwise. For example, if we want to
add a variable C which is to be equal to A AND B, we can add a deterministic
factor whose conditional probability distribution is:

A B C=false C=true

false false 1.000 0.000

false true 1.000 0.000

true false 1.000 0.000

true true 0.000 1.000

Notice that whenever C is equal to A AND B, the conditional probability is 1
and it is 0 elsewhere. Since the overall joint probability includes this factor
as one of its terms, the probability of any configuration of variables where C

is not equal to A AND B must be zero. So the deterministic factor acts as a
constraint that ensures C=(A AND B) is always true.
Throughout this book you will see that deterministic factors play a vital role
in a wide variety of models.

Assessing People’s Skills ■ 53

The joint probability distribution for this factor graph is quite long because
we now have a total of six factor nodes, meaning that it contains six terms:

P (csharp, sql, hasSkills, isCorrect1, isCorrect2, isCorrect3) = (2.4)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5)

AddNoise(isCorrect1|csharp) AddNoise(isCorrect2|sql)
And(hasSkills|csharp, sql) AddNoise(isCorrect3|hasSkills).

Because joint probability distributions like this one are big and awkward to
work with, it is usually easier to use factor graphs as a more readable and
manageable way to express a model.

It is essential that any model contains variables corresponding to the ob-
served data, and that these variables are of the same type. This allows the
data to be attached to the model by fixing these variables to the correspond-
ing observed data values. An inference calculation can then be used to find
the marginal distributions for any other (unobserved) variable in the model.
For our model, we need to ensure that we can attach our test results data to
the model, which consists of a yes/no result for each question depending on
whether the candidate got that question right. We can indeed attach this data
to our model, because we have binary variables (isCorrect1, isCorrect2,
isCorrect3) which we can set to be true if the candidate got the question
right and false otherwise.

There is one more assumption being made in this model that has not yet
been mentioned. In fact, it is normally one of the biggest assumptions made by
any model! It is the assumed scope of the model: that is, the assumption that
only the variables included in the model are relevant. For example, our model
makes no mention of the mental state of the candidate (tired, stressed), or of
the conditions in which they were performing the test, or whether it is possible
that cheating was taking place, or whether the candidate even understands
the language the questions are written in. By excluding these variables from
our model, we have made the strong assumption that they are independent
from (do not affect) the candidate’s answers.

Poor assumptions about scope often lead to unsatisfactory results of the
inference process, such as reduced accuracy in making predictions. The scope
of a model is an assumption that should be critically assessed during the
model design process, if only to identify aspects of the problem that are being
ignored. So to be explicit, the last assumption for our learning skills model is:

5 Whether the candidate gets a question right depends only on what skills
that candidate has and not on anything else.

We will not explicitly call out this assumption in future models, but it is good
practice to consider carefully what variables are being ignored, whenever you
are designing or using a model.

54 ■ Model-Based Machine Learning

2.1.1 Questioning our assumptions

Having constructed the factor graph, let us pause for a moment and review the
assumptions we have made so far. They are all shown together in Table 2.2.

1 Each candidate has either mastered each skill or not.

2 Before seeing any test results, it is equally likely that each candidate
does or doesn’t have any particular skill.

3 If a candidate has all of the skills needed for a question then they
will get the question right, except one time in ten they will make a
mistake.

4 If a candidate doesn’t have all the skills needed for a question, they
will pick an answer at random. Because this is a multiple-choice
exam with five answers, there’s a one in five chance that they get
the question right.

5 Whether the candidate gets a question right depends only on what
skills that candidate has and not on anything else.

TABLE 2.2: The five assumptions encoded in our model.

It is very important to review all modelling assumptions carefully to en-
sure that they are reasonable. For example, Assumption 1 is a simplifying
assumption which reduces the degree of skill that a candidate has into a sim-
ple yes/no variable. It is usual to have to make such simplifying assumptions,
which are not exactly incorrect but which make the model less precise. Sim-
plifying assumptions can be made as long as you keep in mind that these may
reduce the accuracy of the results. Assumption 2 seems apparently safe since
it is just assuming ignorance. However, it is also assuming that each of the
skill variables are independent, that is, knowing that someone has one partic-
ular skill doesn’t tell you anything about whether they have any of the other
skills. If some of the skills are related in some way, this may well not be the
case. To keep the model simple, we will work with this assumption for now,
but bear it in mind as a candidate for refinement later on. Assumption 3
and Assumption 4 are more subtle: is it really true that if the candidate
has, say, two out of three skills needed for a question, then they are reduced
to guesswork? We will continue to use these assumptions for now – later in
the chapter we will show how to diagnose whether our model assumptions are
causing problems and see how to revise them. Assumption 5 , that no other
variables are relevant, is reasonable assuming that there is a conscientious
examiner administering the test. A good examiner will make sure that a can-

Assessing People’s Skills ■ 55

didate’s answers genuinely reflect their skills and are not affected by external
conditions or cheating.

Having reviewed our assumptions by eye, we can now try the model out to
ensure that the assumptions continue to make sense when applied to realistic
example data.

REVIEW OF CONCEPTS

discrete variables Variables which can take one of a fixed set of values.
For example, a binary variable can take only two values true or false.

continuous variables Variables which can take any value in a continuous
range of values, for example, any real number between 0 and 1.

deterministic factor A factor defining a conditional probability which is
always either 0 or 1. This means that the value of child variable can always be
uniquely determined (i.e. computed) given the value of the parent variables.
For example a factor representing the AND operation is a deterministic factor.
See Panel 2.1 for more details.

56 ■ Model-Based Machine Learning

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

2.1 Write down the conditional probability table for a deterministic factor
which represents the OR function. The child variable C should be true
if either of the parent variables A and B are true. Panel 2.1 should help.

2.2 Write down all the independence and conditional independence assump-
tions that you can find in Figure 2.5. For each assumption ask yourself
whether it is reasonable – as discussed in Chapter 1, for independence
assumptions you need to ask yourself the question “does learning about
A tell me anything about B?” and for conditional independence as-
sumptions you need to ask “if I know X, does learning about A tell me
anything about B?”.

2.3 As mentioned above, there may be many other variables that affect
the test outcomes (e.g. cheating, candidate’s state of mind). Draw a
Bayesian network that includes one or more of these additional variables,
as well as all the variables in our current model. Your Bayes net should
only include edges between variables that directly affect each other. It
may be helpful to introduce intermediate variables as well. If possible,
present your Bayes net to someone else and discuss whether they agree
with the assumptions you have made.

Assessing People’s Skills ■ 57

2.2 TESTING OUT THE MODEL

Having constructed a model, the first thing to do is to test it out with
some simple example data to check that its behaviour is reasonable. Sup-
pose a candidate knows C# but not SQL – we would expect them to
get the first question right and the other two questions wrong. So let’s
test the model out for this case and see what skills it infers for that pat-
tern of answers. For convenience, we’ll use isCorrect to refer to the array
[isCorrect1,isCorrect2,isCorrect3] and so we will consider the case where
isCorrect is [true,false,false].

We want to infer the probability that the candidate has the csharp and
sql skills, given this particular set of isCorrect values. This is an example
of an inference query which is defined by the variables we want to infer
(csharp, sql) and the variables we are conditioning on (isCorrect) along
with their observed values. Because this example is quite small, we can work
out the answer to this inference query by hand.

2.2.1 Doing inference by hand

To get started, let’s look at how to infer the probability for the csharp skill
given the answer to just the first question. Dropping other variables gives the
simplified factor graph shown in Figure 2.6.

isCorrect1=true

csharp

Bernoulli(0.5)

AddNoise

FIGURE 2.6: Factor graph for just the first question and the csharp skill.

This factor graph now looks just like the one for the murder mystery in
Section 1.3 and, just like for the murder mystery, we can apply Bayes’ theorem
to solve it:

P (csharp|isCorrect1 = true) ∝ P (isCorrect1 = true|csharp)P (csharp).
(2.1)

In equation (2.1) we have colour coded some of the terms to help track them
through the calculation. Putting in numbers for csharp being true and false

gives:

P (csharp = true|isCorrect1 = true) ∝ 0.9× 0.5 = 0.45

P (csharp = false|isCorrect1 = true) ∝ 0.2× 0.5 = 0.10.

58 ■ Model-Based Machine Learning

These numbers sum to 0.55. To get probabilities, we need to scale both num-
bers to sum to 1 (by dividing by 0.55) which gives:

P (csharp = true|isCorrect1 = true) =
0.45

0.55
≃ 0.818

P (csharp = false|isCorrect1 = true) =
0.10

0.55
≃ 0.182

So, given just the answer to the first question, the probability of having the
csharp skill is 81.8%.

Performing inference manually for all three questions is a more involved
calculation. If you want to explore this calculation please read the following
deep dive section. If not, skip over it to see how we can automate this inference
calculation.

Inference Inference deep-dive
In this optional section, we perform inference manually in our three-question
model by marginalising the joint distribution. Feel free to skip this section.

As we saw in Chapter 1, we can perform inference by marginalising the
joint distribution (summing it over all the variables except the one we are
interested in) while fixing the values of any observed variables. For the three-
question factor graph, we wrote down the joint probability distribution in
equation (2.4). Here it is again:

P (csharp, sql, hasSkills, isCorrect) = (2.2)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5)

AddNoise(isCorrect1|csharp) AddNoise(isCorrect2|sql)
And(hasSkills|csharp, sql) AddNoise(isCorrect3|hasSkills).

Before we start this inference calculation, we need to show how to compute
a product of distributions. Suppose for some variable x, we know that:

P (x) ∝ Bernoulli(x; 0.8) Bernoulli(x; 0.4). (2.3)

This may look odd since we normally only associate one distribution with
a variable but, as we’ll see, products of distributions arise frequently when
performing inference. Evaluating this expression for the two values of x gives:

P (x) ∝

{
0.8× 0.4 = 0.32 if x = true

0.2× 0.6 = 0.12 if x = false.
(2.4)

Since we know that P (x = true) and P (x = false) must add up to one, we
can divide these values by 0.32 + 0.12 = 0.44 to get:

P (x) =

{
0.727 if x = true

0.273 if x = false
= Bernoulli(x; 0.727). (2.5)

Assessing People’s Skills ■ 59

This calculation may feel familiar to you – it is very similar to the inference
calculations that we performed in Chapter 1.

In general, if want to multiply two Bernoulli distributions, we can use the
rule that:

Bernoulli(x; a) Bernoulli(x; b) ∝ Bernoulli

(
x ;

ab

ab+ (1− a)(1− b)

)
. (2.6)

If, say, the second distribution is uniform (b=0.5), the result of the product is
Bernoulli(x; a). In other words, the distribution Bernoulli(x; a) is unchanged
by multiplying by a uniform distribution. In general, multiplying any distri-
bution by the uniform distribution leaves it unchanged.

Armed with the ability to multiply distributions, we can now compute
the probability that our example candidate has the csharp skill. The precise
probability we want to compute is P (csharp|isCorrect = [T, F, F]), where we
have abbreviated true to T and false to F. As before, we can compute this
by marginalising the joint distribution and fixing the observed values:

P (csharp|isCorrect = [T, F, F]) ∝ (2.7)∑
sql

∑
hasSkills

P (csharp, sql, hasSkills, isCorrect = [T, F, F]).

As we saw in Chapter 1, we use the proportional sign ∝ because we do not
care about the scaling of the right hand side, only the ratio of its value when
csharp is true to the value when csharp is false.

Now we put in the full expression for the joint probability from (2.2) and fix
the values of all the observed variables. We can ignore the Bernoulli(0.5) terms
since, as we just learned, multiplying a distribution by a uniform distribution
leaves it unchanged. So the right hand side of (2.7) becomes

∝
∑
sql

∑
hasSkills

AddNoise(isCorrect1 = T|csharp) (2.8)

AddNoise(isCorrect2 = F|sql)
And(hasSkills|csharp, sql) AddNoise(isCorrect3 = F|hasSkills).

Terms inside of each summation
∑

that do not mention the variable being
summed over can be moved outside of the summation, because they have the
same value for each term being summed. You can also think of this as moving
the summation signs in towards the right:

∝ AddNoise(isCorrect1 = T|csharp) (2.9)∑
sql

AddNoise(isCorrect2 = F|sql)

∑
hasSkills

And(hasSkills|csharp, sql) AddNoise(isCorrect3 = F|hasSkills).

60 ■ Model-Based Machine Learning

If you look at the first term here, you’ll see that it is a function of csharp
only, since isCorrect1 is observed to be true. When csharp is true, this term
has the value 0.9. When csharp is false, this term has the value 0.2. Since
we only care about the relative sizes of these two numbers, we can replace
this term by a Bernoulli term where the probability of true is 0.9

0.9+0.2 = 0.818
and the probability of false is therefore 1-0.818=0.182. Note that this has
preserved the true/false ratio 0.818/0.182 = 0.9/0.2.

Similarly the second AddNoise term has value 0.1 when sql is true and
the value 0.8 when sql is false, so can be replaced by a Bernoulli term where
the probability of true is 0.1

0.1+0.8 = 0.111. The final AddNoise term can also
be replaced, giving:

∝ Bernoulli(csharp; 0.818) (2.10)∑
sql

Bernoulli(sql; 0.111)

∑
hasSkills

And(hasSkills|csharp, sql) Bernoulli(hasSkills; 0.111).

For the deterministic And factor, we need to consider the four cases
where the factor is not zero (which we saw in Panel 2.1) and plug in the
Bernoulli(0.111) distributions for sql and hasSkills in each case:

Assessing People’s Skills ■ 61

csharp sql hasSkills Bern(sql|0.111) Bern(hasSkills|0.111) Product

false false false 1 − 0.111 1 − 0.111 0.790

false true false 0.111 1 − 0.111 0.099

true false false 1 − 0.111 1 − 0.111 0.790

true true true 0.111 0.111 0.012

TRIAL MODE − Click here for more information

TABLE 2.3: Evaluation of the last three terms in (2.10). Each row of the table
corresponds to one of the four cases where the And factor is 1 (rather than 0).
The first three columns give the values of csharp, sql and hasSkills, which
is just the truth table for AND. The next two columns give the corresponding
values of the Bernoulli distributions for sql and hasSkills and the final
column multiplies these together.

62 ■ Model-Based Machine Learning

Looking at Table 2.3, we can see that when csharp is true, either both sql

and hasSkills are false (with probability 0.790) or both sql and hasSkills

are true (with probability 0.012). The sum of these is 0.802. When csharp is
false, the corresponding sum is 0.790+ 0.099 = 0.889. So we can replace the
last three terms by a Bernoulli term with parameter 0.802

0.802+0.889 = 0.474.

∝ Bernoulli(csharp; 0.818) Bernoulli(csharp; 0.474) (2.11)

Now we have a product of Bernoulli distributions, so we can use (2.6) to
multiply them together. When csharp is true, this product has value 0.818×
0.474 = 0.388. When csharp is false, the value is (1− 0.818)× (1− 0.474) =
0.096. Therefore, the product of these two distributions is a Bernoulli whose
parameter is 0.388

0.388+0.096 :

= Bernoulli(csharp; 0.802) (2.12)

So we have calculated that the posterior probability that our candidate has the
csharp skill to be 80.2%. If we work through a similar calculation for the sql
skill, we find the posterior probability is 3.4%. Together these probabilities say
that the candidate is likely to know C# but is unlikely to know SQL, which
seems like a very reasonable inference given that the candidate only got the
C# question right.

2.2.2 Doing inference by passing messages on the graph

Doing inference calculations manually takes a long time and it is easy to make
mistakes. Instead, we can do the same calculation mechanically by using a
message passing algorithm. This works by passing messages along the
edges of the factor graph, where a message is a probability distribution over
the variable that the edge is connected to. We will see that using a message
passing algorithm lets us do the inference calculations automatically – a huge
advantage of the model-based approach!

To understand how message passing works, take another look at equa-
tion (2.2):

P (csharp = true|isCorrect1 = true) ∝ 0.9× 0.5 = 0.45

P (csharp = false|isCorrect1 = true) ∝ 0.2× 0.5 = 0.10.

Figure 2.7 shows these colour-coded terms as messages being passed from one
node to another node in the graph. For example, the factor node for the prior
over csharp sends this prior distribution as a message to the csharp node (in
blue). The observed isCorrect1 node sends an upwards message which is a
point mass at the observed value (in red). The AddNoise factor transforms
this message using Bayes’ theorem and outputs its own upwards message (in
green). Each of these messages can be computed from information available
at the node they are sent from.

Assessing People’s Skills ■ 63

Bernouilli(1.0)

Bernoulli(0.5)

Bernoulli(0.9/0.9+0.2)

isCorrect1=true

csharp

Bernoulli(0.5)

AddNoise

FIGURE 2.7: Factor graph with probability distributions used for inference.

At this point the two messages arriving at the csharp node provide all
the information we need to compute the posterior distribution for the csharp
variable, as we saw in equation (2.2). This method of using message passing
to compute posterior distributions is called belief propagation [Pearl, 1982,
1988; Lauritzen and Spiegelhalter, 1988].

If you would like to see how to use belief propagation to compute posterior
distributions in our three-question model, read the next section. Otherwise,
you can skip straight to the results.

InferenceInference deep-dive
In this optional section, we show how belief propagation can be used to per-
form inference in our three-question model. Feel free to skip this section. Let
us redo the inference calculation for the csharp skill using message passing
– we’ll describe the message passing process for this example first, and then
look at the general form later on. The first step in the manual calculation was
to fix the values of the observed variables. Using message passing, this corre-
sponds to each observed variable sending out a message which is a point mass
distribution at the observed value. In our case, each isCorrect variable sends
the point mass Bernoulli(0) if it is observed to be false or the point mass
Bernoulli(1) if it is observed to be true. This means that the three messages
sent are as shown in Figure 2.8.

64 ■ Model-Based Machine Learning

Bern(1) Bern(0) Bern(0)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.8: The messages sent from the observed variable nodes, which are
shown shaded and labelled with their observed values. The message on any
edge is a distribution over the variable that the edge is connected to. For
example, the left hand Bern(1) is short for Bernoulli(isCorrect1; 1).

These point mass messages then arrive at the AddNoise factor nodes. The
outgoing messages at each factor node can be computed separately as follows:

• The message up from the first AddNoise factor to csharp can be com-
puted by writing AddNoise(isCorrect1 = T|csharp) as a Bernoulli dis-
tribution over csharp. As we saw in the last section, the parameter
of the Bernoulli is p = 0.9

0.9+0.2 = 0.818, so the upward message is
Bernoulli(0.818).

• The message up from the second AddNoise factor to sql can be com-
puted by writing AddNoise(isCorrect2 = F|sql) as a Bernoulli distri-
bution over sql. The parameter of the Bernoulli is p = 0.1

0.1+0.8 = 0.111,
so the upward message is Bernoulli(0.111).

• The message up from the third AddNoise factor to hasSkills is the
same as the second message, since it is computed for the same factor
with the same incoming message. Hence, the third upward message is
also Bernoulli(0.111).

Assessing People’s Skills ■ 65

Bern(1) Bern(0) Bern(0)

Bern(0.818) Bern(0.111)

Bern(0.111)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.9: Outgoing messages from the AddNoise factor nodes.

Note that these three messages are exactly the three Bernoulli distributions we
saw in in (2.10). Rather than working on the entire joint distribution, we have
broken down the calculation into simple, repeatable message computations at
the nodes in the factor graph.

The messages down from the Bernoulli(0.5) prior factors are just the prior
distributions themselves:

Bern(1) Bern(0) Bern(0)

Bern(0.818) Bern(0.111)

Bern(0.111)

Bern(0.5) Bern(0.5)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.10: Messages from the Bernoulli prior factor nodes.

The outgoing message for any variable node is the product of the incoming
messages on the other edges connected to that node. For the sql variable node
we now have incoming messages on two edges, which means we can compute

66 ■ Model-Based Machine Learning

the outgoing message towards the And factor. This is Bernoulli(0.111) since
the upward message is unchanged by multiplying by the uniform downward
message Bernoulli(0.5). The hasSkills variable node is even simpler: since
there is only one incoming message, the outgoing message is just a copy of it.

Bern(1) Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.11: Messages out of the sql and hasSkills variable nodes.

Finally, we can compute the outgoing message from the And factor to the
csharp variable. This is computed by multiplying the incoming messages by
the factor function and summing over all variables other than the one being
sent to (so we sum over sql and hasSkills):∑

sql

∑
hasSkills

And(hasSkills|csharp, sql) (2.13)

Bernoulli(sql; 0.111) Bernoulli(hasSkills; 0.111).

The summation gives the message Bernoulli(0.474), as we saw in equa-
tion (2.11).

Assessing People’s Skills ■ 67

Bern(1) Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.474)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.12: The final message toward the csharp variable node.

We now have all three incoming messages at the csharp variable node,
which means we are ready to compute its posterior marginal. This is achieved
by multiplying together the three messages – this is the calculation we per-
formed in equation (2.11) and hence gives the same result Bernoulli(0.802) or
80.2%.

To compute the marginal for sql, we can re-use most of the messages we
just calculated and so only need to compute two additional messages (shown
in Figure 2.13). The first message, from csharp to the And factor, is the
product of Bernoulli(0.818) and the uniform distribution Bernoulli(0.5), so
the result is also Bernoulli(0.818).

The second message is from the And factor to sql. Again, we compute
it by multiplying the incoming messages by the factor function and summing
over all variables other than the one being sent to (so we sum over csharp

and hasSkills):∑
csharp

∑
hasSkills

And(hasSkills|csharp, sql) (2.14)

Bernoulli(csharp; 0.818) Bernoulli(hasSkills; 0.111).

The summation gives the message Bernoulli(0.221), so the two new messages
we have computed are those shown in Figure 2.13.

68 ■ Model-Based Machine Learning

Bern(1) Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.818)

Bern(0.221)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

FIGURE 2.13: Additional messages needed to compute the marginal for the
sql variable.

Multiplying this message into sql with the upward message from the
AddNoise factor gives Bernoulli(0.111)×Bernoulli(0.221) ∝ Bernoulli(0.034)
or 3.4%, the same result as before. Note that again we have ignored the uni-
form Bernoulli(0.5) message from the prior, since multiplying by a uniform
distribution has no effect.

The message passing procedure we just saw arises from applying the gen-
eral belief propagation algorithm. In belief propagation, messages are com-
puted in one of three ways, depending on whether the message is coming from
a factor node, an observed variable node or an unobserved variable node. The
algorithm is summarised in Algorithm 2.1 – a complete derivation of this al-
gorithm can be found in Bishop [2006]. Belief propagation for factor graphs is
also discussed in Kschischang et al. [2001].

2.2.3 Using belief propagation to test out the model

The belief propagation algorithm allows us to do inference calculations en-
tirely automatically for a given factor graph. This means that it is possible
to completely automate the process of answering an inference query without
writing any code or doing any hand calculation!

Using belief propagation, we can test out our model fully by automatically
inferring the marginal distributions for the skills for every possible configura-

Assessing People’s Skills ■ 69

tion of correct and incorrect answers. The results of doing this are shown in
Table 2.4.

IsCorrect1 IsCorrect2 IsCorrect3 P(csharp) P(sql)

0.101 0.101

0.802 0.034

0.034 0.802

0.561 0.561

0.148 0.148

0.862 0.326

0.326 0.862

0.946 0.946

TABLE 2.4: The posterior probabilities for the csharp and sql variables for
all possible configurations of isCorrect. As before, the blue bars give a visual
representation of the inferred probabilities.

Algorithm 2.1: Belief Propagation

Input: factor graph, list of target variables to compute marginal
distributions for.

Output: marginal distributions for target variables.

repeat
foreach node in the factor graph do

foreach edge connected to the node do
If all needed incoming messages are available send
the appropriate outgoing message below:

- Variable node message: the product of all messages
received on the other edges;

- Factor node message: the product of all messages received
on the other edges, multiplied by the conditional
probability distribution for the factor and summed over
all variables except the one being sent to;

- Observed node message: a point mass at the observed
value;

end

end

until target variables have received incoming messages on all edges
Compute marginal distributions as the product of all incoming
messages at each target variable node.

70 ■ Model-Based Machine Learning

Inspecting this table, we can see that the results appear to be sensible – the
probability of having the csharp skill is generally higher when the candidate
got the first question correct and similarly the probability of having the sql

skill is generally higher when the candidate got the second question correct.
Also, both probabilities are higher when the third question is correct rather
than incorrect.

Interestingly, the probability of having the sql skill is actually lower when
only the first question is correct, than where the candidate got all the questions
wrong (first and second rows of Table 2.4). This makes sense because getting
the first question right means the candidate probably has the csharp skill,
which makes it even more likely that the explanation for getting the third
question wrong is that they didn’t have the sql skill. This is an example of
the kind of subtle reasoning which model-based machine learning can achieve,
which can give it an advantage over simpler approaches. For example, if we
just used the number of questions needing a particular skill that a person
got right as an indicator of that skill, we would be ignoring potentially useful
information coming from the other questions. In contrast, using a suitable
model, we have exploited the fact that getting a csharp question right can
actually decrease the probability of having the sql skill.

REVIEW OF CONCEPTS

inference query A query which defines an inference calculation to be done
on a probabilistic model. It consists of the set of variables whose values we
know (along with those values) and another set of variables that we wish to
infer posterior distributions for. An example of an inference query is if we may
know that the variable weapon takes the value revolver and wish to infer the
posterior distribution over the variable murderer.

product of distributions An operation which multiplies two (or more)
probability distributions and then normalizes the result to sum to 1, giving
a new probability distribution. This operation should not be confused with
multiplying two different random variables together (which may happen using
a deterministic factor in a model). Instead, a product of distributions involves
two distributions over the same random variable. Products of distributions are
used frequently during inference to combine multiple pieces of uncertain in-
formation about a particular variable which have come from different sources.

message passing algorithm An algorithm for doing inference calculations
by passing messages over the edges of a graphical model, such as a factor
graph. The messages are probability distributions over the variable that the
edge is connected to. Belief propagation is a commonly used message passing
algorithm.

belief propagation A message passing algorithm for computing posterior

Assessing People’s Skills ■ 71

marginal distributions over variables in a factor graph. Belief propagation
uses two different messages computations, one for messages from factors to
variables and one for messages from variables to factors. Observed variables
send point mass messages. See Algorithm 2.1.

72 ■ Model-Based Machine Learning

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

2.1 Compute the product of the following pairs of Bernoulli distributions

a. Bernoulli(x; 0.3)× Bernoulli(x; 0.9)

b. Bernoulli(x; 0.5)× Bernoulli(x; 0.2)

c. Bernoulli(x; 0.5)× Bernoulli(x; 0.3)

d. Bernoulli(x; 1.0)× Bernoulli(x; 0.2)

e. Bernoulli(x; 1.0)× Bernoulli(x; 0.3)

Why can we not compute Bernoulli(x; 1.0)× Bernoulli(x; 0.0)?

2.2 Write a program (or create a spreadsheet) to print out pairs of samples
from two Bernoulli distributions with different parameters a and b. Now
filter the output of the program to only show samples pairs which have
the same value (i.e. where both samples are true or where both are
false). Print out the fraction of these samples which are true. This
process corresponds to multiplying the two Bernoulli distributions to-
gether and so the resulting fraction should be close to the value given
by equation (2.6).

Use your program to (approximately) verify your answers to the previous
question. What does your program do when a = 0.0 and b = 1.0?

2.3 Manually compute the posterior probability for the sql skill, as we did
for the csharp skill in Section 2.2.1, and show that it comes to 3.4%.

2.4 Build this model in Infer.NET and reproduce the results in Table 2.4.
For examples of how to construct a conditional probability table, refer to
the wet grass/sprinkler/rain example in the Infer.NET documentation.
You will also need to use the Infer.NET & operator for the And factor.
This exercise demonstrates how inference calculations can be performed
completely automatically given a model definition.

Assessing People’s Skills ■ 73

2.3 LOOPINESS

Let’s now extend our model slightly by adding a fourth question which needs
both skills. This new factor graph is shown in Figure 2.14, where we have added
new isCorrect4 and hasSkills4 variables for the new question. Surely we
can also do inference in this, very slightly larger, graph using belief propaga-
tion? In fact, we cannot.

Loops can be challenging.

The problem is that belief prop-
agation can only send a message out
of an (unobserved) node after we
have received messages on all other
edges of that node (Algorithm 2.1).
Given this constraint, we can only
send all the messages in a graph if
there are no loops, where a loop is a
path through the graph which starts
and finishes at the same node (with-
out using the same edge twice). If
the graph has a loop, then we can-
not send any of the messages along
the edges of the loop because that
will always require one of the other
messages in the loop to have been
computed first.

If you look back at the old three-question factor graph (Figure 2.5) you’ll
see that it has no loops (a graph with no loops is called a tree) and so belief

csharp sql

isCorrect1 isCorrect2

hasSkills3

isCorrect3

hasSkills4

isCorrect4

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

FIGURE 2.14: Factor graph for a four-question test. This graph contains a
loop (shown in red) which means that we cannot apply belief propagation.

74 ■ Model-Based Machine Learning

propagation worked without problems. However, our new graph does have a
loop, which is marked in red in Figure 2.14. To do inference in such a loopy
graph, we need to look beyond standard belief propagation.

To perform inference in loopy graphs, we need to get rid of the loops some-
how. In this toy example, we could notice that hasSkills3 and hasSkills4

are the same and remove one of them. Such a simple solution is unlikely to be
available in real problems. Instead, there are various general-purpose methods
to remove loops, as described in Panel 2.2. Unfortunately, all these methods
typically become too slow to use when dealing with large factor graphs. In
most real applications the graphs are very large but inference needs to be per-
formed quickly. The result is that such exact inference methods are usually
too slow to be useful.

The alternative is to look at methods that compute an approximation to
the required marginal distributions, but which can do so in much less time. In
this book, we will focus on such approximate inference approaches, since
they have proven to be remarkably useful in a wide range of applications.
For this particular loopy graph, we will introduce an approximate inference
algorithm called loopy belief propagation.

2.3.1 Loopy belief propagation

Inference Inference deep-dive
In this optional section, we define the loopy belief propagation algorithm
and use it to perform inference in our loopy model. If you want to focus
on modelling, feel free to skip this section. Loopy belief propagation [Frey and
MacKay, 1998] is identical to belief propagation until we come to a message
that we cannot compute because it is in a loop. At that point, the loopy belief
propagation algorithm computes the message anyway using a suitable initial
value for any messages which are not yet available.

So, in loopy belief propagation, when we wish to compute a message m
that depends on other messages which are not yet computed, we use a special
initial message value for the unavailable messages. This initial value is usually
the uniform distribution (such as Bernoulli(0.5)) but in some cases it may be
preferable to use some other user-supplied distribution. These initial message
values allows us to break the loop and compute m. Once we have computed m,
we will be able to compute other messages around the loop and eventually we
get back to the original node. At this point, all the incoming messages needed
to compute m will have been computed, so we can recompute m using these
values instead of the initial ones. But because m has changed in value, we can
then go around the loop computing all the messages again. Which will bring
us back to recomputing m, and so on. After a number of iterations around
the loop, this procedure often leads to the value of message m not changing –
we say that it has converged. At this point, we can stop sending any further
messages, since there will be no further changes to the computed marginal
distributions.

Assessing People’s Skills ■ 75

Panel 2.2 – Exact Inference in Loopy Graphs

To perform inference calculations exactly in loopy graphs, we need to find
a way to remove the loops and so convert the graph into a tree. Once we
have a tree, we can run belief propagation as normal. There are two common
approaches for removing loops from a loopy graph:

1. Remove loops by merging variables together

In our example, we could replace the variables csharp and sql by a
single variable with four states FF, TF, FT, TT . We would also need to
modify and in some cases combine all the factors connected to either
variable. The resulting factor graph would no longer contain a loop.
This approach is the basis of the junction tree algorithm Lauritzen and
Spiegelhalter [1988] which merges variables to create a junction tree, on
which belief propagation is applied. The junction tree algorithm was
used successfully in many early machine learning applications, but it
does become unusably slow to run when a large number of variables need
to be merged together, as is often the case with today’s applications.
This is because the number of states in the merged node is the product
of the number of states of the individual variables. This product quickly
becomes unmanageably large as more variables are merged together.

2. Remove loops by observing a variable in the loop

If we observe csharp to be true, then the outward messages from the
csharp variable can be sent, because they are just point masses. This has
the effect of cutting the loop. The downside is that to get any marginal
you now have to run inference twice, once with csharp set to true and
once with it set to false and then combine the two answers. For graphs
with many loops, we would need to observe multiple variables to ensure
all loops were cut. This is the basis of a method called cutset condi-
tioning Pearl [1988]; Suermondt and Cooper [1990], where the cutset is
the set of variables that are observed (conditioned on) in order to cut
all loops. Like the junction tree algorithm, cutset conditioning can be
unusably slow when the cutset is large since we need to re-run inference
for every configuration of the variables in the cutset. The number of
configurations of the cutset is again the product of the number of states
of the individual variables, which quickly becomes unmanageably large
as the number of variables in the cutset increases.

The complete loopy belief propagation algorithm is given as Algorithm 2.2
– it requires as input a message-passing schedule, which we will discuss shortly.
Loopy belief propagation is not guaranteed to give the exactly correct result

76 ■ Model-Based Machine Learning

Algorithm 2.2: Loopy Belief Propagation

Input: factor graph, list of target variables to compute marginals for,
message-passing schedule, initial message values
(optional).

Output: marginal distributions for target variables.

Initialise all messages to uniform (or initial values, if provided).
repeat

foreach edge in the message-passing schedule do
Send the appropriate message below:
- Variable node message: the product of all messages received
on the other edges;
- Factor node message: the product of all messages received on
the other edges, multiplied by the factor function and
summed over all variables except the one being sent to;
- Observed node message: a point mass at the observed value;

end

until all messages have converged
Compute marginal distributions as the product of all incoming
messages at each target variable node.

but it often gives results that are very close. Unlike exact inference methods,
however, loopy belief propagation is still fast when applied to large models,
which is a very desirable property in real applications.

Choosing a message-passing schedule

An important consequence of using loopy belief propagation is that we now
need to provide a message-passing schedule, that is, we need to say the
order in which messages will be calculated. This is in contrast to belief prop-
agation where the schedule is fixed, since a message can be sent only at the
point when all the incoming messages it depends on are received. A schedule
for loopy belief propagation needs to be iterative, in that parts of it will have
to be repeated until message passing has converged.

The choice of schedule can have a significant impact on the accuracy of
inference and on the rate of convergence. Some guidelines for choosing a good
schedule are:

• Message computations should use as few initial message values as pos-
sible. In other words, the schedule should be as close to the belief prop-
agation schedule as possible and initial message values should only be
used where absolutely necessary to break loops. Following this guideline
will tend to make the converged marginal distributions more accurate.

• Messages should be sent sequentially around loops within each iteration.

Assessing People’s Skills ■ 77

Following this guideline will make inference converge faster – if instead
it takes two iterations to send a message around any loop, then the
inference algorithm will tend to take twice as long to converge.

There are other factors that may influence the choice of schedule: for example,
when running inference on a distributed cluster you may want to minimize the
number of messages that pass between cluster nodes. Manually designing a
message-passing schedule in a complex graph can be challenging – thankfully,
there are automatic scheduling algorithms available that can produce good
schedules for a large range of factor graphs, such as those used in Infer.NET
[Minka et al., 2014].

2.3.2 Applying loopy belief propagation to our model

Let’s now apply loopy belief propagation to solve our model of Figure 2.14,
assuming that the candidate also gets the fourth question wrong (so that
isCorrect4 is false). We’ll start by laying out the model a bit differently to
make the loop really clear – see Figure 2.15a. Now we need to pick a message-
passing schedule for this model. A schedule which follows the guidelines above
is:

1. Send messages towards the loop from the isCorrect observed nodes
and the Bernoulli priors (Figure 2.15b);

2. Send messages clockwise around the loop until convergence (Fig-
ure 2.15c). We need to use one initial message to break the loop (shown
in green);

3. Send messages anticlockwise around the loop until convergence (Fig-
ure 2.15d). We must also use one initial message (again in green).

In fact, the messages in the clockwise and anti-clockwise loops do not affect
each other since the messages in a particular direction only depend on incom-
ing messages running in the same direction. So we can execute steps 2 and 3
of this schedule in either order (or even in parallel!).

For the first step of the schedule, the actual messages passed are shown
in (Figure 2.15b). The messages sent around the loop clockwise A,B,C,D
are shown in Table 2.5 for first five iterations around the loop. By the fourth
iteration the messages are no longer changing, which means that they have
converged (and so we could have stopped after four iterations).

The messages for the anti-clockwise loop A′, B′, C ′, D′ turn out to be iden-
tical to the corresponding A,B,C,D messages, because the messages from
hasSkills3 and hasSkills4 are the same. Given these messages, the only
remaining step is to multiply together the incoming messages at csharp and
sql to get the marginal distributions.

Loopy belief propagation gives the marginal distributions for csharp

78 ■ Model-Based Machine Learning

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(a)

Bern(1) Bern(0)Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(b)

Bern(1) Bern(0)Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

C

D

Bern(0.5)

B

A

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(c)

Bern(1) Bern(0)Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

D'

Bern(0.5)

C'

A'

B'

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(d)

FIGURE 2.15: Loopy belief propagation in the four-question factor graph (a) The factor graph of
Figure 2.14 rearranged to show the loop more clearly. (b) The first stage of loopy belief propagation, showing
messages being passed inwards toward the loop. (c,d) The second and third stages of loopy belief propagation
where messages are passed clockwise or anti-clockwise around the loop. In each case, the first message (A or
A’) is computed using a uniform initial message (green dashed arrow).

Assessing People’s Skills ■ 79

Itera�on A B C D

1 0.360 0.066 0.485 0.809

2 0.226 0.035 0.492 0.813

3 0.224 0.035 0.492 0.814

4 0.224 0.035 0.492 0.814

5 0.224 0.035 0.492 0.814

TABLE 2.5: The messages sent around the loop in the first five iterations of
message passing – the numbers shown are the parameters of the Bernoulli dis-
tribution of each message. By the fourth iteration, the messages have stopped
changing, showing that the algorithm has converged rapidly.

and sql as Bernoulli(0.809) and Bernoulli(0.010) respectively. If we use
an exact inference method to compute the true posterior marginals, we get
Bernoulli(0.800) and Bernoulli(0.024), showing that our approximate answers
are reasonably close to the exact solution. For the purposes of this application,
we are interested in whether a candidate has a skill or not but can tolerate the
predicted probability being off by a percentage point or two, if it can make
the system run quickly. This illustrates why approximate inference methods
can be so useful when tackling large-scale inference problems. However, it is
always worth investigating what inaccuracies are being introduced by using
an approximate inference method. Later on, in Section 2.5.1, we’ll look at one
possible way of doing this.

Another reason for using approximate inference methods is that they let
us do inference in much more complex models than is possible using exact
inference. The accuracy gain achieved by using a better model, that more
precisely represents the data, usually far exceeds the accuracy loss caused by
doing approximate inference. Or as the mathematician John Tukey put it,

“Far better an approximate answer to the right question. . . than an
exact answer to the wrong one.”

REVIEW OF CONCEPTS

loops A loop is a path through a graph starting and ending at the same
node which does not go over any edge more than once. For example, see the
loop highlighted in red in Figure 2.15a.

tree A graph which does not contain any loops, such as the factor graphs
of Figure 2.4 and Figure 2.5. When a graph is a tree, belief propagation can
be used to give exact marginal distributions.

loopy graph A graph which contains at least one loop. For example, the

80 ■ Model-Based Machine Learning

graph of Figure 2.14 contains a loop, which may be seen more clearly when it
is laid out as shown in Figure 2.15a. Loopy graphs present greater difficulties
when performing inference calculations – for example, belief propagation no
longer gives exact marginal distributions.

exact inference an inference calculation which exactly computes the desired
posterior marginal distribution or distributions. Exact inference is usually
only possible for relatively small models or for models which have a particular
structure, such as a tree. See also Panel 2.2.

approximate inference an inference calculation which aims to closely
approximate the desired posterior marginal distribution, used when exact in-
ference will take too long or is not possible. For most useful models, exact
inference is not possible or would be very slow, so some kind of approximate
inference method will be needed.

loopy belief propagation an approximate inference algorithm which ap-
plies the belief propagation algorithm to a loopy graph by initialising messages
in loops and then iterating repeatedly. The loopy belief propagation algorithm
is defined in Algorithm 2.2.

converged The state of an iterative algorithm when further iterations do
not lead to any change. When an iterative algorithm has converged, there is
no point in performing further iterations and so the algorithm can be stopped.
Some convergence criteria must be used to determine whether the algorithm
has converged – these usually allow for small changes (for example, in mes-
sages) to account for numerical inaccuracies or to stop the algorithm when it
has approximately converged, to save on computation.

message-passing schedule The order in which messages are calculated
and passed in a message passing algorithm. The result of the message passing
algorithm can change dramatically depending on the order in which messages
are passed and so it is important to use an appropriate schedule. Often, a
schedule will be iterative – in other words, it will consist of an ordering of
messages to be computed repeatedly until the algorithm converges.

Assessing People’s Skills ■ 81

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

2.1 Draw a factor graph for a six-question test which assesses three skills.
Identify all the loops in your network. If there are no loops, add more
questions until there are.

2.2 For your six-question test, design a message-passing schedule which uses
as few initial messages as possible (one per loop). Remember that a
message cannot be sent from a node unless messages have been received
on all edges connected to that node (except for observed variable nodes).

2.3 Extend your three question Infer.NET model from the previous self
assessment, to include the fourth question of Figure 2.14. Use the
TraceMessages attribute to see what messages Infer.NET is sending and
confirm that they match the schedule and values shown in Table 2.5. If
you get stuck, you can refer to the source code for this chapter [Diethe
et al., 2019].

82 ■ Model-Based Machine Learning

2.4 MOVING TO REAL DATA

Now that we have fully tested out our model on example data, we are ready to
work with some real data. We asked 22 volunteers to complete an assessment
test consisting of 48 questions, intended to assess seven different development
skills. Many of the questions required two skills, because they needed both
the knowledge of a software development concept (such as object-oriented
programming) and a knowledge of the programming language that the ques-
tion used (such as C#).

As well as completing the test, we also asked each volunteer to say which
development skills they consider that they have. These self-assessed skills will
be used as ground truth for the skill variables – that is, we will consider
them to be the true values of the variables. Such ground truth data will be
used to assess the accuracy of our system in inferring the skills automatically
from the volunteers’ answers. The ground truth data should be reasonably
reliable since the volunteers have no incentive to exaggerate their skills: the
results were kept anonymous so that the reported skills and answers could
not be linked to any particular volunteer. However, it is plausible that some
volunteers may over- or under-estimate their own skills and we will need to
bear this in mind when using these data to assess our accuracy.

Part of the raw data that we collected is shown in Table 2.6.

S1 S2 S3 S4 S5 S6 S7 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27

ANS 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 4 2 2 2 4

P1 2 4 3 3 4 3 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 2 2 2 4

P2 1 4 3 3 4 1 4 5 1 5 1 5 1 4 3 3 5 3 2 3 4 5 5 2 2 4

P3 3 4 5 2 4 5 4 5 1 5 5 3 2 5 5 1 2 1 2 3 1 5 1 1 4 4

P4 2 4 3 3 4 3 4 5 1 5 1 1 2 4 3 1 2 3 2 3 2 2 2 2 2 4

P5 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 2 2 2 4

P6 1 3 3 5 3 4 5 2 5 2 1 4 2 2 4 4 5 1 3 2 1 3 1 2 3 5

P7 2 4 3 3 4 1 4 5 1 5 1 1 1 2 3 1 2 3 2 3 4 5 2 2 2 4

P8 2 4 5 2 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 4 2 2 2 4

P9 2 4 1 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 2 2 1 2 5

P10 2 4 3 3 4 1 4 5 1 5 1 1 2 4 3 1 2 3 2 2 1 5 2 2 2 4

P11 1 4 3 3 4 3 4 5 1 5 3 1 1 4 3 1 2 3 2 3 4 5 4 2 2 4

P12 1 1 1 3 4 1 4 5 1 5 1 5 5 2 2 1 5 3 2 3 4 5 2 2 2 4

P13 2 4 3 3 4 3 4 5 1 5 1 1 1 2 3 1 2 3 2 3 4 2 2 2 2 4

P14 2 5 3 3 5 5 4 5 1 5 1 1 5 2 3 1 2 3 2 3 2 4 2 3 2 4

P15 2 4 3 3 4 3 4 5 1 5 4 5 1 2 3 5 2 3 2 4 4 1 2 3 2 4

P16 2 4 3 5 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 5 2 2 4

P17 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 3 3 4 5 2 2 2 4

P18 2 4 3 3 4 3 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 2 2 2 2 4

P19 2 4 5 3 4 3 4 2 1 5 1 5 1 4 3 1 2 3 2 3 4 3 2 2 2 4

P20 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 4 2 2 2 4

P21 2 4 3 3 4 1 3 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 2 2 2 4

P22 2 4 4 3 4 1 4 5 1 5 1 1 1 3 3 1 2 4 2 3 4 5 5 2 2 4

. . .

TABLE 2.6: Part of the raw data collected from volunteers completing a real assessment test. This data consists
of the self-assessed skills (S1-S7) and the answers to each question (Q1-Q48). The first row of data gives the
correct answers to each question. Each subsequent row gives the data for one of the participants.

Assessing People’s Skills ■ 83

In this machine learning application, we need the system to be able to
work with any test supplied to it, without having to gather new ground truth
data for each new test. This means that we cannot use the ground truth data
when doing inference in our model, since we will not have this kind of data in
practice. Learning without using ground truth data is called unsupervised
learning. We still need ground truth data when developing our system, how-
ever, since we need to evaluate how well the system works. We will evaluate it
on this particular test, with the assumption that it will then work with similar
accuracy on new, unseen tests.

2.4.1 Visualising the data

When working on a new data set it is essential to spend time looking at
the data by visualising it in various ways (see Panel 2.3 for why this is so
important). So let’s now look at making a visualisation of our test answers.

Photo (and cookies) by Sarah Supp, Dec 2018.

It is good to be creative when
visualizing your data.

The crucial elements of a good visualisation are (i) it
is a faithful representation of the underlying data, (ii) it
makes at least one aspect of the data very clear, (iii) it
stands alone (does not require any explanatory text)
and (iv) it is otherwise as simple as possible. There are
entire books on the topic (such as Tufte [1986]), as well
as useful websites (these are constantly changing – use
your search engine!) and commercial visualisation soft-
ware (such as Tableau). In addition, most programming
languages have visualisation and charting libraries avail-
able, particularly those languages focused on data sci-
ence such as R, Python and Matlab. In this book we
aim to illustrate what makes a good visualisation by
example, through the various figures illustrating each
case study. For example, in Table 2.4 the use of bars
to represent probabilities, as well as numbers, makes it
easier to see the relationship between which questions
were correct and the inferred skill probabilities.

We want to visualise whether each person got each question right or wrong,
along with the skills needed for that question (as provided by the person
who wrote the test). For the skills needed, we can use a grid where a white
square means the skill is needed and a black square means it is not needed
(Figure 2.16a). Similarly for the answers, we can use another grid where white
means the answer was right and black means it was wrong (Figure 2.16b). To
make it easier to spot the relationship between the skills and the answers, we
can align the two grids, giving the visualisation of Figure 2.16.

Already this visualisation is telling us a lot about the data: it lets us
see which questions are easy (columns that are nearly all white) and which
are hard (columns that are nearly all black). Similarly, it lets us identify
individuals who are doing well or badly and gives us a sense of the variation

84 ■ Model-Based Machine Learning

Panel 2.3 – The importance of visualisation

Machine learning algorithms often don’t fail when there is an error in the code,
but instead continue silently on to give inaccurate results. Visualisations of
data, of the inference process, and of results provide a very effective way of
detecting and understanding such errors.
Visualisations are also important because:

• They let you discover issues with the data, such as mistakes in the data
entry, missing data, mislabelled data, data that was saved in the wrong
format or data which is being loaded incorrectly.

• They let you see patterns in the data, even before any model is created or
any inference calculations are done. Carefully designed visualisations can
expose a useful pattern in much the same way that a carefully designed
model can expose one.

• They let you communicate the results of your work to others, to help
convince them that your system is working well or to demonstrate that
it is extracting useful information from the data.

Rather than asking “do I need to visualise this data?”, a better question
is “can I afford NOT to visualise this data?”. Any time you choose not to
visualise some data, some part of the inference process or some results, there
is a (high) chance that you are missing something important. A good rule
of thumb is that it is worth spending at least 20% of your time on
making visualisations.

Assessing People’s Skills ■ 85

between people. Most usefully, it shows us that people often get questions
wrong in runs. In our test consecutive questions usually need similar skills, so
a run of wrong questions can be explained by the lack of a corresponding skill.
These runs are reassuring since this is the kind of pattern we would expect if
the data followed the assumptions of our model.

A difficulty with this visualisation is that we have to look back and forth
between the two grids to discover the relationship between the answers to a
question and the skills needed for a question. It is not particularly easy, for
example, to identify the set of skills needed for the questions that a particular
person got wrong. To address this, we could try to create a visualisation that
contains the information in both of the grids. One way to do this is to associate
a colour with each skill and colour the wrong answers appropriately, as shown
in Figure 2.17:

Questions

(a) Skills for questions

Questions

(b) Responses

FIGURE 2.16: Visualisation of the answer data and skills needed for each
question. (a) Each row corresponds to a skill and each column to a question.
White squares show which skills are needed for each question (b) Each row
corresponds to a person and again each column corresponds to a question.
Here, white squares show which questions each person got correct.

86 ■ Model-Based Machine Learning

Questions

Core OOP Life Cycle Web Apps Desktop apps SQL C#

FIGURE 2.17: A visualisation of the same data as Figure 2.16 but using only
a single, coloured grid, to make it easier to see associations between wrong
questions and skills.

This visualisation makes it easier to spot patterns of wrong answers as-
sociated with the same skill, without constantly switching focus between two
grids. We could instead have chosen to highlight the correct answers but in
this case it is more useful to focus on the wrong answers since these are rarer,
and so more interesting. For example, we can see that those people who got
some orange (Object Oriented Programming) questions wrong often got many
other orange questions wrong, since orange grid cells often appear in blocks.
This is very suggestive of the absence of an underlying skill influencing the
answers to all these questions. Conversely for the cyan (Desktop apps) ques-
tions there seems to be less block structure, suggesting that our assumption
of one skill influencing all these questions is weaker in this case.

2.4.2 A factor graph for the whole test

Reassured that our data looks plausible, we would now like to run inference on
a factor graph for this assessment test. We’ve already seen factor graphs for
three questions (Figure 2.5) and for four questions (Figure 2.14) where there
were just two skills being modelled. But if we tried to draw a factor graph for
all 48 questions and all seven skills in the same way, it would be huge and not
particularly useful. To avoid such overly large factor graphs, we can represent
repeated structure in the graph using a plate. Here is an example of using a
plate used to represent the prior over five skill variables:

The factor graph on the left with a plate is equivalent to the factor graph
on the right without a plate. The plate is shown as a rectangle with the num-
ber of repetitions in the bottom right corner – which in this case is 5. Variable

Assessing People’s Skills ■ 87

5

skill

Bernoulli(0.5)

= skill1 skill2 skill3 skill4 skill5

Bernoulli(0.5) Bernoulli(0.5) Bernoulli(0.5) Bernoulli(0.5) Bernoulli(0.5)

FIGURE 2.18: Using a plate to represent repeated structure in a factor graph

and factor nodes contained in the plate are considered to be replicated 5 times.
Where a variable has been replicated inside a plate it becomes a variable ar-
ray of length 5 – so in this example skill is an array with elements skill[0],
skill[1], skill[2], skill[3] and skill[4]. Note that we use index 0 to refer
to the first element of an array.

Figure 2.19 shows how we can use plates to draw a compact factor graph
for the entire test. There are two plates in the graph, one across the skills
and one across the questions. Instead of putting in actual numbers for the
number of repetitions, we have used variables called skills and questions.
This gives us a factor graph which is configurable for any number of skills and

skills

questions

skillsNeeded

isCorrect

skill

relevantSkills

hasSkills

Bernoulli(0.5)

Subarray

And

AddNoise

FIGURE 2.19: A factor graph for the entire test, constructed using plates and
the Subarray factor.

88 ■ Model-Based Machine Learning

any number of questions and so could be used for any test. For our particular
test, we will set skills to 7 and questions to 48.

Figure 2.19 has also introduced the Subarray factor connecting two new
variables skillsNeeded and relevantSkills, both of which are arrays inside
the questions plate. The skillsNeeded array must be provided (indicated by
the grey shading) and contains the information of which skills are needed for
each question. Each element of skillsNeeded is itself a small array of integers
specifying the indices of the skills needed for that question - so for a question
that needs the first and third skills this will be [0, 2]. The Subarray factor uses
this information to pull out the relevant subarray of the skill array and put
it into the corresponding element of the relevantSkills array. Continuing
our example, this would mean that the element of relevantSkills would
contain the subarray [skill[0], skill[2]]. From this point on, the factor graph
is as before: hasSkills is an AND of the elements of relevantSkills and
isCorrect is then a noisy version of hasSkills.

2.4.3 Our first results

We are now ready to get our first results on a real data set. It’s taken a
while to get here, because of the time we have spent testing out the model on
small examples and visualising the data. But, by doing these tasks, we can be
confident that our inference results will be meaningful from the start.

We can apply loopy belief propagation to the factor graph of Figure 2.19
separately for each person, with isCorrect set to that person’s answers. For
each skill, this will give the probability that the person has that skill. Repeat-
ing this for each person leads to a matrix of results which is shown in the
visualisation on the left of Figure 2.20, where the rows correspond to differ-
ent people and the columns correspond to different skills. For comparison, we
include the self-assessed skills for the same people on the right of the figure.

There is clearly something very wrong with these inference results! The
inferred skills show little similarity to the self-assessed skills. There are a
couple of people where the inferred skills seem reasonable – such as the people
on the 3rd and 6th rows. However, for most people, the system has inferred
that they have almost all the skills, whether they do or not. How can this
happen after all our careful testing and preparation?

In fact, the first time a machine learning system is applied to real data, it
is very common that the results are not as intended. The challenge is to find
out what is wrong and to fix it.

REVIEW OF CONCEPTS

ground truth A data set which includes values for variables which we
want to predict or infer, used for evaluating the prediction accuracy of a
model and/or for training a model. Ground truth data is usually expensive or

Assessing People’s Skills ■ 89

Skills

(a) Inferred skills

Skills

(b) Self-assessed skills

FIGURE 2.20: Initial results of applying our model to real assessment data.
(a) Computed probability of each person having each skill, where white corre-
sponds to probability 1.0, black to probability 0.0 and shades of grey indicate
intermediate probability values. (b) Ground truth self-assessed skills where
white indicates that the person assessed that they have the skill and black
indicates that they do not. Unfortunately, the inferred skills have little simi-
larity to the self-assessed skills.

difficult to collect and so is a valuable and scarce commodity in most machine
learning projects.

unsupervised learning Learning which doesn’t use labelled (ground truth)
data but instead aims to discover patterns in unlabelled data automatically,
without manual guidance.

visualisation A pictorial representation of some data or inference result
which allows patterns or problems to be detected, understood, communicated
and acted upon. Visualisation is a very important part of machine learning,
as discussed in Panel 2.3.

plate A container in a factor graph which compactly represents a number of
repetitions of the contained nodes and edges. The plate is drawn as a rectangle
and labelled in the bottom right hand corner with the number of repetitions.
For example, see Figure 2.18.

variable array An ordered collection of variables where individual variables
are identified by their position in the ordering (starting at zero). For example,

90 ■ Model-Based Machine Learning

a variable array called skill of length 5 would contain five variables: skill[0],
skill[1], skill[2], skill[3], and skill[4].

Assessing People’s Skills ■ 91

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

2.1 Create an alternative visualisation of the data set of Table 2.6 which
shows which people get the most questions right and which questions
the most people get right. For example, you could sort the rows and
columns of Figure 2.16 or Figure 2.17. What does your new visualization
show that was not apparent in the visualisations used in this section?
Note: the data set can be downloaded in Excel or CSV form using the
buttons by the online version of the table.

2.2 Implement the factor graph with plates from Figure 2.19 using In-
fer.NET [Minka et al., 2014]. You will need to use Variable arrays, ForE-
ach loops and the Subarray factor. Apply your factor graph to the data
set and verify that you get the results shown in Figure 2.20a.

92 ■ Model-Based Machine Learning

2.5 DIAGNOSING THE PROBLEM

When a machine learning system is not working there are generally three pos-
sible reasons: bad data, bad model, or bad inference. Here are some common
causes of problems under each of these three headings:

Bad data: data items have been entered, stored or loaded incorrectly; the
data items are incomplete or mislabelled; data values are too noisy to
be useful; the data is biased or unrepresentative of how the system will
be used; it is the wrong data for the task; there is insufficient data to
make accurate predictions.

Bad model: one or more of the modelling assumptions are wrong – that is,
not consistent with the actual process that generated the data; the model
makes too many simplifying assumptions; the model contains insufficient
assumptions to make accurate predictions given the amount of available
data.

Bad inference: the inference code contains a bug; the message-passing
schedule is bad; the inference has not converged; there are numerical
problems (e.g. rounding, overflow); the approximate inference algorithm
is not accurate enough.

In our case, we can be fairly confident that the data is good because we
have inspected and visualised it carefully. So it seems likely that either the
model or the inference is causing the problem. We’ll start by checking that
the inference algorithm, loopy belief propagation, is working correctly.

2.5.1 Checking the inference algorithm

To see if inference is working correctly, we need to be able to separate out any
problems caused by inference issues from any problems caused by our model
not matching the data. To achieve this separation, we can generate a new
synthetic data set which is guaranteed to match the model exactly. If we get
poor results using this data set it suggests that there is an inference problem.
We will create this synthetic data set by sampling from the joint distribution
specified by the model, which guarantees that the data is consistent with the
model (refer to Chapter 1 for a reminder of what sampling is). We can generate
samples by running the data generation process specified by the model – a
process called ancestral sampling, as defined by Algorithm 2.3 (see also
Bishop [2006]).

Looking at the factor graph of Figure 2.19, we run ancestral sampling
following the arrows from top to bottom (from ancestor to descendent), by
sampling a value for each variable given its parents in the graph. If a variable
is the child variable of a deterministic factor, then we just compute its value
from the values of its parent variables using the function encoded by the
deterministic factor (such as the AND function).

Assessing People’s Skills ■ 93

Algorithm 2.3: Ancestral sampling

Input: factor graph
Output: sampled values for each variable in the graph

Order variables from top to bottom so that parent variables come
before child variables.
foreach variable v in this ordering do

If v has parent variables, retrieve their sampled values (which
must already exist due to the ordering).

Sample a value for v from the parent factor function, conditioned
on the retrieved parent values, if any. If the parent factor is
deterministic (such as an And factor) this simplifies to just
computing the child value from the parent values.

Store the sampled value.

end

So, starting at the top, we sample a value for each element of the skill

array from a Bernoulli(0.5) distribution – in other words we pick true with
50% probability and false otherwise. For the relevantSkills array element
for a question we just pull out the already-sampled values of the skill array
that are relevant to that question. These values are then ANDed together
to give hasSkills. Figure 2.21 gives an example set of 22 samples for the
skill and hasSkills arrays. To get a data set with multiple rows we just
repeat the entire sampling process for each row. Notice how, for each row,
hasSkills is always the same for questions that require the same skills (are
the same colour).

The final stage of ancestral sampling in our model requires sampling
each element of isCorrect given its parent element of hasSkills. Where
hasSkills is true we sample from Bernoulli(0.9) and where hasSkills is
false we sample from Bernoulli(0.2) (following Table 2.1). The result of per-
forming this step gives the isCorrect samples of Figure 2.21c. Notice that
these samples end up looking like a noisy version of the hasSkills samples
– about one in ten white squares has been flipped to colour and about one in
five coloured squares has been flipped to white.

We now have an entire sampled data set, which we can run our inference
algorithm on to test if it is working correctly. The inferred skill probabilities
are shown in Figure 2.22 next to the actual skills that we sampled. Unlike
with the real data, the results are pretty convincing: the inferred skills look
very similar to the actual sampled skills. So, when we run inference on a data
set that conforms perfectly to our model, the results are good. This suggests
that the inference algorithm is working well and the problem must instead be
that our model does not match the real data.

An important and subtle point is that the inferred skills are close but not
identical to the sampled skills, even though the data is perfectly matched

94 ■ Model-Based Machine Learning

Skills

(a) Sampled
skill array

Questions

(b) hasSkills array computed from sampled skill array

Questions

Core OOP Life Cycle Web Apps Desktop apps SQL C#

(c) Sampled isCorrect array

FIGURE 2.21: Synthetic data set created using ancestral sampling. First the
skill array was sampled and then the hasSkill array was computed from
it. The isCorrect array was then sampled given the hasSkill array, which
has the effect of making it a noisy version of hasSkill.

to the model. This is because there is still some remaining uncertainty in
the skills even given all the answers in the test. For example, the posterior
probability of skill 7 (C#) is uncertain in the cases where the individual does
not have skill 1 (Core) or skill 2 (OOP). This makes sense because the C#
skill is only tested in combination with these first two skills – if a person does
not have them then they will get the associated questions wrong, whether or
not they know C#. So in this case, the inference algorithm is correct to be
uncertain about whether or not the person has the C# skill. We could use

Assessing People’s Skills ■ 95

Skills

(a) Inferred skills

Skills

(b) Sampled skills

FIGURE 2.22: Skills inferred from a sample data set shown next to the actual
sampled skills for that data set. The inferred skills are close to the actual
skills, suggesting that the inference algorithm is working well.

this information to improve the test, such as by adding questions that directly
test the C# skill by itself.

2.5.2 Working out what is wrong with the model

We have determined that our model assumptions are not matching the data
– now we need to identify which assumption(s) are at fault. We can again use
sampling to achieve this but rather than sampling the skill array, we can set
it to the true (self-assessed) values. If we then sample the isCorrect array,
it will show us which answers the model is expecting people to get wrong if
they had these skills. By comparing this to the actual isCorrect array from
our data set, we can see where the model’s assumptions differ from reality.
Figure 2.23 shows that the actual isCorrect data looks quite different to the
sampled data. The biggest difference appears to be that our volunteers got
many more questions right than our model is predicting, given their stated
skills. This suggests that they are able to guess the answer to a question much
more often than the 1-in-5 times that our model assumes. On reflection, this
makes sense – even if someone doesn’t have the skill to answer a question they
may be able to eliminate some answers on the basis of general knowledge or
intelligent guesswork.

We can investigate this further by computing the fraction of times that
our model predicts our volunteers should get each question right, given their

96 ■ Model-Based Machine Learning

Questions

(a) Sampled isCorrect array given true (self-assessed) skills

Questions

Core OOP Life Cycle Web Apps Desktop apps SQL C#

(b) Observed isCorrect array from our data set

FIGURE 2.23: The modelling problem can be diagnosed by comparing (a) the
isCorrect data sampled from the model given the self-assessed skills and
(b) the observed isCorrect data showing which questions the volunteers ac-
tually got wrong.

self-assessed skills, and then compare it to the fraction of times they actually
got it right (Figure 2.24).

For a few questions, the fraction of people who got them correct matches
that predicted by the model – but for most questions the actual fraction
is higher than the predicted fraction. This suggests that some questions are
easier to guess than others and that they can be guessed correctly more often
than 1-in-5 times. So we need to change our assumptions (and our model) to
allow different guess probabilities for different questions. We can modify our
fourth assumption as follows:

4 If a candidate doesn’t have all the skills needed for a question, they will
pick an answer at random guess an answer, where the probability that

Assessing People’s Skills ■ 97

they guess correctly is about 20% for most questions but could vary up
to about 60% for very guessable questions.

This assumption means that, rather than having a fixed guess probability for
all questions, we need to extend our model to learn a different guess probability
for each question.

REVIEW OF CONCEPTS

ancestral sampling A process of producing samples from a probabilis-
tic model by first sampling variables which have no parents using their prior
distributions, then sampling their child variables conditioned on these sam-
pled values, then sampling the children’s child variables similarly and so on.
Ancestral sampling is defined in Algorithm 2.3. For an example of ancestral
sampling, see Section 2.5.1.

Question number

1 2 3 4 5 6 7 8 9 1011 12 13 1415 16 1718 19 20 2122 23 24 2526 27 2829 30 31 3233 34 35 3637 38 3940 41 42 4344 45 46 4748

0

0.2

0.4

0.6

0.8

1

Predicted

Actual

FIGURE 2.24: The fraction of people the model predicts will get each question right given their self-assessed
skills (blue) compared to the fraction that actually got it right (red), for each of the 48 questions in the test.

98 ■ Model-Based Machine Learning

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

2.1 Make a check list of the causes of problems with machine learning sys-
tems (either data problems, model problems or inference problems).
Rank the causes in the order which you think are most likely to occur.
Now if you are working on a machine learning problem in the future,
this check list could be useful when diagnosing the root cause of the
problem.

2.2 Write a program to implement ancestral sampling in the skills model,
as was described in this section, and use it to make a synthetic data
set. Visualise this data set, for example, using the visualisation you
developed in the previous self assessment. Check that your samples look
similar to the samples from Figure 2.21.

2.3 Try changing a couple of the probability values that we have chosen in
the model, such as the prior probability of having a skill or the proba-
bility of guessing the answer. Run your sampling program again and see
how the synthetic data set changes. You could imagine repeating this
procedure until the synthetic data looks as much like the real data as
possible given the model assumptions. This would be quite inefficient,
so we instead learn these probability values as part of the inference
algorithm, as we shall see in the next section.

Assessing People’s Skills ■ 99

2.6 LEARNING THE GUESS PROBABILITIES

You might expect that inferring the guess probabilities would require very
different techniques than we have used so far. In fact, our approach will be
exactly the same: we add the probability values we want to learn as new
continuous random variables in our model and use probabilistic inference to
compute their posterior distributions. This demonstrates the power of the
model-based approach – whenever we want to know something, we introduce
it as a random variable in our model and compute it using a standard inference
algorithm.

Let’s see how to modify our model to include the guess probabilities as
random variables. To keep things consistent, we’ll also add in a variable for
the mistake probability (actually the no-mistake probability) but we’ll keep
this fixed at a 10% chance of making a mistake. To start with, we’ll change how
we write the AddNoise factor. Figure 2.25 shows how the existing AddNoise
factor (which has the guess and no-mistake probabilities hard-coded at 0.2 and
0.9 respectively) can be replaced by a general Table factor which takes these
probabilities as additional arguments. We can then set these arguments using
two new random variables, which we name as probGuess and probNoMistake.
Inferring the posterior distribution over the variable probGuess will allow us
to learn the guess probability for a question. But before we can do this, we
must first see what kind of distribution we can use to represent the uncertainty
in such a variable.

2.6.1 Representing uncertainty in continuous values

The two new variables probGuess and probNoMistake have a different type to
the ones we have encountered so far: previously all of our variables have been
binary (two-valued) whereas these new variables are continuous (real-valued)
in the interval 0.0 to 1.0 inclusive. This means we cannot use a Bernoulli
distribution to represent their uncertainty. In fact, because our variables are
continuous, we need to use a distribution based on a probability density
function – if you are not familiar with this term, read Panel 2.4.

We need a distribution whose density function can represent both our
prior assumption “the probability that they guess correctly is about 20% for
most questions but could vary up to about 60% for very guessable questions”
and also the posterior over the guess probabilities, once we have learned from
the data. The distribution should also be restricted to the range 0.0 to 1.0
inclusive. A suitable function would be one that could model a single ‘bump’
that lies in this range, since the bump could be broad from 20%-60% for
the prior and then could become narrow around a particular value for the
learned posterior. A distribution called the beta distribution meets these
requirements. It has the following density function:

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(2.1)

100 ■ Model-Based Machine Learning

Panel 2.4 – Probability Density Functions

When we want to represent the uncertainty in a continuous variable, such as a person’s height, apparently
reasonable statements like “There is an 80% chance that his height is 1.84m” don’t actually make sense.
To see why, consider the mathematically equivalent statement “There is an 80% chance that his height is
1.840000000. . .m”. This statement seems very unreasonable, because it suggests that, no matter how many
additional decimal places we measure the height to, we will always get zeroes. In fact, the more decimal places
we measure, the more likely it is that we will find a non-zero. If we could keep measuring to infinite precision,
the probability of getting exactly 1.84000. . . (or any particular value) would effectively vanish to nothing.
So rather than refer to the probability of a continuous variable taking on a particular value, we instead refer to
the probability that its value lies in a particular range, such as the range from 1.835m to 1.845m. In everyday
language, we convey this by the accuracy with which we express a number, so when we say “1.84m”, we often
mean “1.84m to the nearest centimetre”, that is, anywhere between 1.835m and 1.845m. We could represent a
distribution over a continuous value, by giving a set of such ranges along with the probability that the value
lies in each range, such that the probabilities add up to one. For example:

Height(m)

1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9

0

0.1

0.2

0.3

This approach can be useful but often also causes problems: it introduces a lot of parameters to learn (one per
range); it can be difficult to choose a sensible set of ranges; there are discontinuities as we move from one range
to another; and it is hard to impose smoothness, that is, that probabilities associated with neighbouring ranges
should be similar. A better solution is to define a function, such that the area under the function between
any two values gives the probability of being in that range of values. Such a function is called a probability
density function (pdf). For example, this plot shows a Gaussian pdf (we’ll learn much more about Gaussians
in Chapter 3):

Height (m)

1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9

0

10

20

30

40

TRIAL MODE − Click here for more information

Notice that the y-axis now goes up well above 1, since a probability density is not limited to be between 0
and 1. Instead, the total area under the function is required to be 1.0. The area of the shaded region between
1.835m and 1.845m is 0.383, which gives the probability that the height lies between these two values. Similarly,
computing the area under the pdf between any two points gives the probability that the height lies between
those points.

Assessing People’s Skills ■ 101

hasSkills

isCorrect

AddNoise

(a)

probGuess probNoMistake
hasSkills

isCorrect

Table

(b)

FIGURE 2.25: Two ways of writing the AddNoise factor: (a) As a custom
factor with the guess and mistake probabilities ‘built-in’. (b) Using a general
purpose Table factor which has arguments for the probability that the child
is true given that the parent is false (left argument) or given the parent is
true (right argument). This way of writing the factor allows the arguments
to be included as variables in the graph.

where B() is the beta function that the distribution is named after, which is
used to ensure the area under the function is 1.0. The beta density function
has two parameters, α and β that between them control the position and
width of the bump – Figure 2.26a shows a set of beta pdfs for different values
of these parameters. The parameters α and β must be positive, that is, greater
than zero. The mean value α

α+β dictates where the centre of mass of the bump
is located and the sum α+ β controls how broad the bump is – larger α+ β
means a narrower bump. We can configure a beta distribution to encode our
prior assumption by choosing α = 2.5 and β = 7.5, which gives the density
function shown in Figure 2.26b.

We want to extend our factor graph so that the prior probability of each
probGuess variable is:

p(probGuess) = Beta(probGuess; 2.5, 7.5) (2.2)

Notice the notation here: we use a lower-case p to denote a probability density
for a continuous variable, where previously we have used an upper-case P to
denote the probability distribution for a discrete variable. This notation acts
as a reminder of whether we are dealing with continuous densities or discrete
distributions.

Taking the factor graph of Figure 2.19, we can extend it to have the guess
probabilities included as variables in the graph with this distribution as the
prior. One other change is needed: to infer the guess probabilities, we need
to look at the data across as many people as possible (it would be very inac-
curate to try to estimate a guess probability from just one person’s answer!).
So we must now extend the factor graph to model everyone’s results at once,
that is, the entire dataset. To do this, we add a new plate to our factor
graph which replicates all variables that are specific to each person (which
are: skill, relevantSkills, hasSkills and isCorrect). Since we are as-
suming that the guess probabilities for a question are the same for everyone,

102 ■ Model-Based Machine Learning

probGuess is placed outside the new plate, but inside the questions plate.
Since the no-mistake probability is assumed to be the same for everyone and
for all questions, probNoMistake is placed outside of all plates. The final factor
graph, of the entire data set, is shown in Figure 2.27.

We can run inference on this graph to learn the guess probabilities. Even
now that we have continuous variables, we can essentially run loopy belief
propagation on the graph. The only modification we need is a change to ensure
that the uncertainty in our guess probabilities is always represented as a beta
distribution (this modified form is called expectation propagation and will be
described fully in the next chapter). After running inference, we get a beta
distribution for each question representing the uncertain value of the guess
probability for that question. The beta distributions for some of the questions
are shown in Figure 2.28 (we show only every fifth question, so that the figure
is not overwhelmed by too many curves). The first thing to note is that the
distributions are all still quite wide, indicating that there is still substantial
uncertainty in the guess probabilities. This is not too surprising since the
data set contains relatively few people and we only learn about question’s
guess probability from the subset of those people who are inferred not to
have the skills needed for a question. For question 1, where we assume pretty
much everyone has the (Core) skill needed, the posterior distribution is very
close to the prior (compare the curve to Figure 2.26b) since there is hardly
any data to learn the guess probability from, as almost no one is guessing
this question. Several of the questions (such as 11, 16 and 26) have posteriors
that are shifted slightly to the right from the prior, suggesting that these are
a bit easier to guess than 1-in-5. Most interestingly, the guess probabilities

x

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Beta(1,1) Beta(2,2) Beta(2,5)

Beta(4,10) Beta(8,20)

(a)

x

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(b)

FIGURE 2.26: (a) Example beta distributions for different values of the pa-
rameters α and β. (b) The Beta(2.5,7.5) distribution which we can use as
a prior for the probability of guessing a question correctly. The peak of the
distribution is at around 0.2 but it extends to the right up to around 0.6 to
allow for questions that are easier to guess.

Assessing People’s Skills ■ 103

questionspeople

skills

skillsNeeded

isCorrect

probNoMistake

skill

relevantSkills

hasSkillsprobGuess

Beta(2.5,7.5)

Bernoulli(0.5)

Subarray

And

Table

FIGURE 2.27: A factor graph for the entire data set, for all people who took
the test. The guess probabilities for each question appear as a variable array
with an appropriate beta prior.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Question 1

Question 6

Question 11

Question 16

Question 21

Question 26

Question 31

Question 36

Question 41

Question 46

FIGURE 2.28: Posterior beta distributions over probGuess for every fifth
question.

for some questions have been inferred to be either quite low (questions 6,
31) or quite high (question 21, 36, 41). We can plot the posteriors over the

104 ■ Model-Based Machine Learning

guess probabilities for all of the questions by plotting the mean (the centre
of mass) of each along with error bars showing the uncertainty (Figure 2.29).
This shows that a substantial number have a guess probability which is higher
than 0.2.

Just as a reminder – we have learned these guess probabilities without
knowing which people had which skills, that is, without using any ground
truth data. Since it doesn’t have ground truth, the model has had to use all
the assumptions that we built into it, in order to infer the guess probabilities.

We can now investigate whether learning the guess probabilities has im-
proved the accuracy of the skills we infer for each person. Figure 2.30 shows
the inferred skill posteriors for the old model and for the new model with
learned guess probabilities. Visually, it is clear that the new probabilities are
closer to the ground truth skills, which is great news!

2.6.2 Measuring progress

As well as visually inspecting the improvements,
it is also important to measure the improvements
numerically. To do this, we must choose an eval-
uation metric which we will use to measure how
well we are doing. For the task of inferring an ap-
plicant’s skills, our evaluation metric should mea-
sure how close the inferred skill probabilities are
to the ground truth skills.

Question number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

0

0.2

0.4

0.6

FIGURE 2.29: The inferred guess probabilities. The blue bar shows the mean
of the posterior distribution over the guess probability for each question. The
black lines are called error bars and indicate the uncertainty in the inferred
guess probabilities. The top and bottom of the error bars show the upper
and lower quartiles of the posterior distribution, that is, the values where
there is 25% chance of the guess probability being above or below the value
respectively. As we suspected, the variation in the mean shows that some
questions are much easier to guess than others.

Assessing People’s Skills ■ 105

Skills

(a) Old inferred skills

Skills

(b) New inferred skills

Skills

(c) Self-assessed skills

FIGURE 2.30: Skill posteriors for (a) the original model and (b) the new
model with learned guess probabilities, as compared to (c) the ground truth
skills. Qualitatively, the skills inferred by the new model are closer to the self-
assessed skills.

A common metric to use is the probability of
the ground truth values under the inferred distri-
butions, since this will be high when the correct
value has high probability (which we want) and low when the correct values
has low probability (which we do not want). These probabilities can often get
very small, which makes them hard to work with. Instead we can take the
logarithm of the probability, since logarithms allow small probabilities to be
compared more easily – this metric is referred to as the log probability.

If the inferred probability of a person having a particular skill is p, then the
log probability metric equals log p if the person has the skill and log(1− p) if
they don’t. If the person does have the skill then the best possible prediction is
p = 1.0, which gives log probability of log 1.0 = 0 (the logarithm of one is zero).
A less confident prediction, such as p = 0.8 will give a log probability with
a negative value, in this case log 0.8 = −0.223. The worst possible prediction
of p = 0.0 gives a log probability of negative infinity. This tells us two things
about this metric:

1. Since the perfect log probability is zero, and real systems are less than
perfect, the log probability will in practice have a negative value. For
this reason, it is common to use the negative log probability and consider
lower values (values closer to 0) to be better.

106 ■ Model-Based Machine Learning

Overall

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

Skill

Core

OOP

Life Cycle

Web Apps

Desktop apps

SQL

C#
0

0.5

1

1.5

2

2.5

3

3.5

Original

Learned

(b)

FIGURE 2.31: (a) Overall negative log probability for the original model and
the model with learned guess probabilities. The lower red bar indicates that
learning the guess probabilities gives a substantially better model, according
to this metric. (b) Negative log probability for each skill, showing that the
improvement varies from skill to skill.

2. This metric penalises confidently wrong predictions very heavily, because
the logarithm gives very large negative values when the probability of
the ground truth is very close to zero. This should be taken into account
particularly where there are likely to be errors in the ground truth.

It is useful to combine the individual log probability values into a single overall
metric. To do this, the log probabilities for each skill and each person can be
either averaged or added together to get an overall log probability – we will
use averaging since it makes the numbers more manageable. Notice that the
best possible overall score (zero) is achieved by having p = 1 where the person
has the skill and p = 0 where they don’t – in other words, by having the
inferred skill probability matrix exactly match the ground truth skill matrix.

Figure 2.31a shows the negative log probability averaged across skills and
people, for the original and improved models. The score for the improved
model is substantially lower, indicating that it is making quantitatively much
better predictions of the skill probabilities. We can investigate this further by
breaking down the overall negative log probability into the contributions for
the different skills (Figure 2.31b). This shows that learning the guess proba-
bilities improves the log probability metric for all skills except the Core skill
where it is about the same. This is because almost everyone has the Core
skill and so the original model (which predicted that everyone has every skill)
actually did well for this skill. But in general, in terms of log probability our
new results are a substantial improvement over the original inferred skills.

Assessing People’s Skills ■ 107

Prediction

Positive Negative

Ground
truth

Positive
True

positive
(TP)

False
negative

(FN)

True positive rate
#𝑻𝑷

#𝑻𝑷 + #𝑭𝑵

Negative
False

positive
(FP)

True
negative

(TN)

False positive rate
#𝑭𝑷

#𝑭𝑷 + #𝑻𝑵

TABLE 2.7: The terms positive and negative are used for the predicted and
ground truth values to avoid confusion with true and false which are used
to say if the prediction was correct or not. True and false positive rates are
calculated for a particular set of predictions (the # means ‘number of’).

2.6.3 A different way of measuring progress

It is good practice to use more than one evaluation metric when assessing
the accuracy of a machine learning system. This is because each metric will
provide different information about how the system is performing and there
will be less emphasis on increasing any particular metric. No metric is perfect
– focusing too much on increasing any one metric is a bad idea since it can end
up exposing flaws in the metric rather than actually improving the system.
This is succinctly expressed by Goodhart’s law which can be stated as

“When a measure becomes a target, it ceases to be a good measure.”

Using multiple evaluation metrics will help us avoid becoming victims of Good-
hart’s law.

When deciding on a second evaluation metric to use, we need to think
about how our system is to be used. One scenario is to use the system to
select a short list of candidates very likely to have a particular skill. Another
is to filter out candidates who are very unlikely to have the skill, to make a
‘long list’. For both of these scenarios, we might only care about the ordering of
people by their skill probabilities, not on the actual value of these probabilities.
In each case, we would select the top N people, but for the shortlist N would
be small, whereas for the long list N would be large. For any number of
selected candidates, we can compute:

• the fraction of candidates who have the skill that are correctly selected
– this is the true positive rate or TPR,

• the fraction of candidates who don’t have the skill that are incorrectly
selected – this is the false positive rate or FPR.

The terminology of true and false positive predictions and their corresponding
rates is summarised in Table 2.7.

108 ■ Model-Based Machine Learning

In general, there is a trade-off between having a high TPR and a low FPR.
For a shortlist, if we want everyone on the list to have the skill (FPR=0) we
would have to tolerate missing a few people with the skill (TPR less than 1).
For a long list, if we want to include all people with the skill (TPR=1) we
would have to tolerate including some people without the skill (FPR above 0).
A receiver operating characteristic curve, or ROC curve [Fawcett, 2006],
lets us visualise this trade-off by plotting TPR against FPR for all possible
lengths of list N . The ROC curves for the original and improved models are
shown in Figure 2.32, where the TPR and FPR have been computed across all
skills merged together. We could also have plotted ROC curves for individual
skills but, since our data set is relatively small, the curves would be quite
bumpy, making it hard to interpret and compare them.

Figure 2.32 immediately reveals something surprising that the log proba-
bility metric did not: the original model does very well and our new model only
has a slightly higher ROC curve. It appears that whilst the skill probabilities
computed by the first model were generally too high, they were still giving
a good ordering on the candidates. That is, the people who had a particu-
lar skill had higher inferred skill probabilities than the people who did not,
even though the probabilities themselves were not very accurate. A system
which gives inaccurate probabilities is said to have poor calibration. The

False positive rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original (AUC=84.7%)

Learned (AUC=85.7%)

Random (AUC=50.0%)

Perfect (AUC=100.0%)

FIGURE 2.32: Receiver Operating Characteristic curves for all skills com-
bined for the original model and the model with learned guess probabilities.
Surprisingly, the original model has only a slightly worse ROC curve than the
improved one. For comparison, curves for the best possible results (Perfect)
and for a random prediction (Random) are also shown.

Assessing People’s Skills ■ 109

log probability metric is sensitive to bad calibration while the ROC curve is
not. Using both metrics together lets us see that learning the guess proba-
bilities improved the calibration of the model substantially but improved the
predicted ordering only slightly. We will discuss calibration in more detail in
Chapter 4, particularly in Panel 4.3.

The ROC curve can be used as an evaluation metric by computing the
area under the curve (AUC), since in general a higher area implies a better
ranking. A perfect ranking would have an AUC of 1.0 (see the ‘Perfect’ line
of Figure 2.32). It is usually a good idea to look at the ROC curve as well as
computing the AUC since it gives more detail about how well a system would
work in different scenarios, such as for making a short or long list.

Our improved system has a very respectable AUC of 0.86, substantially
improved log probability scores across all skills and has been visually checked
to give reasonable results. It would now be ready to be tried out for real.

2.6.4 Finishing up

In this chapter, we’ve gone through the process of building a model-based
machine learning system from scratch. We’ve seen how to build a model from
a set of assumptions, how to run inference, how to diagnose and fix a problem
and how to evaluate results. As it happens, the model we have developed in this
chapter has been used previously in the field of psychometrics (the science of
measuring mental capacities and processes). For example, Junker and Sijtsma
[2001] consider two models DINA (Deterministic Inputs, Noisy And) which
is essentially the same as our model and NIDA (Noisy Inputs, Deterministic
And) which is a similar model but the AddNoise factors are applied to the
inputs of the And factor rather than the output. Using this second model has
the effect of increasing a person’s chance of getting a question right if they
have some, but not all, of the skills needed for the question.

Of course, there is always room for improving our model. For example, we
could learn the probability of making a mistake for each question, as well as
the probability of guessing the answer. We could investigate different assump-
tions about what happens when a person has some but not all of the skills
needed for a question (like the NIDA model mentioned above). We could con-
sider modelling whether having certain skills makes it more likely to have
other skills. Or we could reconsider the simplifying assumption that the skills
are binary and instead model them as a continuous variable representing the
degree of skill that a person has. In the next case study, we will do exactly
that and represent skills using continuous variables, to solve a very different
problem – but first, we will have a short interlude while we look at the process
of solving machine learning problems.

REVIEW OF CONCEPTS

probability density function A function used to define the probability

110 ■ Model-Based Machine Learning

distribution over a continuous random variable. The probability that the vari-
able will take a value within a given range is given by the area under the
probability density function in that range. See Panel 2.4 for more details.

beta distribution A probability distribution over a continuous random
variable between 0 and 1 (inclusive) whose probability density function is

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
.

The beta distribution has two parameters α and β which control the position
and width of the peak of the distribution. The mean value α

α+β gives the
position of the centre of mass of the distribution and the sum α+ β controls
how spread out the distribution is (larger α+β means a narrower distribution).

evaluation metric A measurement of the accuracy of a machine learning
system used to assess how well the machine learning system is performing. An
evaluation metric can be used to compare two different systems, to compare
different versions of the same system or to assess if a system meets some
desired target accuracy.

log probability(or log-prob) The logarithm of the probability of the ground
truth value of a random variable, under the inferred distribution for that
variable. Used as an evaluation metric for evaluating uncertain predictions
made by a machine learning system. Larger log-prob values mean that the
prediction is better, since it gives higher probability to the correct value.
Since the log-prob is a negative number (or zero), it is common to use the
negative log-prob, in which case smaller values indicate better accuracy. For
example, see Figure 2.31.

Goodhart’s law A law which warns about focusing too much on any
particular evaluation metric and which can be stated as “When a measure
becomes a target, it ceases to be a good measure”.

true positive rate The fraction of positive items that are correctly predicted
as positive. Higher true positive rates indicate better prediction accuracy. See
also Table 2.7.

false positive rate The fraction of negative items that are incorrectly
predicted as positive. Higher false positive rates indicate worse prediction
accuracy. See also Table 2.7.

receiver operating characteristic curve A receiver operating charac-
teristic (ROC) curve is a plot of true positive rate against false positive rate
which indicates the accuracy of predicting a binary variable. A perfect pre-
dictor has an ROC curve that goes vertically up the left hand side of the plot
and then horizontally across the top (see plot in Figure 2.32), whilst a ran-
dom predictor has an ROC curve which is a diagonal line (again, see plot). In
general, the higher the area under the ROC curve, the better the predictor.

Assessing People’s Skills ■ 111

calibration The accuracy of probabilities predicted by a machine learning
system. For example, in a well-calibrated system, a prediction made with 90%
probability should be correct roughly 90% of the time. Calibration can be
assessed by looking at repeated predictions by the same system.

In a poorly-calibrated system the predicted probabilities will not corre-
spond closely to the actual fractions of predictions that are correct. Being
poorly calibrated is usually a sign of an incorrect assumption in the model
and so is always worth investigating – even if the system is being used in
a way that is not sensitive to calibration (for example, if we are ranking by
predicted probability rather than using the actual value of the probability).
See Panel 4.3 for more details.

112 ■ Model-Based Machine Learning

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

2.1 [This exercise shows where the beta distribution shape comes from and
is well worth doing!] Suppose we have a question which has an actual
guess probability of 30%, but we do not know this. To try and find it
out, we take N = 10 people who do not have the skills needed for that
question and see how many of them get it right through guesswork.

a. Write a program to sample the number of people that get the question
right (T). You should sample 10 times from a Bernoulli(0.3) and
count the number of true samples. Before you run your sampler,
what sort of samples would you expect to get from it?

b. In reality, if we had the answers from only 10 people, we would have
only one sample count to use to work on the guess probability. For
example, we might know that three people got the question right,
so that T = 3. How much would this tell us about the actual guess
probability? We can write another sampling program to work it out.
First, sample a possible guess probability between 0.0 and 1.0. Then,
given this sampled guess probability, compute a sample of the number
of people that would get the question right, had this been the true
guess probability. If your sampled count matches the true count T (in
other words, is equal to 3), then you ‘accept it’ and store the sampled
guess probability. Otherwise you ‘reject it’ and throw it away. Repeat
the process until you have 10,000 accepted samples.

c. Plot a histogram of the accepted samples using 50 bins between 0.0
and 1.0. You should see that the histogram has the shape of a beta
distribution!! In fact, your program is sampling from a Beta(T +
1, (N − T) + 1) distribution.

d. Using this information, change N and T in your program to recreate
the beta distributions of Figure 2.26a. Explore what happens when
you increase N whilst keeping T/N fixed (your beta distribution
should get narrower). This should match the intuition that the more
people you have data for, the more accurately you can assess the
guess probability.

2.2 Plot a receiver operating characteristic curve for the results you got
for the original model in the previous self assessment. You will need to
sort the predicted skill probabilities whilst keeping track of the ground
truth for each prediction. Then scan down the sorted list computing the
true positive rate and false positive rate at each point. Verify that it
looks like the Original ROC curve of Figure 2.32. Now make a perfect

Assessing People’s Skills ■ 113

predictor (by cheating and using the ground truth). Plot the ROC curve
for this perfect predictor and check that it looks like the Perfect line of
Figure 2.32. If you want, you can repeat this for a random predictor
(the results should approximate the diagonal line of Figure 2.32).

Interlude: the machine

learning life cycle

In tackling our murder mystery back in Chapter 1, we first gathered evi-
dence from the crime scene and then used our own knowledge to construct a
probabilistic model of the murder. We incorporated the crime scene evidence
into the model, in the form of observed variables, and performed inference to
answer the query of interest: what is the probability of each suspect being
the murderer? We then assessed whether the results of inference were good
enough – that is, was the probability high enough to consider the murder
solved? When it was not, we then gathered additional data, extended the
model, re-ran inference and finally reached our target probability.

In assessing skills of job candidates in Chapter 2, we gathered data from
people taking a real test and visualised this data. We then built a model based
on our knowledge of how people take tests. We ran inference and assessed
that the results were not good enough. We diagnosed the problem, extended
the model and then evaluated both the original and the extended models to
quantify the improvement and check that the improved model met our success
criteria.

We can generalise from these two examples to define the steps needed for
any model-based machine learning application:

1. Gather data for training and evaluating the model.

2. Gather knowledge to help make appropriate modelling assumptions.

3. Visualise the data to understand it better, check for data issues and
gain insight into useful modelling assumptions.

4. Construct a model which captures knowledge about the problem do-
main, consistent with your understanding of the data.

5. Perform inference to make predictions over the variables of interest
using the data to fix the values of other variables.

6. Evaluate results using some evaluation metric, to see if they meet the
success criteria for the target application.

In the (usual) case that the system does not meet the success criteria the first
time around, there are then two additional steps needed:

115

116 ■ Model-Based Machine Learning

7. Diagnose issues which are reducing prediction accuracy. Visualisation
is a powerful tool for bringing to light problems with data, models or
inference algorithms. Inference issues can also be diagnosed using syn-
thetic data sampled from the model (as we saw in Chapter 2). At this
stage, is may also be necessary to diagnose performance issues if the
inference algorithm is taking too long to complete.

8. Refine the system – this could mean refining the data, model, visu-
alisations, inference or evaluation.

These two stages need to be repeated until the system is performing at a
level necessary for the intended application. Model-based machine learning
can make this repeated refinement process much quicker when using automatic
inference software, since it is easy to extend or modify a model and inference
can then be immediately applied to the modified model. This allows for rapid
exploration of a number of models each of which would be very slow to code
up by hand.

The stages of this machine learning life cycle can be illustrated in a flow
chart:

Real-world
system

Yes

Inference

Evaluation Metrics
Good

enough?

Refinements to
data, model or

inference

No

Data Model
Visualise

Gather
knowledge

Gather
data

Done!

Debug &
diagnose

Queries

As we move on to our next case study, keep this life cycle flowchart in mind – it
will continue to be useful as a template for solving machine learning problems.

CHA PT E R 3

Meeting Your Match

Every day, millions of players around the world log in to Xbox
Live®to play against each other in hundreds of different games.
Their enjoyment depends on being matched to other players of
comparable skill, so that they get a good gaming experience. So how
can we use model-based machine learning to automatically match
players of similar ability?

One of the great advantages of the online world for gaming is the ready
availability of opponents at any time of day or night. An important require-
ment for Xbox Live is the capability to find opponents with comparable skill
levels, in order that players have an enjoyable gaming experience. This require-
ment means the system must have a way of estimating the skills of players.
However, achieving this presents some significant challenges – in particular, a
game is not always won by the stronger player. Many games involve an ele-
ment of chance, and in a particular game luck may favour the weaker player.
More generally, a player’s performance can vary from one game to the next,
due to factors such as tiredness or fluctuating enthusiasm. We therefore can-
not assume that the winner of a particular game has a higher skill level than
the loser. On the other hand we do expect a stronger player to win against a
weaker player more often than they lose, so the game outcome does give us
useful information about the players’ relative skills.

117

118 ■ Model-Based Machine Learning

FIGURE 3.1: Xbox Live®provides a real-time matchmaking service for online gaming.

Another challenge concerns new players to the game. We have little idea
of their ability until we see the outcomes of some games. New players are
not always poor players – they may have played under different identities
or have experience of other similar games. Either way, it is essential to have
reasonably reliable assessments of their skills after only a few games so that
they can be matched against players of comparable skill. This ensures that
new players have a good gaming experience and so are more likely to continue
to subscribe to Xbox Live. Rapid assessment of skills is therefore important
to the commercial success of the service.

A final challenge arises when we have games played by teams of players.
We observe that one team wins and the other loses, and we must use this
information to learn about the skills of the individual players. At first it might
seem impossible to solve this ‘credit assignment’ problem. But we can make use
of the fact that, particularly in online games, the composition of teams changes
frequently and so over the course of multiple games we can disambiguate the
contributions of individual players to the successes and failures of the teams
in which they play.

We will need to work with the data available in Xbox Live, when doing

Meeting Your Match ■ 119

match-making amongst the players. Table 3.1 shows a sample of the kind of
data that we need to work with, in this case from the Xbox game Halo 2.

Player1 Player2 Player1Score Player2Score Outcome Id Variant

Gamer00123 Gamer00103 0 2 Player2Win 282203 Slayer

Gamer00044 Gamer00094 2 4 Player2Win 282201 Slayer

Gamer00139 Gamer00074 2 5 Player2Win 282205 Slayer

Gamer00095 Gamer00140 2 2 Draw 282211 Slayer

Gamer00120 Gamer00141 5 1 Player1Win 282209 Slayer

Gamer00142 Gamer00143 5 2 Player1Win 282208 Slayer

Gamer00144 Gamer00122 1 1 Draw 282212 Slayer

Gamer00116 Gamer00145 5 0 Player1Win 282207 Slayer

TABLE 3.1: Sample of the available data, showing ten games in the ‘Head
to Head’ variant of Halo2. The columns give the anonymized player ids, their
scores, the game outcome, the game id and the variant of the game that was
played.

In summary, our goal is to use data of the above form to infer the skills
of individual players, in order to match players against others of a similar
skill level in future games. A secondary goal is to use the inferred skill levels
in order to create ‘leader boards’ showing the ranking of players within a
tournament or league. The system must also allow for the fact that players
may play one-on-one or may work together in teams. Furthermore, we must
solve this problem in a way that makes efficient use of the game outcome
results so that we can arrive at an accurate assessment of a player’s skill after
observing a relatively small number of games involving that player.

The models developed in this chapter are based on the Trueskill model
from Herbrich et al. [2007]. You can recreate all results in this chapter using
the companion source code [Diethe et al., 2019].

120 ■ Model-Based Machine Learning

3.1 MODELLING THE OUTCOME OF GAMES

Our goal is to build a system which can assess the skills of players in online
gaming. As a first step towards this, we need to look at the simpler problem
of predicting the outcome of a game where we already know the skills of the
players involved. This will allow us to develop many of the concepts required
to solve the more complex problem of determining skills.

Suppose that Jill is going to play a game of Halo against Fred on Xbox
Live. In Chapter 2 we represented a person’s software development skills by
using a binary variable for each skill, indicating whether the person possessed
that particular skill or not. This approach is insufficient when we consider
a person’s skill at a typical Xbox game such as Halo, since there is a wide
spectrum of possible skill levels. Instead, it is more appropriate to represent a
person’s skill using a continuous value. The first of our modelling assumptions
is therefore:

1 Each player has a skill value, represented by a continuous variable.

The stronger player is not always the winner.

We denote the skill of Jill by
Jskill and the skill of Fred by
Fskill. Let us suppose that Fred
has a skill level of Fskill = 12.5
while Jill has a skill of Jskill = 15.
These numbers appear to be com-
pletely arbitrary, and the scale on
which we measure skill is indeed ar-
bitrary. What matters, however, is
how the skill values compare be-
tween players, and we shall see in
a moment how to give meaning to
such numbers. We have given Jill
a higher skill value to indicate that
she is the stronger player.

Now we run into the first of our
challenges, which is that the stronger player in a game such as Halo is not
always the winner. If Jill and Fred were to play lots of games against each
other we would expect Jill to win more than half of them, but not necessarily
to win them all. We can capture this variability in the outcome of a game by
introducing the notion of a performance for each player, which expresses how
well they played on a particular game. The player with the higher performance
for a specific game will be the winner of that game. A player with a high
skill level will tend to have a high performance, but their actual performance
will vary from one game to another. As with skill, the performance is most
naturally expressed using a continuous quantity. We denote Jill’s performance
by Jperf and Fred’s performance by Fperf. Figure 3.2 shows Jperf plotted
against Fperf. For points lying in the region above the diagonal line Jill is the
winner, while below the diagonal line Fred is the winner.

Meeting Your Match ■ 121

Fred's Performance

0 10 20 30

-5

0

5

10

15

20

25

30

35

Jill Wins

Fred Wins

FIGURE 3.2: Schematic illustration of the values of Jill’s performance and
Fred’s performance showing the areas in which Jill would be the winner and
in which Fred would be the winner.

3.1.1 Modelling how well someone plays

We can think of a person’s skill as their average performance across many
games. For example, Jill’s skill level of 15 means her performance will have an
average value of 15, but on a particular game it might be higher or lower. Once
again we have to deal with uncertainty, and we shall do this using a suitable
probability distribution. We anticipate that larger departures of performance
from the average will be less common, and therefore have lower probability,
than values which are close to the average. Intuitively the performance should
therefore take the form of a ‘bell curve’ as illustrated in Figure 3.3 in which
the probability of a given performance value falls off on either side of the skill
value.

Because performance is a continuous quantity, this bell curve is an ex-
ample of a probability density, which we encountered previously in Panel 2.4.
Although we have sketched the general shape of the bell curve, to make further
progress we need to define a specific form for this curve. There are many pos-
sible choices, but there is one which stands out as special in having some very
useful mathematical properties. It is called the Gaussian probability density
and is the density function for the Gaussian distribution.

In fact, the Gaussian distribution has so many nice properties that it is
one of the most widely used distributions in the fields of machine learning
and statistics. A particular Gaussian distribution is completely characterized
by just two numbers: the mean, which sets the position of the centre of

122 ■ Model-Based Machine Learning

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

skill

FIGURE 3.3: Illustration of a ‘bell curve’ showing how the performance of a
player can vary randomly around their skill value.

the curve, and the standard deviation, which determines how wide the
curve is (see Panel 3.1 for discussion of these concepts). Figure 3.4 shows
a Gaussian distribution, illustrating the interpretation of the mean and the
standard deviation.

performance

-5 0 5 10 15 20 25 30 35

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

FIGURE 3.4: Plot of the Gaussian distribution having mean of 15 and stan-
dard deviation of 5, showing the mean (red line) and the values which differ
from the mean by plus-or-minus one standard deviation (green lines). There is
roughly a 68.2% probability of a random variable with this distribution hav-
ing a value lying within one standard deviation of the mean (i.e. between the
two green lines), a 95.4% probability of the value lying within two standard
deviations of the mean (i.e. between 5 and 25), and a 99.7% probability of the
value lying within three standard deviations of the mean (i.e. between 0 and
30).

To understand the scale of the values on the vertical axis of Figure 3.4,

Meeting Your Match ■ 123

remember that the total area under a probability distribution curve must be
one. Note that the distribution is symmetrical about its maximum point –
because there is equal probability of being on either side of this point, the
performance at this central point is also the mean performance.

In standard notation, we write the mean as µ and the standard deviation
as σ. Using this notation the Gaussian density function can be written as

Gaussian(x;µ, σ2) =
1

(2π)1/2σ
exp

{
− (x− µ)2

2σ2

}
. (3.1)

The left hand side says that Gaussian(x;µ, σ2) is a probability distribution
over x whose value is dependent on the values of µ and σ. It is often convenient
to work with the square of the standard deviation, which we call the variance
and which we denote by σ2 (see Panel 3.1). We shall also sometimes use the
inverse of the variance τ = 1/σ2 which is known as the precision. For the
most part we shall use standard deviation since this lives on the same scale
(i.e. has the same units) as x.

Sometimes when we are using a Gaussian distribution it will be clear which
variable the distribution applies to. In such cases, we can simplify the notation
and instead of writing Gaussian(x;µ, σ2) we simply write Gaussian(µ, σ2). It
is important to appreciate that is simply a shorthand notation and does not
represent a distribution over µ and σ2.

Now let’s see how we can apply the Gaussian distribution to model a
single game of Halo between Jill and Fred. Figure 3.5 shows the Gaussian
distributions which describe the probabilities of various performances being
achieved by Jill and Fred in their Halo game. Here we have chosen the standard

performance

-5 0 5 10 15 20 25 30 35

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

FIGURE 3.5: Plot of the Gaussian distributions of performance for Jill (blue)
and Fred (red).

deviations of the two Gaussians to be the same, with perfSD = 5 (where
’perfSD’ denotes the standard deviation of the performance distribution). We

124 ■ Model-Based Machine Learning

Panel 3.1 – Mean, Variance, and Standard Deviation

Suppose we make multiple measurements of some quantity x, resulting in a
set of values x1, x2, . . . , xN . For example, we might measure the heights of
adults in the population. It can be very useful to summarise the properties
of this set of values by computing some simple statistics. One well-known
statistic is called the mean, and is defined by

mean =
x1 + x2 + . . .+ xN

N

=
1

N

N∑
n=1

xn. (3.2)

The mean is therefore simply the average of the values. Another useful statistic
is the variance which measures how much the values vary around the mean
value, and is defined by

variance =
(x1 − mean)2 + . . .+ (xN − mean)2

N

=
1

N

N∑
n=1

(xn − mean)2. (3.3)

If heights are measured in metres, then the units of the mean height would
again be metres, whereas the variance would have the units of metres-squared.
It is usually more useful to measure variation from the mean in the same
units that we measure the mean in, and so we can instead use the standard
deviation, which is given by the square root of the variance

standard deviation =
√
variance. (3.4)

The standard deviation would then have the units of metres, and would be
a more easily interpretable quantity because it would tell us directly about
the variability of heights within the population. For example, in a particular
population of people the mean height might be 1.64 metres and the standard
deviation might be 0.35 metres.
There is an important connection between the statistics of a data set and
the parameters of the probability distribution that gave rise to that data
set. Consider the Gaussian distribution in equation (3.1). If we take a very
large number of samples from this distribution, then the mean and variance
statistics of the samples will be almost exactly equal to the mean and vari-
ance parameters of the distribution (see Bishop [2006]). In fact, this is why
the parameters of the Gaussian distribution are called the ‘mean’ and ‘vari-
ance’ parameters. In general, the statistics of a very large set of samples from
any distribution can be computed directly from the distribution’s parameters,
without actually having to do any sampling.

Meeting Your Match ■ 125

shall discuss the significance of this choice shortly. The first question we can
ask is: “what is the probability that Jill will be the winner?”. Note that there
is considerable overlap between the two distributions, which implies that there
is a significant chance that the performance value for Fred would be higher
than that for Jill and hence that he will win the game, even though Jill has
a higher skill. You can also see that if the curves were more separated (for
example, if Jill had a skill of 30), then the chance of Fred winning would be
much reduced.

We have introduced two further assumptions into our model, and it is
worth making these explicit:

2 Each player has a performance value for each game, which is independent
from game to game and has an average value is equal to the skill of that
player. The variation in performance, which is the same for all players,
is symmetrically distributed around the mean value and is more likely
to be close to the mean than to be far from the mean.

3 The player with the highest performance value wins the game.

As written, assumption Assumption 2 expresses the qualitative knowledge
that a domain expert in online games might possess, and corresponds to a
bell-shaped performance distribution. This needs to be refined into a specific
mathematical form and for this we choose the Gaussian, although we might
anticipate that other bell-shaped distributions would give qualitatively similar
results.

This is a good moment to introduce our first factor graph for this chapter.
To construct this graph we start with the variable nodes for each random
variable in our problem. So far we have two variables: the performance of Fred,
which we denote by the continuous variable Fperf, and the performance for
Jill, denoted by Jperf. Each of these is described by a Gaussian distribution
whose mean is the skill of the corresponding player, and with a common
standard deviation of 5, and therefore a variance of 52:

p(Jperf) = Gaussian(Jperf; 15, 52)

p(Fperf) = Gaussian(Fperf; 12.5, 52). (3.5)

Note that, as in Section 2.6, we are using a lower-case p to denote a probability
density for a continuous variable, and will use an upper-case P to denote the
probability distribution for a discrete variable.

The other uncertain quantity is the winner of the game. For this we can use
a binary variable JillWins which takes the value true if Jill is the winner and
the value false if Fred is the winner. The value of this variable is determined
by which of the two variables Jperf and Fperf is larger – it will be true

is Jperf is larger or otherwise false. Using T for true and F for false as
before, we can express this distribution by

P (JillWins = T|Jperf, Fperf) =

{
1 if Jperf > Fperf,

0 otherwise.
(3.6)

126 ■ Model-Based Machine Learning

Since probabilities sum to one, we then have

P (JillWins = F|Jperf, Fperf) = 1− P (JillWins = T|Jperf, Fperf). (3.7)

We shall refer to the conditional probability in equation (3.6) as the
GreaterThan factor, which we shall denote by ‘¿’ when drawing factor graphs.
Note that this is a deterministic factor since the value of the child variable is
fixed if the values of both parent variables are known. Using this factor, we
are now ready to draw the factor graph. This has three variable nodes, each
with a corresponding factor node, and is shown in Figure 3.6.

Jperf Fperf

Jwins

Gaussian(15, 5²) Gaussian(12.5, 5²)

>

FIGURE 3.6: Factor graph for a game between two players, Fred and Jill,
with known skills.

3.1.2 Computing the probability of winning

We asked for the probability that Jill would win this game of Halo. We can
find an approximate answer to this question by using ancestral sampling –
refer back to Section 2.5.1 for a reminder of what this is. To apply ancestral
sampling in our factor graph we must first sample from the parent variables
Jperf and Fperf and then compute the value of the child variable Jwins.

Consider first the sampling of the performance Jperf for Jill. There are
standard numerical techniques for generating random numbers having a Gaus-
sian distribution of specified mean and variance. If we generate five samples
from Gaussian(x; 15, 52) and plot them as a histogram we obtain the result
shown in Figure 3.7a. Note that we have divided the height of each bar in
the histogram by the total number of samples (in this case 5) and set the
width of the histogram bins to be one. This ensures that the total area under
the histogram is one. If we increase the number of samples to 50, as seen in
Figure 3.7b, we see that the histogram roughly approximates the bell curve of
a Gaussian. By increasing the number of samples we obtain a more accurate
approximation, as shown in Figure 3.7c for the case of 500 samples, and in
Figure 3.7d for 5,000 such samples. We see that we need to draw a relatively
large number of samples in order to obtain a good approximation to the Gaus-
sian. When using ancestral sampling we therefore need to use a lot of samples

Meeting Your Match ■ 127

in order to obtain reasonably accurate results. This makes ancestral sampling
computationally very inefficient, although it is a straightforward technique
which provides a useful way to help understand a model or generate synthetic
datasets.

Having seen how to sample from a single Gaussian distribution we can now
consider ancestral sampling from the complete graph in Figure 3.6 representing
a single game of Halo between Jill and Fred. We first select a performance
Jperf for Jill on this specific game, corresponding to the top-level variable
node on the factor graph, by drawing a value from the Gaussian distribution

p(Jperf) = Gaussian(Jperf; 15, 52). (3.8)

Independently, we choose a performance value Fperf for Fred, which is also a
top-level variable node, by drawing a sample from the Gaussian distribution

p(Fperf) = Gaussian(Fperf; 12.5, 52). (3.9)

We then compute the value of the remaining variable JillWins using these
sampled values. This involves comparing the two performance values, and
if Jperf is greater than Fperf then JillWins is true, otherwise JillWins

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) 5 samples

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) 50 samples

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) 500 samples

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) 5,000 samples

FIGURE 3.7: Histograms of samples drawn from the Gaussian distribution
shown in Figure 3.4, with mean of 15 and standard deviation of 5.

128 ■ Model-Based Machine Learning

is false. If we repeat this sampling process many times, then the fraction
of times that JillWins is true gives (approximately) the probability of Jill
winning a game. The larger the number of samples over which we average, the
more accurate this approximation will be. Figure 3.8 shows a scatter plot of
the performances of our two players across 1,000 samples.

Fred's Performance

0 10 20 30

-5

0

5

10

15

20

25

30

35

Jill Wins

63.1%

Fred Wins

36.9%

FIGURE 3.8: Samples of Jill and Fred’s performances overlaid on the
schematic illustration from Figure 3.2. The cloud of samples is vertically cen-
tered on Jill’s skill of 15 and horizontally centered on Fred’s skill of 12.5. The
centre of the cloud is therefore above the diagonal and so more samples cor-
respond to Jill winning than to Fred winning.

For each game we independently select the performance of each player by
generating random values according to their respective Gaussian distributions.
Each of these games is shown as a point on the scatter plot. Also shown is
the diagonal line along which the two performances are equal. Points lying
below this line represent games in which Fred is the winner, while points lying
above the line are those for which Jill is the winner. We see that the majority
of points lie above the line, as we expect because Jill has a higher skill value.
By simply counting the number of points we find that Jill wins 63.1% of the
time.

Of course this is only an approximate estimate of the probability of Jill
winning. We can find the exact result mathematically by making use of the
equation for the Gaussian distribution (3.1), which tells us that the probability

Meeting Your Match ■ 129

of Jill being the winner is given by

P (Jperf > Fperf|Jskill, Fskill) = CumGauss

(
Jskill− Fskill√

2perfSD

)
.

(3.10)
Here CumGauss denotes the cumulative Gaussian function which is illus-
trated in Figure 3.9

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

0.16

FIGURE 3.9: The blue curve shows a Gaussian distribution with mean of zero
and a standard deviation of one. The area under this Gaussian up to the point
x is known as the cumulative Gaussian distribution and is shown by the red
curve, as a function of x. For example, at x = −1 the area of the shaded region
has the value 0.16, as indicated.

Using a numerical evaluation of this function we find that the probability
of Jill winning the game is 63.8%, which is close to the value of 63.1% that
we obtained by ancestral sampling.

We noted earlier that the scale on which skill is measured is essentially
arbitrary. If we add a fixed number to the skills of all the players this would
leave the probabilities of winning unchanged since, from equation (3.10), they
depend only on the difference in skill values. Likewise, if we multiplied all
the skill values by some fixed number, and at the same time we multiplied
the parameter perfSD by the same number, then again the probabilities of
winning would be unchanged. All that matters is the difference in skill values
measured in relation to the value of perfSD.

We have now built a model which can predict the outcome of a game for
two players of known skills. In the next section we will look at how to extend
this model to go in the opposite direction: to predict the player skills given
the outcome of one or more games.

REVIEW OF CONCEPTS

Gaussian distribution A specific form of probability density over a con-
tinuous variable that has many useful mathematical properties. It is governed

130 ■ Model-Based Machine Learning

by two parameters – the mean and the standard deviation. The mathematical
definition of a Gaussian is given by equation (3.1)

mean The average of a set of values. See Panel 3.1 for a more detailed
discussion of the mean and related concepts.

standard deviation The square root of the variance.

variance A measure of how much a set of numbers vary around their average
value. The variance, and related quantities, are discussed in Panel 3.1.

precision The inverse of the variance.

statistics A statistic is a function of a set of data values. For instance the
mean is a statistic whose value is the average of a set of values. Statistics can
be useful for summarising a large data set compactly.

cumulative Gaussian function The value of the cumulative Gaussian
function at a point x is equal to the area under a zero-mean unit-variance
Gaussian from minus infinity up to the point x. It follows from this definition
that the gradient of the cumulative Gaussian function is given by the Gaussian
distribution.

Meeting Your Match ■ 131

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

3.1 Write a program or create a spreadsheet which produces 10,000 samples
from a Gaussian with zero mean and a standard deviation of 1 (most
languages/spreadsheets have built in functions or available libraries for
sampling from a Gaussian). Compute the percentage of these samples
which lie between -1 and 1, between -2 and 2 and between -3 and 3.
You should find that these percentages are close to those given in the
caption of Figure 3.4.

3.2 Construct a histogram of the samples created in the previous exercise
(like the ones in Figure 3.7) and verify that it resembles a bell-shaped
curve.

3.3 Compute the mean, standard deviation and variance of your samples,
referring to Panel 3.1. The mean should be close to zero and the standard
deviation and variance should both be close to 1 (since 12 = 1).

3.4 Produce 10,000 samples from the Gaussian prior for Jill’s performance
with mean 15 and standard deviation 5. Then produce a second set of
samples for Fred’s performance using mean 12.5 and standard deviation
5. Plot a scatter plot like Figure 3.8 where the Y co-ordinate of each point
is a sample from the first set and the X co-ordinate is the corresponding
sample from the second set (pairing the first sample from each set, the
second sample from each set and so on). Compute the fraction of samples
which lie above the diagonal line where X=Y and check that this is close
to the value in Figure 3.8. Explore what happens to this fraction when
you change the standard deviations – for example, try reducing both to
2 or increasing both to 10.

3.5 Using Infer.NET, create double variables Y and X with priors of
Gaussian(15, 52) and Gaussian(12.5, 52) respectively, to match the pre-
vious exercise. Define a third random variable Ywins equal to Y > X.
Compute the posterior distribution over Ywins and verify that it is close
to the fraction of samples above the diagonal from the previous exercise.

132 ■ Model-Based Machine Learning

3.2 INFERRING THE PLAYERS’ SKILLS

So far we have assumed that we know the skills of Jill and Fred, and we have
used these skills to compute the probability that each of the players would be
the winner. In practice, we have to reason backwards: we observe who wins
the game and need to use this information to learn about the skill values of
the players. We therefore turn to the problem of learning player skills.

In any game, seeing who wins and who loses tells us
about the skill of the players.

Given the outcome of a game it
would seem reasonable to increase
the skill value for the winner and
decrease the skill value for the loser.
What is less clear, however, is how
big an adjustment we should make.
Intuitively we can reason as follows.
Suppose that Jill is the winner of the
game. If Jill’s skill is significantly
higher than Fred’s, then it is un-
surprising that Jill should be the
winner, and so the change in skill
values should be relatively small. If
the skills are similar then a larger
change would be justified. However,
if Jill’s skill is significantly less than
Fred’s then the game outcome is
very surprising. The outcome sug-
gests that our current assessments of the skill values are not very accurate,
and therefore that we should make a much larger adjustment in skill values.
Put concisely, the degree of surprise gives an indication of how big a change
in skill values should be made. We will see that performing inference in a
suitable model automatically gives this kind of behaviour.

3.2.1 Modelling skills

We have already noted that skill is an uncertain quantity, and should therefore
be included in the model as a random variable. We need to define a suitable
prior distribution for this variable. This distribution captures our prior knowl-
edge about a player’s skill before they have played this particular game. For
a new player, this distribution would need to be broad and cover the full
range of skills that the player might have. For a more established player, we
may already have a good idea of their skill and so the distribution would
be narrower. Because skill is a continuous variable, we can once again use a
Gaussian distribution to define this prior. This represents a modification to
our first modelling assumption, which becomes:

1 Each player has a skill value, represented by a continuous variable with
a Gaussian prior distribution.

Meeting Your Match ■ 133

Let us return to our game of Halo between Jill and Fred. So far we have
assumed that the skill values for Jill and Fred are known and have values of
15 and 12.5 respectively. For the remainder of the chapter we shall instead
assume that the skills for Jill and Fred are not known, but have uncertainty
represented by a Gaussian distribution. For Jill, we will now assume a mean
skill of 120 with a standard deviation of 40 – this would typically arise if Jill
is a relatively new player and so there is a lot of uncertainty in her skill . For
Fred, we will now assume a mean skill of 100 with a standard deviation of 5
which would be reasonable if Fred is a more established player whose skill is
more precisely known. We must therefore extend our model by introducing
two more uncertain variables Jskill and Fskill: the skills of Jill and Fred.
Each of these variables will have its own Gaussian distribution and therefore
its own factor in the factor graph. The factor graph for our extended model
is shown in Figure 3.10.

The model in Figure 3.10 was developed by Herbrich et al. [2007] who called
it the TrueSkill model. As a reminder, the assumptions that are encoded in
the model are all shown together in Figure 3.11.

Jskill Fskill

Jperf Fperf

Jwins

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.10: TrueSkill model for two players in a game, with uncertain
skills. Here we have used the notation Gaussian(·, 52) to describe a factor
whose distribution is Gaussian with a mean given by the parent variable, in
this case the corresponding skill variable, and a standard deviation of 5.

134 ■ Model-Based Machine Learning

1 Each player has a skill value, represented by a continuous variable
with a broad Gaussian distribution.

2 Each player has a performance value for each game, which is inde-
pendent from game to game and has an average value is equal to
the skill of that player. The variation in performance, which is the
same for all players, is symmetrically distributed around the mean
value and is more likely to be close to the mean than to be far from
the mean.

3 The player with the higher performance value wins the game.

FIGURE 3.11: The three assumptions encoded in our model.

Having stated our modelling assumptions explicitly, it is worth taking a
moment to review them. Assumption 1 says that a player’s ability at a par-
ticular type of game can be expressed as a single continuous variable. This
seems reasonable for most situations, but we could imagine a more complex
description of a player’s abilities which, for example, distinguishes between
their skill in attack and their skill at defence. This might be important in
team games (discussed later) where a strong team may require a balance of
players with strong attack skills and those with good defensive skills. We also
assumed a Gaussian prior for the skill variable. This is the simplest probabilis-
tic model we could have for a continuous skill variable, and it brings some nice
analytical and engineering properties. However, if we looked at the skills of a
large population of players we might find a rather non-Gaussian distribution
of skills, for example, new players may often have low skill but, if they have
played a similar game before, may occasionally have a high skill.

Similarly, Assumption 2 considers a single performance variable and again
assumes it has a Gaussian distribution. It might well be the case that players
can sometimes have a seriously ‘off’ day when their performance is way be-
low their skill value, while it would be very unlikely for a player to perform
dramatically higher than their skill value. This suggests that the performance
distribution might be non-symmetrical. Another aspect that could be im-
proved is the assumption that the variance is the same for all players – it is
likely that some players are more consistent than others and so would have
correspondingly lower variance.

Finally, Assumption 3 says that the game outcome is determined purely
by the performance values. If we had introduced multiple variables to charac-
terize the skill of a player, there would presumably each have a corresponding
performance variable (such as how the player performed in attack or defence),
and we would need to define how these would be combined in order to deter-
mine the outcome of a game.

Meeting Your Match ■ 135

3.2.2 Inference in the TrueSkill model

Once a game has been played, we aim to use the outcome of the game to
infer the updated skill distribution for the players. This involves solving a
probabilistic inference problem to calculate the posterior distribution of each
player’s skill, taking account of the new information provided by the result of
the game. Although the prior distribution is Gaussian, it turns out that the
corresponding posterior distribution is not Gaussian. The following section
shows how to compute the posterior distribution for the skill and why it is
not Gaussian – feel free to skip it or return to it later if you prefer.

InferenceInference deep-dive
In this optional section, we see how to do exact inference in the model as
defined so far, and then we see why exact inference is not useable in practice.
If you want to focus on modelling, feel free to skip this section.

Now that we have the factor graph describing our model, we can set the
variable Jwins according to the observed game outcome and run inference in
order to compute the marginal posterior distributions of the skill variables
Jskill and Fskill. The graph has a tree structure (there are no loops) and
so we have already seen in Chapter 2 that we can solve this problem using
belief propagation.

Consider the evaluation of the posterior distribution for Jskill in the
case where Jill won the game (Jwins is true). Using the belief propagation
algorithm we have to evaluate the messages shown in Figure 3.12. Message (1)
is just given by the Gaussian factor itself. Similarly, message (2) is just the
product of all incoming messages on other edges of the Fskill node, and since
there is only one incoming message this is just copied to the output message.
These first two messages are summarized in Figure 3.13.

Next we have to compute message (3) in Figure 3.12. The belief propaga-
tion algorithm tells us to multiply the incoming message (2) by the Gaussian
factor and then sum over the variable Fskill. In this case the summation
becomes an integration because Fskill is a continuous variable. We can gain
some insight into this step by once again considering a generative viewpoint
based on sampling. Imagine that we draw samples from the Gaussian distri-
bution over Fskill. Each sample is a specific value of Fskill and forms the
mean of a Gaussian distribution over Fperf. In Figure 3.14a we consider three
samples of Fskill and plot the corresponding distributions over Fperf. To
compute the desired outgoing message we then average these samples, giving
the result shown in Figure 3.14b. This represents an approximation to the
marginalization over Fskill, and would become exact if we considered an
infinite number of samples instead of just three.

The sampling approximation becomes more accurate as we increase the
number of samples, as shown in Figure 3.14c and Figure 3.14d. In this final
figure the resulting distribution looks almost Gaussian. This is not a coinci-
dence, and in fact the calculation of the outgoing message can be worked out
exactly (see Equation (2.115) in Bishop [2006]) with the result that the outgo-

136 ■ Model-Based Machine Learning

(5)

(9)

(8)

(1)

(2)

(7)

(6)

(3)

(4)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.12: The messages which arise in the application of belief propaga-
tion to the evaluation of the updated distribution for Jskill.

ing message is also a Gaussian whose mean is the mean of the distribution of
Fskill and whose variance is the sum of the variances of Fskill and Fperf:
52+52. This process of ‘smearing’ out one Gaussian using the other Gaussian
is an example of a mathematical operation called convolution. Message (4) is
just a copy of message (3) as there is only one incoming message to the Fperf
node. Since we observe that Jwins is true, message (5) is a Bernoulli point
mass at the value true. These three messages are illustrated in Figure 3.15.

Now let’s turn to computing message (6). The observation that Jill wins
(Jwins=true) applies a constraint that the performance of Jill must be higher
than that of Fred, so Jperf > Fperf. This constraint is applied when we
multiply in the GreaterThan factor with the value of Jwins set to true. Fig-
ure 3.16 shows the effect of multiplying in this constraint to the Gaussian
message coming from Fperf. In the figure, the product is always zero below
the diagonal line – in other words, where Jpref <= Fperf. This area is set
to zero because it corresponds to Fred winning, which has zero probability
because it contradicts our observation that Jill won. So we end up with a
Gaussian ’bump’ truncated at the diagonal.

To compute message (6), we have to integrate the product in Figure 3.16
over Fperf, to give a message which is a function of Jperf. You can visualize

Meeting Your Match ■ 137

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.13: Messages (1) and (2) in the application of belief propagation
to the evaluation of the updated distribution for Jskill.

this message by imagining looking the truncated Gaussian bump from the
direction of the axis for Jill’s performance and summing over what can be
seen from each point. The resulting message is zero below about 80, and then
curves up to near one at about 120 and then remains there up to infinity,
as shown in Figure 3.17. The reader should take a moment to confirm that
shape of this function is what would be expected from integrating Figure 3.16
over the variable Fperf. Mathematically, for each value of Jperf a truncated
Gaussian distribution is being integrated, this is equivalent to the evaluation
of the cumulative Gaussian that we introduced back in equation (3.10), and
so this message can be evaluated analytically (indeed, this is how Figure 3.17
was plotted).

For another interpretation of the shape of this message, suppose we knew
that Fperf was exactly 100. Given that Jill won, this tells us that Jill’s per-
formance Jperf must be some number greater than 100. This would mean a
message in the form of a step, with the value zero below 100 and some positive
constant above it. Since, we don’t know that Fperf is exactly 100, but only
know that it is likely to be near 100, this smears out the step into the smooth
function of Figure 3.17.

Because message (6) continues up to infinity, it forms what we call an

138 ■ Model-Based Machine Learning

x

80 85 90 95 100 105 110 115 120 125

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) 3 samples

x

70 80 90 100 110 120 130

0.000

0.010

0.020

0.030

0.040

0.050

(b) 3 samples (averaged)

x

70 80 90 100 110 120 130

0.000

0.010

0.020

0.030

0.040

0.050

(c) 6 samples (averaged)

x

70 80 90 100 110 120 130

0.000

0.010

0.020

0.030

0.040

0.050

(d) 100 samples (averaged)

FIGURE 3.14: Illustration of the sampling approximation to the computation
of message (3) in Figure 3.12. Panel (a) shows three Gaussians whose means
have themselves been sampled from Gaussian(100, 52), while panel (b) shows
the average of these three samples. As we increase the number of samples, so
the average gets progressively closer to being Gaussian, as seen in panels (c)
and (d).

improper distribution, which is a distribution whose area cannot be nor-
malized to sum to one. In belief propagation, messages are allowed to be
improper, provided that they do not cause posterior marginal distributions
to become improper. For example, in this case, the improper message will be
multiplied by a proper normalized message, giving a posterior which can be
normalized and so is proper.

Message (7) is just a copy of message (6) since there is only one incom-
ing message to the Jperf node. These messages are illustrated in Figure 3.18
Message (8) is found by multiplying the Gaussian factor describing the per-
formance variability by the incoming message (7) and then integrating over
Jperf. This again is a convolution, and has an exact solution again in the form
of a cumulative Gaussian. Effectively it is a blurred version of the incoming
cumulative Gaussian message which has been smeared out by the variance
of the Gaussian performance factor. Finally, message (9) is the Gaussian dis-
tribution for the skill prior. These messages are summarized in Figure 3.19.

Meeting Your Match ■ 139

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(5) Bern(1.0)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.15: Messages (3), (4) and (5) in the application of belief propaga-
tion to the evaluation of the updated distribution for Jskill.

To obtain the marginal distribution of Jskill we then multiply messages
(8) and (9). Because this is the product of a Gaussian and a cumulative
Gaussian the result is a bump-like distribution which is not symmetrical,
and therefore is not a Gaussian. These messages, and the resulting marginal
distribution for Jskill, are shown in Figure 3.20.

We seem to have solved the problem of finding the posterior distribution
for Jskill. We can also pass messages in the opposite direction around the
graph to obtain the corresponding posterior distribution for Fskill. These
posterior distributions can be expressed exactly as the product of a Gaussian
and a cumulative Gaussian and so require four parameters to describe them,
where the two additional parameters come from the cumulative Gaussian.

3.2.3 A problem with using exact inference

We now have a way to compute posterior distributions over the skills of our
players. The problem is that these posterior distributions are not Gaussian.
Instead, they have a more complex form of distribution which requires four
numbers to express, instead of two for a Gaussian. This difference causes a ma-
jor problem if we imagine, say, Jill going on to play another game with a new

140 ■ Model-Based Machine Learning

FIGURE 3.16: Plot of the result of multiplying the GreaterThan factor by
messages (4) and (5) and then summing over message (5). Note that this plot
represents an un-normalized distribution, and so no vertical scale has been
shown.

Jperf

-40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

FIGURE 3.17: The exact Belief Propagation message (6) from the
GreaterThan factor to the Jperf variable, which is given by a cumulative
Gaussian.

player. Before the game with Fred, our uncertainty in the value of Jskill was
expressed as a Gaussian distribution, which has two parameters (the mean and
the variance). After she has played against Fred the corresponding posterior
distribution is expressed as a more complex distribution with four parameters.
Now suppose that Jill plays another game of Halo against Alice. We can again

Meeting Your Match ■ 141

(5) Bern(1.0)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(6) CumGauss((x - 100)/5√2)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(7) CumGauss((x - 100)/5√2)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.18: Messages (6) and (7) in the application of belief propagation
to the evaluation of the updated distribution for Jskill.

represent this by a factor graph similar to Figure 3.10, except that the factor
describing our current uncertainty in Jskill is now the posterior distribution
resulting from the game against Fred. When we run inference in this new
graph, to take account of the outcome of the game against Alice, the new pos-
terior marginal will be an even more complex distribution which requires six
parameters (to be specific, a product of a Gaussian and two different cumula-
tive Gaussians). Each time Jill plays a game of Halo the distribution over her
skill value requires two additional parameters to represent it, and the number
of parameters continues to grow as she plays more and more games. This is
not a practical approach to use in an engineering application.

Notice that this problem would not arise if the posterior distribution for
the variable of interest had the same form as the prior distribution. In some
probabilistic models we are able to choose a form of prior distribution, known
as a conjugate prior, such that the posterior ends up having the same form as
the prior. Take a look at Panel 3.2 to learn more about conjugate distributions.

From a message-passing perspective, conjugacy means that the product of
all messages arriving at a variable node has the same form as the prior message.
This general means that all the incoming messages have the same form as the
prior message. In our model, the upwards message from the GreaterThan

142 ■ Model-Based Machine Learning

(5) Bern(1.0)

(8) CumGauss(•)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(7) CumGauss((x - 100)/5√2)

(6) CumGauss((x - 100)/5√2)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(9) Gaussian(120, 40²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.19: Messages (8) and (9) in the application of belief propagation
to the evaluation of the updated distribution for Jskill.

Jskill

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

FIGURE 3.20: Plot of the exact message (8) in blue, the exact message (9) in
red. Also shown in green is the product of these two messages, which gives the
exact marginal over Jskill. Note that this exact marginal is non-Gaussian.

Meeting Your Match ■ 143

factor is not Gaussian, and so nor is the one up to the Jskill variable. This
means that the prior Gaussian distribution is not a conjugate distribution for
Jskill.

Without conjugacy, it is necessary to introduce some form of approxima-
tion, to allow the posterior of Jskill to remain Gaussian. In the next section,
we will describe a powerful algorithm that extends belief propagation by al-
lowing messages to be approximated even when they are not conjugate. This
algorithm will not only solve the inference problem with this model, but turns
out to be applicable to a wide variety of other probabilistic models as well -
including every single model in this book!

REVIEW OF CONCEPTS

convolution The convolution of a function f with a function g measures
the overlap between f and a version of g which is translated by an amount a.
It is expressed as a function of a. For more information see Wikipedia.

improper distribution A distribution whose area does not sum to one.

conjugate For a given likelihood function, a prior distribution is said to be
conjugate if the corresponding posterior distribution has the same functional
form as the prior.

144 ■ Model-Based Machine Learning

Panel 3.2 – Conjugate distributions

We can illustrate the idea of a conjugate distribution by considering the fol-
lowing example. Suppose we are selling items through a web page and we want
to know the probability that a user will click on the ‘buy’ button. Let us de-
note this probability by x. The probability that they won’t click is then 1−x.
Note that this is just the Bernoulli distribution that we saw in Chapter 1.
Suppose we collect data from multiple visitors to our web page, and we find
that N of them click on the button and M of them do not. If we assume
that the visits to the web page are independent, then the conditional proba-
bility of seeing this data, given the value of x, is obtained by multiplying the
probabilities of each click/non-click event, so that

P (data|x) = xN (1− x)M . (3.1)

If we wish to learn the value of x from this data, we need to define a prior
probability density p(x). There is a particular form for this prior which makes
the calculation especially easy, namely if we choose p(x) to have the same
form as equation (3.1), that is:

p(x) ∝ xA(1− x)B (3.2)

where A and B are parameters. In this case the corresponding posterior dis-
tribution is then, from Bayes’ rule,

p(x|data) ∝ P (data|x)× p(x)

∝ xA+N (1− x)B+M (3.3)

and so the posterior distribution has the same functional form as the prior
distribution, but with A replaced by A +N and B replaced by B +M . The
prior distribution (3.2) is said to be conjugate to the Bernoulli distribution. In
fact, you can see that this prior distribution is exactly the beta distribution
that we introduced in Section 2.6.
There are many other examples of conjugate distributions [Bishop, 2006]. For
instance, the conjugate prior for the mean of a Gaussian is just another Gaus-
sian, while the conjugate prior for the precision of a Gaussian is called a
Gamma distribution, which we will meet in Chapter 4. For the simple murder
mystery of Chapter 1 the prior distribution was a Bernoulli, which is conju-
gate to the conditional distribution representing the probability of the murder
weapon given the identity of the murderer.
When running inference on a factor graph, we can think of conjugacy as a
local property between pairs of nodes. To prevent message complexity from
growing, we will need to find an approximation to an outgoing message when-
ever we have a non-conjugate relationship between a parent distribution and
the corresponding child distribution.

Meeting Your Match ■ 145

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

3.1 Reproduce Figure 3.14 by plotting the average of K Gaussian distri-
butions each with standard deviation is 5 and with mean is given by
a sample from a Gaussian(100, 52). Do this for K = 3,K = 6 and
K = 100.

3.2 Referring to Panel 3.2, use Bayes’ theorem to compute the posterior
distribution over x (the probability of clicking on the buy button) given
that N = 20 people do click on the button but M = 100 people do
not click on it. Assume a Beta(1, 1) prior distribution. Notice that this
is a conjugate prior and so the posterior distribution is also a beta
distribution.

3.3 [Advanced] Show that the convolution of two Gaussian distributions is
also a Gaussian distribution whose variance is the sum of the variances
of the two original distributions. Section 2.3.3 in Bishop [2006] should
help.

146 ■ Model-Based Machine Learning

3.3 A SOLUTION: EXPECTATION PROPAGATION

We have seen that belief propagation allows us to calculate the exact marginal
posterior distribution for the variable Jskill in the model of Figure 3.10.
Whereas the prior distribution for Jskill is a Gaussian described by two
parameters, the posterior distribution is not Gaussian but is a more complex
distribution requiring four parameters. To stop the number of parameters in-
creasing after every game, we need a way to approximate this true posterior
by a distribution having a fixed number of parameters, and for this we choose
the Gaussian. The posterior distribution will then have the same functional
form as the prior, mimicking the behaviour of a conjugate prior. If we can
achieve this, we will be able to treat the resulting approximate posterior dis-
tribution as the prior distribution for the next game. Then the skill for each
player will always be represented by a Gaussian distribution governed by just
two parameters.

The first question is how to approximate a non-Gaussian distribution by
a Gaussian. A simple solution is to find the mean and the variance of the
non-Gaussian distribution and then to choose as our approximation a Gaus-
sian having the same mean and variance. This turns out to be a sensible
approximation, which can be derived formally by optimizing a measure of the
dissimilarity of two probability distributions [Bishop, 2006; Minka, 2005].

We might be tempted then just to approximate the exact posterior distri-
bution for Jskill by a Gaussian. Although this will work satisfactorily for the
factor graph of Figure 3.10 it will break down again as we go to more complex
factor graphs (such as those we will encounter later in this chapter). Messages
with simple functional forms tend to become more complex as a result of pass-
ing through factors. As we extend our model to larger and more sophisticated
graphs we quickly arrive at situations where messages cannot be evaluated ex-
actly. Such problems can be avoided by making our approximations locally at
each factor node, so that all messages have the desired distribution type. This
ensures that factors can be composed together into arbitrary graphs, as long
as each factor is capable of sending approximate messages to all neighbouring
variable nodes using the appropriate types of distribution.

The following section goes into the mathematical details of this kind of
approximate inference algorithm. If you want to skip these details, feel free to
go to the next section.

Inference Inference deep-dive
In this optional section, we introduce the approximate inference technique of
expectation propagation, which we will use extensively in this book. If you
want to focus on modelling, feel free to skip this section.

Returning to Figure 3.12 (which is reproduced in Figure 3.21 for conve-
nience), we see that message (6) was the first message that we encountered
which was non-Gaussian. Our goal is therefore to approximate message (6)
by a Gaussian, thereby ensuring that all subsequent messages will also be
Gaussian distributions.

Meeting Your Match ■ 147

(5)

(9)

(8)

(1)

(2)

(7)

(6)

(3)

(4)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.21: The messages which arise in the application of belief propa-
gation to the evaluation of the updated distribution for Jskill. (Reproduced
from Figure 3.12.)

While this seems like a desirable goal, there also seems to be a significant
obstacle – the exact form of message (6) as seen in Figure 3.17 does not look
at all Gaussian! In fact, its mean and variance are not even well defined (they
are both infinite). The key to finding a sensible Gaussian approximation is
to notice that the approximate version of message (6) will subsequently be
passed through the graph as modified forms of messages (7) and (8) and will
then be multiplied by the downward message (9) in order to determine the
(approximate) posterior distribution of Jskill. Our goal will therefore be to
make the Gaussian approximation to message (6) over Jperf be most accurate
in those regions which are considered more probable by the information coming
from other parts of the graph. As we have just discussed, however, we need
to keep our approximation local to the region of the graph where the message
is generated. Message (6) is sent to the node Jperf and so we can choose our
approximation so as to maximize the accuracy of the marginal distribution of
Jperf. This is obtained by multiplying message (6) by the downward message
on the same edge in the graph, which can be evaluated as shown in Figure 3.22.
Note that these same messages are needed to find the posterior marginal for
Fskill, so there is no additional overhead introduced by evaluating them.

148 ■ Model-Based Machine Learning

Gaussian(120, 40²)

Gaussian(120, 40²)

Gaussian(120, 40² + 5²)

Gauss(120, 40² + 5²)

(6)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.22: Evaluation of the context message that will be used to find a
Gaussian approximation for message (6).

Let’s consider the piece of the factor graph close to the Jperf node in
more detail, as seen in Figure 3.23. Here e denotes the exact message (6) as
seen previous in Figure 3.20, c denotes the downward ‘context’ message, and g
denotes our desired Gaussian approximation to message e. These messages are
all just functions of the variable Jperf. We have already seen that we cannot
simply approximate message e by a Gaussian since message e has infinite mean
and variance. Instead we make a Gaussian approximation for the marginal
distribution of Jperf. The exact marginal is given by the product of incoming
messages ce. We therefore define our approximate message g to be such that
the product of the messages c and g gives a marginal distribution for Jperf
which is a best Gaussian approximation to the true marginal, so that

cg = Proj (ce) . (3.1)

Here Proj() denotes ‘projection’ and represents the process of replacing a non-
Gaussian distribution with a Gaussian having the same mean and variance.
This can be viewed as projecting the exact message onto the ‘nearest’ message
within the family of Gaussian distributions. Dividing both sides by c we then
obtain

g =
Proj (ce)

c
. (3.2)

Meeting Your Match ■ 149

c

e (CumGauss)

Jwins=T

Jperf

Gaussian(•, 5²)

>

(a)

c

g (Gaussian)

Jwins=T

Jperf

Gaussian(•, 5²)

>

(b)

FIGURE 3.23: Detail of the factor graph around the Jperf node, showing the
messages involved (a) when running belief propagation (b) when making a
local Gaussian approximation to the upward message from the GreaterThan
factor.

Details of the mathematics of how to do this are discussed in Herbrich et al.
[2007].

We therefore find a Gaussian approximation g to the exact e message (6)
as follows. First we compute the exact outgoing message (6) as before. This
is shown in blue in Figure 3.24. Then we multiply this by the incoming mes-
sage context message c which is shown in red in Figure 3.24. This gives a
distribution, shown in green in Figure 3.24 which is non-Gaussian but which
is localised and therefore has finite mean and variance and so can be approxi-
mated by a Gaussian. This curve is repeated in Figure 3.25 which also shows
the Gaussian distribution which has the same mean and variance. Finally, we
divide this Gaussian distribution by the incoming Gaussian context message
c to generate our approximate outgoing g message. Because the ratio of two
Gaussians is itself a Gaussian [Bishop, 2006], the resulting outgoing message
will also be Gaussian, which was our original goal. For our specific example,
this message is a Gaussian with mean 160.8 and standard deviation 40.2. The
computation of the approximate message is summarised in Figure 3.26.

We see that overall we multiplied by the incoming context message, then
made the Gaussian approximation, then finally divided out the context mes-
sage again. The evidence provided by the incoming message is therefore used
only to determine the region over which the Gaussian approximation should
be accurate, but is not directly incorporated into the approximated message.
If we happened to have a conjugate distribution, then the projection operation
would be unnecessary and the context message would have no effect.

150 ■ Model-Based Machine Learning

Jperf

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

FIGURE 3.24: Plot of the exact outgoing message (6) in blue, the incoming
Gaussian(120, 402 +52) context message in red, and the product of these two
messages in green.

Jperf

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

FIGURE 3.25: In green, the product of the true belief propagation and in-
coming context messages copied from Figure 3.24. In orange, the Gaussian
approximation to this product, which is Gaussian(140.4, 28.52).

Now that we have found a suitable Gaussian approximation to the outgoing
message (6) we can continue to pass messages along the graph to give the
corresponding approximate message (7) as shown in Figure 3.27.

Evaluation of the new (approximate) version of message (8) again involves
the convolution of a Gaussian with a Gaussian, with the result shown in
Figure 3.28. The downward message (9) is unchanged, and so we can finally

Meeting Your Match ■ 151

Jperf

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

FIGURE 3.26: The steps involved in computing the Gaussian approximation
to message (6). The blue curve shows the exact message (6), the red curve
shows the incoming context message Gaussian(120, 402+52), the orange curve
shows the Gaussian approximation to the product of true message and con-
text message which is Gaussian(140.4, 28.52). Finally, the purple curve shows
the result of dividing the orange curve by the red context message to give
Gaussian(160.8, 40.22). This Gaussian is then used as message (6).

compute the Gaussian approximation to the posterior distribution of Jskill
as the product of two Gaussians, which gives the final result of a Gaussian
with mean 140.1 and standard deviation 28.5.

This approach to locally approximate messages during the message-passing
process is known as expectation propagation (or EP) and was developed by
Minka [2001]. The approximation is being made locally at the factor node, and
in a way that is independent of the structure of the remainder of the graph.
This technique can therefore be applied to arbitrarily structured graphs, so
long as each factor is consistently sending and receiving messages with the
required distribution types, in this case Gaussians. The expectation propaga-
tion algorithm is summarised in Algorithm 3.1 with the differences to loopy
belief propagation highlighted in red.

3.3.1 Applying expectation propagation

Let’s see what happens to the skill distributions when we apply expectation
propagation to our game of Halo between Jill and Fred. First we suppose
that Jill is the winner of the game. In Figure 3.29 we see the prior (dashed)
and posterior (solid) distributions of skill for Jill and Fred. Because Jill is the
winner, the mean of the skill distribution for Jill increases, while the mean of
the skill distribution for Fred decreases. The increase in mean is quite large for

152 ■ Model-Based Machine Learning

(5) Bern(1.0)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(6) Gaussian(160.8, 40.2²)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(7) Gaussian(160.8, 40.2²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.27: Messages (5), (6), and (7) in the evaluation of the updated
distribution for Jskill. Note that messages (6) and (7), which are highlighted
in orange, differ from the exact messages in Figure 3.18.

Jill, whereas the mean for Fred hardly decreases at all. This difference is due
to the greater certainty in Fskill compared to that for Jskill. Intuitatively
we are using the more certain skill of Fred to estimate the skill of Jill. We also
see from Figure 3.29 that the standard deviation for Jill’s skill distributions
decreases as a result of this game. This is because we have learned something
about her skill and therefore the degree of uncertainty is reduced.

Alternatively, if Fred were to have won the game, we have the results shown
in Figure 3.30, This result is slightly more surprising, since we believed Jill to
be the stronger player, although we were not confident about this. Intuitively
we would expect the adjustments of the skill distributions therefore to be
slightly greater, which is indeed the case. We see that the shift in the means
of the distributions is larger than in Figure 3.29. In fact the change in the
mean of the distribution of Jskill is so large that it is now less than the
mean of Fskill. Again, the standard deviations of Jill’s skill has decreased,
reflecting a reduction in uncertainty due to the incorporation of new evidence.
Because the skill updates in TrueSkill model depend on the variance of the
skill distribution, TrueSkill is able to make relatively large changes to the

Meeting Your Match ■ 153

(5) Bern(1.0)

(8) Gaussian(160.8, 40.5²)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(7) Gaussian(160.8, 40.2²)

(6) Gaussian(160.8, 40.2²)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(9) Gaussian(120, 40²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

FIGURE 3.28: Messages (8) and (9) in the evaluation of the updated distri-
bution for Jskill. Note that in addition to messages (6) and (7), message (8)
(in orange) also differs from the exact message from Figure 3.19.

distributions of new players. Furthermore, this happens automatically as a
consequence of running inference in our model.

3.3.2 Multiple games

So far in this section we have developed a probabilistic model for a single
game of Halo between Jill and Fred. In practice we will have a large pool of
players, and individual games will take place between pairs of players from
within that pool. When we try to assess the skill of a player we potentially
have available the results of all the games ever played by that player against
a range of different opponents. We might also have available the results of all
the games played by those opponents, many of which might involve yet other
players, and so on. In principle, all of this information is relevant and could
help us to assess the original player’s skill. Furthermore, every time there is a
new game outcome we could include this additional information and update
the skill of the player even if they themselves haven’t played any new games.
This new information could be relevant even if it involves a game between
other players since it could influence the assessment of their skills, and hence
the relative skill of our player.

154 ■ Model-Based Machine Learning

Algorithm 3.1: Expectation Propagation

Input: factor graph, list of target variables to compute marginals for,
message-passing schedule, initial message values (optional),
choice of approximating distributions for each edge.

Output: marginal distributions for target variables.

Initialise all messages to uniform (or initial values, if provided).
repeat

foreach edge in the message-passing schedule do
Send the appropriate message below:
- Variable node message: the product of all messages received
on the other edges;
- Factor node message: Compute the belief propagation
message (see Algorithm 2.1). Multiply by the context
message (the message coming towards the factor on
this edge). Project into the desired distribution type
for this edge using moment matching. Divide out the
context message.
- Observed node message: a point mass at the observed value;

end

until all messages have converged
Compute marginal distributions as the product of all incoming
messages at each target variable node.

We could in principle handle this by constructing a very large factor graph
expressing all of the games played so far. Each player would have a single
variable representing their skill value, but multiple variables (one for each
game they have played) representing their performances on each of the games.
This would be a complex graph with multiple loops, and we could run (loopy)
expectation propagation, to keep the messages within the Gaussian family of
distributions, until a suitable convergence criterion is satisfied. This would
give a posterior skill distribution for each of the players, taking account of all
of the games played. If a new game is then played we would start again with
a new, larger factor graph and re-run inference in order to obtain the new
posterior distributions of every player. This approach would be complex to
implement and would get increasingly slow with each new game added. With
millions of games being played each day, it is completely infeasible.

Instead we can use an approximate inference approach known as online
learning (sometimes called filtering) in which each player’s skill distribu-
tion gets updated only when a game outcome is obtained which involves that
player. We therefore need only store the mean and variance of the Gaussian
skill distribution for each player. When a player plays a new game, we run
inference using this current Gaussian skill distribution as the prior, and the
resulting posterior distribution is then stored and forms the prior for the next

Meeting Your Match ■ 155

skill

0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

FIGURE 3.29: The result of applying the TrueSkill model for a game between
Jill (blue) and Fred (red) for the case where Jill is the winner. The prior
distributions are shown as dashed curves, and the corresponding posterior
distributions are shown as solid curves. Jill’s initial broad skill distribution
says that, before the game, we did not know if Jill was more or less skilled
than Fred. After seeing that she won the game, her skill distribution shifts so
that most of the area is to the right of Fred’s curve, meaning that we now
think is it likely that Jill is more skilled than Fred. Because we were already
relatively confident about Fred’s skill level, his distribution barely changes at
all.

skill

0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

FIGURE 3.30: As in Figure 3.29 but for the case where Fred is the winner.
The prior distributions (dashed lines) are the same as before. Again our belief
about Fred’s skill barely changes. But now Jill’s posterior skill distribution is
shifted so that most of the area is to the left of Fred’s curve, meaning that we
now think Jill is less skilled than Fred.

156 ■ Model-Based Machine Learning

NumberOfGames

0 5 10 15 20 25 30 35 40 45 50 55 60 65

20

25

30

35

40

45

Gamer00182 (TrueSkill)

Gamer00049 (TrueSkill)

FIGURE 3.31: Trajectories of skill distributions of two of the top players
in the Halo2 head-to-head dataset, showing the mean and the one-standard-
deviation envelopes. The horizontal axis shows the number of games played
by the corresponding player.

game. Each single game is therefore described by a graph of the form shown
in Figure 3.10.

This particular form of online inference algorithm, based on local pro-
jection onto the Gaussian distribution in which each data point (i.e. game
outcome) is used only once, is also known as Gaussian Density Filtering May-
beck [1982]; Opper [1998]. It can be viewed as a special case of expectation
propagation in which a specific choice is made for the message-passing sched-
ule: namely that messages are only passed forwards in time from older games
to newer games, but never in the reverse direction.

It is worth noting that, if we consider the full factor graph describing
all games played so far, then the order in which those games had been played
would have been irrelevant. When doing online learning, however, the ordering
becomes significant and can influence the assessed skills. We have to live with
this, however, as only online learning would be feasible in a practical system.

We can illustrate the behaviour of online learning in our model using data
taken from the game Halo 2 on Xbox Live. We use a data set involving 1,650
players which contains the outcomes of 5,915 games. Each game is a head-to-
head contest in which a pair of players play against each other. Figure 3.31
shows how the skill distributions for two of the top players varies as a function
of the number of game outcomes played by each of the two players. To fit our
model, these results ignore games which ended in a draw – we will see how to
handle drawn games later in the chapter. We see that the initial skill distribu-
tions are the same, because all player skills have the same prior distribution
before any games are played. As an increasing number of games are played,

Meeting Your Match ■ 157

we see that the standard deviation of the skill distributions decreases. This
reduction in uncertainty as a result of observing the outcome of games is the
effect we saw earlier in Figure 3.29 and Figure 3.30.

The model we have constructed in this section represents a single game
between two players. However, many games on Xbox Live have a more elab-
orate structure, and so we turn next to a number of model extensions which
allow for these additional complexities.

REVIEW OF CONCEPTS

expectation propagation An approximate message-passing algorithm that
extends belief propagation by allowing messages to be approximated by the
closest distribution in a particular family, such as a Gaussian distribution. This
approximation is done either to ensure that the inference algorithm remains
tractable or to speed up the inference process. See Algorithm 3.1.

online learning An approach to machine learning in which data points are
considered one at a time, with model parameter distributions updated after
each data point.

158 ■ Model-Based Machine Learning

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

3.1 Reproduce Figure 3.24 by evaluating the (red) Gaussian context message
and the (blue) exact CumGauss message at Jperf values of -50, -49
. . . 0,1,2 . . . 299,300. Plot the two lines you get with Jperf on the x
axis and the evaluated messages on the y axis. You will need to rescale
the CumGauss message to get it to fit (remember that the scale of this
message does not matter since it is an improper distribution). To get
the (green) product message corresponding to the exact marginal for
Jperf, first multiply your two messages together at each Jperf value.
Then rescale the result so that the area under the line is 1 (you can
achieve this roughly by rescaling to make the sum of the value at each
point equal to 1). Plot this result as a third line on your axes.

3.2 Compute the mean and standard deviation of the exact marginal prod-
uct message that you just computed. The mean can be well approxi-
mated by summing the product of the message at each point times the
Jperf value at each point. The variance, which is the square of the stan-
dard deviation, can be approximated similarly using the mnemonic “the
mean of the square minus the square of the mean”. First, you need to
compute the “mean of the square” which can be approximated by sum
of the product of the message at each point times the square of the
Jperf value at each point. Then subtract off “the square of the mean”
which refers to the mean you just computed. This gives the variance,
which you can take the square root of to get the standard deviation. You
have now computed the mean and standard deviation of the Gaussian
approximation to the marginal for Jperf. You can check your result
against the Gaussian in Figure 3.25.

3.3 Finally, we need to divide this Gaussian distribution (whose mean and
standard deviation you just found in the previous exercise) by the Gaus-
sian context message. You can refer to Bishop [2006] for how to do this.
You can check your result against message (6) in Figure 3.27. Congrat-
ulations! You have now successfully calculated an expectation propaga-
tion message!

3.4 Now we can use Infer.NET to do the expectation propagation calcula-
tions for us. Implement the Trueskill model in Infer.NET, setting the
skill distributions for Jill and Fred to the ones used in this section. Refer
to the guide on how to represent large irregular graphs in the Infer.NET
documentation. Compute the posterior marginal distributions for Jill
and Fred for the two outcomes where Jill wins the game and where Fred
wins the game. Plot your results and check them against Figure 3.29
and Figure 3.30.

Meeting Your Match ■ 159

3.4 EXTENSIONS TO THE CORE MODEL

So far, we have constructed a probabilistic model of a game played between
two players which results in a win for one of the players. To handle the variety
of games needed by Xbox Live, we need to extend our model to deal with
a number of additional complexities. In particular, real games can end in
draws, can involve more than two players, and can be played between teams
of people. We will now show how our initial model can be extended to take
account of these complexities. This flexibility nicely illustrates the power of a
model-based approach to machine learning.

Specifically, we need to extend our model so that it can:

• update the skills when the outcome is a draw;

• update the skills of individual team members, for team games;

• apply to games with more than two players.

A model-based approach allows such extensions to be incorporated in a
transparent way, giving rise to a solution which can handle all of the above
complexities – whilst remaining both understandable and maintainable.

3.4.1 What if a game can end in a draw?

In our current model, the player with the higher performance value on a
particular game is the winner of that game. For games which can also end in
a draw, we can modify this assumption by introducing the concept of a draw
margin, such that a player is the winner only if their performance exceeds that
of the other player by at least the value of the draw margin. Mathematically
this can be expressed as

if Jperf > Fperf+ drawMargin Jill wins

else if Fperf > Jperf+ drawMargin Fred wins

else game drawn. (3.1)

This is illustrated in Figure 3.32.
We have therefore modified Assumption 3 to read:

3 The player with the higher performance value wins the game, unless the
difference between their performance and that of their opponent is less
than the draw margin, in which case the game is drawn.

The value of the draw margin represents a new parameter in our model,
and we may not know the appropriate value. This is particularly true if we
introduce a new type of game, or if we modify the rules for an existing game,
where we have yet to see any game results. To solve this problem we simply
treat the draw margin as a new random variable drawMargin whose value is
to be learned from data. Because drawMargin is a continuous variable, it is

160 ■ Model-Based Machine Learning

Fred's Performance

80 90 100 110 120 130 140

80

90

100

110

120

130

140

Draw

Jill Wins

Fred Wins

FIGURE 3.32: Illustration of the regions in performance space where Jill is
the winner, where Fred is the winner, and where the game ends in a draw.

outcome

Jskill Fskill

Jperf FperfdrawMargin

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

Gaussian(1,10)

WinLoseDraw

FIGURE 3.33: TrueSkill model for a game between two players which includes
the possibility of a draw.

chosen to be a Gaussian. This can be expressed as a factor graph, as shown
in Figure 3.33. The variable Jwins is replaced by outcome which is a dis-
crete variable that takes one of the values JillWins, Draw, or FredWins. The
WinLoseDraw factor is simply a function whose value is 1 if the three values
of Jperf, drawMargin, and Fperf are consistent with the value of outcome

Meeting Your Match ■ 161

and is 0 otherwise. With this updated factor, we need to make correspond-
ing modifications to the messages sent out from the factor node. These will
not be discussed in detail here, and instead the interested reader can refer to
Herbrich et al. [2007] and also an excellent blog post by Moser [2010].

In order to simplify the subsequent discussion of other extensions to the
core model, we will ignore the draw modification in the remaining factor
graphs in this chapter, although all subsequent models can be similarly mod-
ified to include draws if required.

3.4.2 What if we have more than two players in a game?

Games with more than two players require a more
complex model

Suppose we now have more than
two players in a game, such as in
the Halo game ‘Free for All’ in
which eight players simultaneously
play against each other. The out-
come of such a game is an order-
ing amongst the players involved in
the game. With our model-based
approach, incorporating a change
such as this just involves making
a suitable assumption, constructing
the corresponding factor graph and
then running expectation propaga-
tion again. Our new Assumption 3
can be stated as

3 The order of players in the
game outcome is the same as
the ordering of their performance values in that game.

If there are N players in the game then this assumption can be captured
in a factor graph using N − 1 GreaterThan factors to describe the player
ordering. This is illustrated for the case of three players in Figure 3.34. Note
that we could have introduced a separate ’greater-than’ factor for each possible
pair of players. For N players there are N(N − 1)/2 such factors. However,
these additional factors contain only redundant information and lead to an
unnecessarily complex graph. The ordering ofN players can be expressed using
N − 1 greater than factors, provided these are chosen to connect the pairs of
adjacent players in the ordering sequence. In effect, because we know the
outcome of the game, we can choose a relatively simple graph which captures
this.

InferenceInference deep-dive
In this optional section, we show why the use of expectation propagation,
even for a tree-structured graph, can require iterative solution. If you want
to focus on modelling, feel free to skip this section. The extension to more

162 ■ Model-Based Machine Learning

(D)

(A) (B)

(C)

p1Wins p2Wins

p1Skill p2Skill p3Skill

p1Perf p2Perf p3Perf

Gaussian(120, 40²) Gaussian(120, 40²) Gaussian(120, 40²)

Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²)

> >

FIGURE 3.34: Factor graph for a game involving three players. Also shown
are some of the messages which arise in the use of expectation propagation
applied to this graph.

than two players introduces an interesting effect related to our expectation
propagation algorithm. We saw in Subsection 2.2.2 that if our factor graph
has a tree structure then belief propagation gives exact marginal distributions
after a single sweep through the graph (with one message passed in each
direction across every link). Similarly, if we now apply expectation propagation
to the two-player graph of Figure 3.10 this again requires only a single pass
in each direction. This is because the ‘context’ messages for the expectation
propagation approximation are fixed. However, the situation becomes more
complex when we have more than two players. The graph of Figure 3.34 has
a tree structure, with no loops, and so exact belief propagation would require
only a single pass. However, consider the evaluation of outgoing message (A)
using expectation propagation. This requires the incoming message (D) to
provide the ‘context’ for the approximation. However, message (D) depends
on message (C) which itself is evaluated using expectation propagation using
message (B) as context, and message (B) in turn depends on message (A).
Expectation propagation therefore requires that we iterate these messages
until we reach some suitable convergence criterion (in which the changes to
the messages fall below some threshold). We therefore modify our message-
passing schedule so that we first pass messages downwards from the skill nodes
to the performance nodes (as before), then we perform multiple passes back
and forth amongst the performance nodes until we achieve convergence, and
then finally pass messages upwards to the skill nodes in order to evaluate
posterior skill marginals.

Back in Figure 3.29 and Figure 3.30, we saw that the shift of the distri-
butions between prior and posterior were larger in the case where the weaker
player (Fred) won the game. Now we repeat the experiment, except with
a third player (Steve), whose prior skill distribution is Gaussian(140, 402),
keeping Jill as Gaussian(120, 402) and Fred as Gaussian(100, 52) as before.

Meeting Your Match ■ 163

We apply our multi-player TrueSkill model to a game with the outcome Jill
1st, Fred 2nd, Steve 3rd. The results of this are shown in Figure 3.35. Firstly,

skill

-50 0 50 100 150 200 250 300

0

0.005

0.01

0.015

0.02

FIGURE 3.35: The result of applying the TrueSkill model for a three player
game between Jill (blue), Fred (red), and Steve (green) for the case where Jill
is the winner, Fred comes second and Steve comes last. The prior distributions
are shown as dashed curves, and the corresponding posterior distributions are
shown as solid curves.

note that since Steve was expected to be the strongest player, but in fact came
last, his posterior mean has moved markedly downwards (to below the other
two players). Secondly, note that the changes in the means of Jill and Fred
are in the same direction as in Figure 3.29, but are more pronounced than
before. This again is because the overall game result is more surprising.

Now let’s consider a different outcome with Fred and Jill swapped, so that
Fred is 1st, Jill is 2nd and Steve is still in 3rd place. Figure 3.36 shows the
(same) priors and the new posteriors for the three skill distributions, with this
new outcome.

Because there is low uncertainty in Fred’s skill, his curve hardly changes
given the result of the game. The fact that Fred won is strong evidence that
his skill is higher than Jill or Steve’s. As a result both Jill and Steve’s skill
curves move to the left of Fred’s. Because Jill beat Steve, her curve moved less
than his did, so that now Steve has the lowest mean, whereas before it was
the highest. What is even more interesting, if we compare Steve’s posterior
skill curve in Figure 3.36 to that in Figure 3.35 is that it is even further to
the left with this outcome, even though Steve came last in both cases. This is
because we now have to fit Jill’s skill between that of Steve and Fred, whereas
in the first outcome, Steve’s skill just had to move to the left of Fred’s. So in
this multi-player game, the relative ordering of the other players has an effect
on our estimate of Steve’s skill!

164 ■ Model-Based Machine Learning

skill

-50 0 50 100 150 200 250 300

0

0.005

0.01

0.015

0.02

FIGURE 3.36: As in Figure 3.35 but for the case where Fred is the winner,
followed by Jill and then Steve came last.

3.4.3 What if the games are played by teams?

Many of the games available on Xbox Live can be played by teams of players.
For example, in Halo, another type of game is played between two teams each
consisting of eight players. The outcome of the game simply says which team is
the winner and which team is the loser. Our challenge is to use this information
to revise the skill distributions for each of the individual players. This is an
example of a credit assignment problem in which we have to work out
how the credit for a victory (or blame for a defeat) should be attributed to
individual players when only the outcome for the overall team is given. The
solution is similar to the last two situations: we make an assumption about how
the individual player skills combine to affect the game outcome, we construct
a probabilistic model which encodes this assumption and then run inference
to update the skill distributions. There is no need to invent new algorithms
or design new heuristics.

The performance of a team depends on the skills of
the individual players.

Here is one suitable assumption
which we could use when modelling
team games, which would replace
Assumption 3 :

3 The performance of a team is
the sum of the performances
of its members, and the team
with the highest performance
value wins the game.

We can now build a factor graph
corresponding to this assumption.
For example, consider a game be-
tween two teams, each of which in-

Meeting Your Match ■ 165

volves two players. The factor graph
for this is shown in Figure 3.37.

team1Wins

skill1 skill2 skill3 skill4

perf1 perf2 perf3 perf4

team1Perf team2Perf

Gaussian(120, 40²) Gaussian(120, 40²) Gaussian(120, 40²) Gaussian(120, 40²)

Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²)

+ +

>

FIGURE 3.37: A factor graph of the TrueSkill model for two teams. The first team consists of players 1 and
2, and the second team consists of players 3 and 4.

The performance of a team is de-
termined by the performance of the players who comprise that team. Our as-
sumption above was that the team performance is given by the sum of the
performances of the individual players. This might be appropriate for col-
laborative team games such as Halo. However, other assumptions might be
appropriate in other kinds of game. For example, in a race where only the
fastest player determines the team outcome, we might make the alternative
assumption

3 The performance of a team is equal to the highest performance of any
of its members, and the team with the highest performance value wins
the game.

In this section we have discussed various modifications to the core TrueSkill
model, namely the inclusion of draws, the extension to multiple players, and
the extension to team games. These modifications can be combined as re-
quired, for example to allow a game between multiple teams that includes
draws, by constructing the appropriate factor graph and then running expec-
tation propagation. This highlights not only the flexibility of the model-based
approach to machine learning, but also the ease with which modifications can
be incorporated. As long as the model builder is able to describe the process
by which the data is generated, it is usually straightforward to formulate the

166 ■ Model-Based Machine Learning

corresponding model. By contrast, when a solution is expressed only as an
algorithm, it may be far from clear how the algorithm should be modified
to account for changes in the problem specification. In the next section, we
conclude our discussion of the online game matchmaking problem by a further
modification to the model in which we relax the assumption that the skills of
the players are fixed.

REVIEW OF CONCEPTS

credit assignment problem The problem of allocating a reward amongst
a set of entities, such as people, all of which have contributed to the outcome.

Meeting Your Match ■ 167

EXERCISES

The following exercises will help embed the concepts you have learned in
this section. It may help to refer back to the text or the review of concepts.

3.1 Sketch out a factor graph for a model which allows draws, two-player
teams and multiple teams. You will need to combine the factor graphs
of Figure 3.33, Figure 3.34 and Figure 3.37. Your sketch can be quite
rough – for example, you should name factors (e.g. “Gaussian”) but
there is no need to provide any numbers for factor parameters.

3.2 Extend your Infer.NET model from the previous self assessment to have
three players and reproduce the results from Figure 3.35 and Figure 3.36.

3.3 [Project idea] There is a wide variety of sports results data available on
the web. Find a suitable set of data and build an appropriate model to
infer the skills of the teams or players involved. Rank the teams or play-
ers by the inferred skill and decide if you think the model has inferred
a good ranking. If not, diagnose why not and explore modifications to
your model to address the issue.

168 ■ Model-Based Machine Learning

3.5 ALLOWING THE SKILLS TO VARY

At this point we seem to have found a comprehensive solution to the problem
posed at the start of the chapter. We have a probabilistic model of games
between multiple teams of players including draws, in which simpler situations
(two players, individuals instead of teams, games without draws) arise as
special cases. However, when this system was deployed for real beta testers,
it was found that its matchmaking was not always satisfactory. In particular,
the skill values for some players seemed to ’get stuck’ at low values, even as
the players played and improved a lot, leading to poor matchmaking.

Skill increases with
practice.

To understand the reason for this we note that the assump-
tions encoded in our model do not allow for the skill of a player
to change over time. In particular, Assumption 1 says that
“each player has a skill value” – in other words, each player
has a single skill value with no mention of this skill value be-
ing allowed to change. Since players’ skills do change over time,
this assumption will be violated in real data. For example, as
a player gains experience in playing a particular type of game,
we might anticipate that their skill will improve. Conversely,
an experienced player’s skill might deteriorate if they play in-
frequently and get out of practice.

You may think that our online learning process updates
our skill distribution for a player over time and so would al-
low the skill to change. This is a common misconception about
online learning, but it is not true. Our current model assumes
that the skill of a player is a fixed, but unknown, quantity.
Online learning does not represent the modelling of an evolv-
ing skill value, but rather an updating of the uncertainty in
this unknown fixed-across-time skill. If a player played for a
long time at a particular skill level, then our distribution over
their skill would become very narrow. If the player then sud-
denly improved, perhaps because of some coaching, the current
model would struggle to track the player’s new skill level because it would be
very unlikely under the narrow skill distribution.

3.5.1 Reproducing the problem

To deal with players having changing skills, we will need to change the model.
But first, we need to reproduce the problem, so that we can check later that we
have fixed it. To do this we can create a synthetic data set. In this data set, we
synthesise results of games involving a pool of one hundred players. The first
player, Elliot, has an initial skill fixed at 110, and this skill value is increased
in steps as shown by the red line in Figure 3.38. The remaining 99 players
have fixed skill values which are drawn from a Gaussian with mean 125 and
standard deviation 10. For each game, two players are selected at random and

Meeting Your Match ■ 169

Number of games

0 50 100 150 200 250 300 350 400 450 500

110

115

120

125

130

135

140

Elliot (Fixed skill model) Elliot (Truth)

FIGURE 3.38: The red curve shows the skill value for a player, Elliot, in a
synthetic data set drawn from a pool of 100 players. All other players have
fixed skills (not shown). The blue line shows the mean of the inferred Gaussian
skill distribution for Elliot under our model, which assumes that Elliot’s skill
is fixed. The blue shaded region shows the plus/minus one-standard-deviation
region around the mean of this distribution.

their performances on this game are evaluated by adding Gaussian noise to
their skill values with standard deviation 5. This just corresponds to running
ancestral sampling on the model in Figure 3.6 (just like we did to create a
synthetic data set in Section 2.5.1).

Given this synthetic data set, we can then run online learning using the
model in Figure 3.10 in which the game outcomes are known and the skills
are unknown. Figure 3.38 shows the inferred skill distribution for Elliot under
this model. We see that our model cannot account for the changes in Elliot’s
skill: the estimated skill mean does not match the trajectory of the true skill,
and the variances of the estimates are too narrow to include the improving
skill value. Due to the small variance, the update to the skill mean is small,
and so the evolution of the skill mean is too slow. This is unsurprising as a
key assumption of the model, namely that the skill of each player is constant,
is incorrect.

To address this problem, we need to change the incorrect assumption in
our model. Rather than assuming a fixed skill, we need to allow for the skill
to change by a typically small amount from game to game. We can therefore
replace Assumption 1 with:

170 ■ Model-Based Machine Learning

outcome₍₁₎ outcome₍₂₎

skill1₍₁₎

skill2₍₁₎

skill1₍₂₎

skill2₍₂₎

perf1₍₁₎ perf2₍₁₎ perf1₍₂₎ perf2₍₂₎

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 0.4²)

Gaussian(•, 0.4²)

Gaussian(•, 5²) Gaussian(•, 5²) Gaussian(•, 5²) Gaussian(•, 5²)

> >

FIGURE 3.39: A factor graph for two players and two successive games in
which the skill values are allowed to change from one game to the next.

1 Each player has a skill value, represented by a continuous variable, given
by their skill value in their previous game plus some change in skill which
has a zero-mean bell-shaped distribution.

Whereas previously a player had a single skill variable, there is now a separate
skill variable for each game. We assume that the skill value for a particular
player in a specific game is given by the skill value from their previous game
with the addition of some change in value having drawn from a zero-mean dis-
tribution. Again, we make this assumption mathematically precise by choosing
this distribution to be a zero-mean Gaussian. If we denote the skill of a player
in their previous game by skill(old) and their skill in the current game by
skill(new), then we are assuming that

skill(new) = skill(old) + skillChange (3.1)

where
p(skillChange) = Gaussian(0, ChangeVariance). (3.2)

From these two equations it follows that [Bishop, 2006]

p
(
skill(new)

)
= Gaussian

(
skill(old), ChangeVariance

)
. (3.3)

This allows us to express our new assumption in the form of a factor graph. For
example, in the case of two players who play two successive games against each
other, the factor graph would be given by Figure 3.39. The prior distribution
for skill of player 1 in the second game, denoted skill1(2), is given by a
Gaussian distribution whose mean, instead of being fixed, is now given by the
skill of that player in the previous game, denoted by skill1(1). The graph
shows a ChangeVariance of 0.16 which encodes our belief that the change in
skill from one game to the next should be small.

Meeting Your Match ■ 171

Online inference in this model can be done as follows. We run expectation
propagation for the first game using a graph of the form shown in Figure 3.10,
to give posterior Gaussian skill distributions for each of the players. Then
we send messages through the Gaussian factors connecting the two games,
as indicated in blue in Figure 3.39. The incoming messages to these factors
are the skill distributions coming from the first game. The subsequent outgo-
ing messages to the new skill variables are broadened versions of these skill
distributions, because of the convolution computed for the Gaussian factor.
These broadened distributions are then used as the prior skill distribution for
this new game. Because we are broadening the prior in the new game, we are
essentially saying that we have slightly higher uncertainty about the skill of
the player. In turn, this means the new game outcome will lead to a greater
change in skill, and so we will be better at tracking changes in skill. It may
seem strange that we can improve the behaviour of our system by increasing
the uncertainty in our skill variable, but this arises because we have modified
the model to correspond more closely to reality. In the time since the last
game, the player’s skill may indeed have changed and we are now correctly
modelling this possibility.

We can now test out this modified model on our synthetic data set. The
results are shown by the green curve in Figure 3.40.

Number of games

0 50 100 150 200 250 300 350 400 450 500

105

110

115

120

125

130

135

140

Elliot (Fixed skill model) Elliot (Truth)

Elliot (Varying skill model)

FIGURE 3.40: This shows the same information as in Figure 3.38 with the
addition in green of the distribution of inferred skill for Elliot using a model
in which skill values are allowed to evolve over time.

We see that the changing skill of Elliot is tracked much better when we
allow for varying skills in our model – we have solved the problem of tracking

172 ■ Model-Based Machine Learning

time-varying skills! This model has been applied to the history of chess to work
out the relative strengths of different historical chess players, even though they
lived decades apart! You can read all about this work in Dangauthier et al.
[2007].

3.5.2 The final model

Now that we have adapted the model to cope with varying skills, it meets all
the requirements of the Xbox Live team. With all extensions combined, here
is the full set of assumptions built into our model:

1 Each player has a skill value, represented by a continuous variable,
given by their skill value in their previous game plus some change
in skill which has a zero-mean bell-shaped distribution.

2 Each player has a performance value for each game, which is inde-
pendent from game to game and has an average value is equal to
the skill of that player. The variation in performance, which is the
same for all players, is symmetrically distributed around the mean
value and is more likely to be close to the mean than to be far from
the mean.

3 The performance of a team is given by the sum of the performances
of the players within that team.

4 The order of teams in the game outcome is the same as the ordering
of their performance values in that game, unless the magnitude of
the difference in performance between two teams is below a thresh-
old in which case those teams draw.

FIGURE 3.41: The four assumptions encoded in our final model.

This model encompasses the va-
riety of different game types which
arise including teams and multiple
players, it allows for draws and it
tracks the evolution of player skills
over time. As a result, when Xbox
360 launched in November 2005, it
used this TrueSkill model as its on-
line skill rating system. Since then,
the skill distributions inferred by
TrueSkill have been used to perform
real-time matchmaking in hundreds
of different Xbox games.

Meeting Your Match ■ 173

The role of the model is to infer
the skills, while the decision on how to use those skills to perform matchmak-
ing is a separate question. Typically this is done by selecting players for which
the game outcome is most uncertain. Note that this also tends to produce
matches whose outcomes are the most informative in terms of learning the
skills of the players. The matchmaking process must also take account of the
need to provide players with opponents within a reasonably short time, and
so there is a natural trade-off between how long a player waits for a game to
be set up, and the closeness in match to their opponents. One of the power-
ful aspects of decomposing the matchmaking problem into the two stages of
skill inference and matchmaking decision is that changes to the matchmaking
criteria are easy to implement and do not require any changes to the more
complex modelling and inference code. As discussed in the introduction, the
ability to match players against others of similar ability, and to do so quickly
and accurately, is a key feature of this very successful service.

The inferred skills produced by TrueSkill are also used for a second, distinct
purpose which is to construct leaderboards showing the ranking of players
within a particular type of game. For this purpose, we need to define a single
skill value for each player, based on the inferred Gaussian skill distribution.
One possibility would be to use the mean of the distribution, but this fails to
take account of the uncertainty, and could lead to a player having an artificially
high (or low) position on the leader board. Instead, the displayed skill value
for a player is taken to be the mean of their distribution minus three times
the standard deviation of their distribution. This is a conservative choice and
implies that their actual skill is, with high probability, no lower than their
displayed skill. Thus a player can make progress up the leader board both
by increasing the mean of their distribution (by winning games against other
players) and by reducing the uncertainty in their skill (by playing lots of
games).

There are plenty of ways in which the TrueSkill model can be extended to
improve its ability to model particular aspects of the game-playing process. In
2018, a number of such improvements were included in the TrueSkill 2 model
[Minka et al., 2018] by making additional assumptions particularly suited to
online shooters such as Gears of War and Halo. For example, the enhanced
model made use of the number of kills each player made, rather than just their
final ranking. It also modelled the correlation of a person’s skill in different
game modes. Other improvements were made to handle situations, such as
a player quitting the game mid-way through, which had previously led to
inaccurate skill estimates.

We have seen how TrueSkill continually adapts to track the skill level of
individual players. In the next chapter we shall see another example of a model
which adapts to individual users, but in the context of a very different kind
of application: helping to de-clutter your email inbox.

CHA PT E R 4

Uncluttering Your Inbox

The sheer volume of email being sent and received means that
a typical office worker spends hours each day processing their in-
box. The constant stream of new messages can easily become over-
whelming. It is also more likely than ever that an important email
will get lost amongst the clutter. Can model-based machine learn-
ing help to reduce this information overload?

The average office worker spends almost three hours
a day processing their email. About 90% of this time is
spent either reading incoming email or managing exist-
ing email – only the remaining 10% is spent writing or
replying to emails [Outlook team, 2008]. An automatic
tool to speed up reading and managing email would free
up a lot of people’s time, allowing them to focus on im-
portant tasks and avoid the stress of information over-
load.

Microsoft Exchange is an email server used to power
more than 300 million mailboxes worldwide [Radicati
and Hoang, 2010]. The Exchange team are keen to use
machine learning to help people to manage their mail
and improve their productivity. In this chapter, we will
look at how model-based machine learning was used by
the Exchange team to separate out the clutter from a
user’s inbox, allowing users to focus on their important
emails and reducing the time taken to process incoming
email.

The idea was to decide if a user thinks an email was clutter or not, based
on the actions the user takes on similar emails. For example, emails that are
never read or quickly deleted are likely to be considered as clutter by the
user. Now suppose we had a machine learning system that could predict what
actions a user would take on a new email – for example, the system would
predict whether a user would reply to an email, delete it or leave it unread.

175

176 ■ Model-Based Machine Learning

Given such a machine learning system we could then hide emails that are
unlikely to be read or acted upon. Such clutter emails could then be placed
in a separate location where they could be easily reviewed and processed in
one go, at a convenient time for the user.

To achieve this goal, the team needed a system that could take a number of
older emails that a user had already taken action on and learn which actions
the user would be likely to take on emails with different characteristics. The
system was to consider many aspects of the email: who sent the email, who
was on the To and Cc lines, what the subject was, what was written in the
email, whether there were any attachments and so on. The trained system was
then to be applied to incoming mails to predict the probability of the user
performing various actions on each email. The Exchange team considered it
essential that the system make personalised predictions. Unlike junk mail,
which emails are clutter is a personal thing: what is clutter for one user might
not be clutter for another. For example, a project update email might be
clutter for someone not on the project but might be important to read for
someone who is working on the project.

In this chapter, we’ll use model-based machine learning to develop a per-
sonalised system that meets the needs of the Exchange team. We will focus on
building a system to predict whether a user will reply to an incoming email.
However, the resulting system will be general enough to predict many other
kinds of actions and so can be used to predict whether or not a user will
consider an email to be clutter. In particular, we will see how to:

• Manage email data and privacy issues,

• Develop a model for predicting actions personalized to each user,

• Use information about an email to drive the model,

• Evaluate the model both in numerical terms and in terms of user expe-
rience,

• Extend the model to address various problems as they arise.

You can recreate all results in this chapter using the companion source
code [Diethe et al., 2019].

Uncluttering Your Inbox ■ 177

4.1 COLLECTING AND MANAGING EMAIL DATA

For the purposes of writing this chapter, we developed a tool for collecting all
of a person’s email received in a given time period. We then used the tool to
collect emails from 10 volunteers who kindly agreed to share their email data
– in an anonymised form, as we shall discuss shortly. This was quite a time
consuming process and so we need to plan carefully about how we are going
to use this precious email data. For example, we need to decide which data
we will use to train on and which data we will use to evaluate the system’s
accuracy. It is very important that the data used for training is not used for
evaluation. If training data is used for evaluation it can give misleadingly high
accuracy results – because it is much easier to make a prediction for an email
when you’ve already been told the correct answer! To avoid this, we need to
divide our data into different data sets:

• A training set which we will use to train the model;

• A separate test set which we will use to assess the prediction accuracy
for each user and so indicate what we might expect to achieve for real
users.

If you were to evaluate a trained model on its training set, it will tend to give
higher accuracy results than on a test set. The amount that the accuracy is
higher on the training set indicates how much the model has learned that is
specific to the particular data in the training set, rather than to that type of
data in general. We say that a model is overfitting to the training data, if
its accuracy is significantly higher on the training set than on a test set.

If we were only planning to evaluate our system once, these two data sets
would be sufficient. However, we expect to make repeated changes to our
system, and to evaluate each change to see if it improves prediction accuracy.
If we were to evaluate on the test set many times, making only the changes
that improve the test set accuracy, we would run the risk of overfitting to
the test set. This is because the process of repeatedly making changes that
increase the test set accuracy could be picking up on patterns that are specific
to the test and training set combined but not to general data of the same type.
This overfitting would mean that the accuracy reported on the test set would
no longer be representative of what we might expect for real users. To avoid
overfitting, we will instead divide our data into three, giving a third data set:

• A validation set which we will use to evaluate prediction accuracy
during the process of developing the system.

We can evaluate on the validation set as many times as we like to make
decisions about which changes to make to our system. Once we have a final
system, we will then evaluate once on the test set. If it turns out that the
model has been overfitting to the validation set, then the accuracy results on
the test set will be lower, indicating that the real user accuracy will be lower
than we might have expected from the validation set accuracy numbers.

178 ■ Model-Based Machine Learning

If the test set accuracy is not yet sufficient, it would then be necessary
to make further changes to the system. These can again be assessed on the
validation set. At some point, a new candidate system would be ready for test
set evaluation. Strictly speaking, a fresh test set should be used at this point.
In practice, it is usually okay to evaluate on a test set a small number of times,
bearing in mind that the numbers may be slightly optimistic. However, if used
too much, a test set can become useless due to the possibility of overfitting,
at which point it would then be necessary to gather a fresh test set.

For the email data that we collected, we can divide each user’s emails into
training, validation and test sets. Since the goal is to make predictions on
email arriving in the user’s inbox, we exclude emails in the user’s Sent Mail
and Junk folders from these data sets, since such emails did not arrive in the
inbox. We also exclude emails which were automatically moved by a rule, since
such emails also did not appear in the inbox. Table 4.1 gives the sizes of the
training, validation and test sets for each user, after removing such non-inbox
emails.

4.1.1 Learning from confidential data

Table 4.1 highlights another challenge when working with email data – it is
highly personal and private data! Email data is an example of personally
identifiable information (PII), which is information that could be used to
identify or learn about a particular person. For an email, personally identifi-
able information includes the names and email addresses on the email along
with the actual words of the subjects and email bodies. Knowing which senders
a particular user ignores or replies to, for example, would be very sensitive
data. In any system that uses PII, it is essential to ensure that such data is
kept confidential.

In a machine learning system, this need for confi-
dentiality appears to conflict with the need to under-
stand the data deeply, monitor the performance of the
system, find bugs and make improvements. The main
technique used to resolve this conflict is some kind of
anonymisation, where the data is transformed to re-
move any PII whilst retaining the underlying patterns
that the machine learning system can learn from. For ex-
ample, names and email addresses can be anonymised
by replacing them with arbitrary codes. For this project,
we anonymise all user identities using an alphanumeric
hash code like ‘User35CB8E5’, as shown in Table 4.1.
This type of anonymisation removes PII (or at least
makes it extremely difficult to identify the user involved)
but preserves information relevant to making predictions, such as how often
the user replies to each person.

In some cases, anonymisation is hard to achieve. For example, if we

Uncluttering Your Inbox ■ 179

anonymised the subject and body on a word-by-word basis, this anonymi-
sation could potentially be reversed using a word frequency dictionary. For
this reason, we have removed the email bodies and subject lines from the data
used for this chapter, so that we can make it available for download while
protecting the confidentiality of our volunteers. We will retain the lengths of
the subject lines and body text, since they are useful for making predictions
but do not break confidentiality. If you wish to experiment with a more com-
plete email data set, there are a few such available, an example of which is
the Enron email dataset [The CALO Project, 2004]. Notice that, even for this
public Enron data set, some emails were deleted “as part of a redaction effort
due to requests from affected employees”, demonstrating again the sensitive
nature of email data! For cases like these where anonymisation cannot eas-
ily be achieved, there is an exciting new method under development called
homomorphic encryption which makes it possible to do machine learning on
encrypted data without decrypting the data first. This approach is at the re-
search stage only, so is not yet ready for use in a real application (but read
more in Panel 4.1 if you are curious).

Using our anonymised and pruned data set means that we can inspect,
refine, or debug any part of the system without seeing any confidential infor-
mation. In some cases, this anonymisation can make it hard to understand
the system’s behaviour or to debug problems. It is therefore useful to have a
small non-anonymised data set to work with in such cases. For this chapter
we used a selection of our own emails for this purpose. For a deployed system,
you can also ask real users to voluntarily supply a very limited amount of
what would normally be confidential information, such as a specific email. It
is important to allow the user to review exactly what information is being
shared and ensure the information is only used for the purpose of debugging
the issue they are reporting, for example, an incorrect prediction.

Panel 4.1 – Homomorphic encryption

Homomorphic encryption is a type of data encryption that allows certain algo-
rithms to run directly on the encrypted data, giving encrypted results, without
ever being decrypted! At the moment there are practical restrictions on the
kinds of algorithms that can be run on the data – for example, they may be
required to consist only of additions or multiplications (and a limited number
of these). There is currently also a significant computational cost to running
algorithms this way. Despite these limitations, it is possible to run inference
algorithms using homomorphic encryption – for example, Graepel et al. [2013]
describe a classification algorithm which runs entirely on encrypted data.
Although still at the research stage, homomorphic encryption has great poten-
tial for allowing machine learning algorithms to be run on confidential data.

180 ■ Model-Based Machine Learning

Now that we have training and validation data sets in a suitably
anonymised form, we are ready to start developing our model.

REVIEW OF CONCEPTS

training set The part of the collected data which will be used for model
training.

test set The part of the collected data which will be used to assess a trained
model’s accuracy. This evaluation should be performed infrequently, ideally
only once, to avoid overfitting to the test set.

overfitting The situation where a trained model has learned too much
about patterns in the data that are specific to the training set, rather than
patterns relating to general data of the same form. If a model is overfitting,
its prediction accuracy on data sets other than the training set is reduced.

validation set The part of the collected data which will be used to assess
a trained model’s accuracy as the model is being developed. Typically the
validation set is used repeatedly to decide whether or not to make changes to
the model. This runs the risk of overfitting to the validation set, which is why
it is important also to have a separate test set.

personally identifiable information Any information about a person
which could be used to identify who they are or to learn confidential informa-
tion about them.

anonymisation A process where data is transformed to remove any per-
sonally identifiable information, whilst retaining enough information to be
useful. For example, email addresses can be anonymised by replacing them by
a randomly generated string, such that the same address is always replaced
by the same string. This allows patterns of email use to be identified without
associating those patterns with any given sender or recipient.

Uncluttering Your Inbox ■ 181

Train Valida	on Test User total

User35CB8E5 1,995 2,005 657 4,657

UserCE3FDB4 1,067 1,067 356 2,490

User6AACED 1,827 1,822 600 4,249

User7E601F9 531 528 173 1,232

User68251CD 600 602 198 1,400

User223AECA 532 532 179 1,243

UserFF0F29E 2,202 2,199 729 5,130

User25C0488 1,181 1,182 393 2,756

User811E39F 1,574 1,565 513 3,652

User10628A6 485 485 163 1,133

Total 11,994 11,987 3,961 27,942

Average 1278.8 1278 422 2978.8

TRIAL MODE − Click here for more information

TABLE 4.1: Number of emails in the training, validation and test sets for each
user and overall.

182 ■ Model-Based Machine Learning

4.2 A MODEL FOR CLASSIFICATION

The problem of predicting a label, such as ‘reply’ or ‘not reply’, for a data
item is called classification. Systems that perform classification are known
as classifiers, and are probably the most widely used machine learning algo-
rithms today. There are many different classification algorithms available and,
for a particular prediction task, some will work better than others. A common
approach to solving a classification problem is to try several different classi-
fication algorithms and see which one works the best. This approach ignores
the underlying reason that the classification algorithms are making different
predictions on the same data: that each algorithm is implicitly making differ-
ent assumptions about the data. Unfortunately, these assumptions are hidden
away inside each algorithm.

You may be surprised to learn that many classification algorithms can
be interpreted as doing approximate inference in some probabilistic model.
So rather than running a classification algorithm, we can instead build the
corresponding model and use an inference algorithm to do classification. Why
would we do this instead of using the classification algorithm? Because a
model-based approach to classification gives us several benefits:

• The assumptions in the classifier are made explicit. This helps us to
understand what the classifier is doing, which can allow us to improve
how we use it to achieve better prediction accuracy.

• We can modify the model to improve its accuracy or give it new capa-
bilities, beyond those of the original classifier.

• We can use standard inference algorithms to both train the model and to
make predictions. This is particularly useful when modifying the model,
since the training and prediction algorithms remain in sync with the
modified model. Also, different algorithms have different trade-offs be-
tween speed and accuracy. We can choose an algorithm that best suits
our needs, whilst retaining all of our modelling assumptions.

These are not small benefits – in this chapter you will see how all three will
be crucial in delivering a successful system. We will show how to construct
the model for a widely used classifier from scratch, by making a series of
assumptions about how the label arises given a data item. We will then show
how to extend this initial classification model, to achieve various capabilities
needed by the email classification system. Throughout the evolution of the
model we will use a standard inference algorithm (expectation propagation)
for training and prediction.

Before we construct the model, we need to understand how a classifier
with a fixed set of assumptions could possibly be applied to many different
problems. This is possible because classifiers require the input data to be
transformed into a form which matches the assumptions encoded in the clas-
sifier. This transformation is achieved using a set of features (a feature set),

Uncluttering Your Inbox ■ 183

where a feature is a function that acts on a data item to return one or more
values, which are usually binary or continuous values. In our model we will
use features that return continuous values in the range 0.0 to 1.0. For exam-
ple, our first feature will return 1.0 if the user is mentioned on the To line
of the email or 0.0 otherwise – we’ll call this the ToLine feature. It is these
feature values, rather than the data item itself, that are fed into the classifier.
So, rather than changing the assumptions in the classifier, we use features to
transform the data to match the assumptions already built in to the classifier.

Another important simplification that a classifier makes is that it only ever
makes predictions about the label variable assuming that the corresponding
values for the features are known. Because it always conditions on these known
feature values, the model only needs to represent the conditional probability
P (label|features) rather than the joint distribution P (label, features). Because
it represents a conditional probability, this kind of model is called a condi-
tional model. It is convenient to build a conditional model because we do
not need to model the data being conditioned on (the feature values) but
only the probability of the label given these values. This brings us to our first
modelling assumption.

1 The feature values can always be calculated, for any email.

By always, we mean always: during training, when doing prediction, for every
single email ever encountered by the system. Although convenient, the as-
sumption that the feature values can always be calculated makes it difficult to
handle missing data. For example, if the sender of an email is not known, any
features requiring the sender cannot be calculated. Strictly, this would mean
we would be unable to make a prediction. In practice, people commonly pro-
vide a default feature value if the true value is not available, even though this
is not the correct thing to do. For example in the sender case it is equivalent
to treating all emails with missing senders as if they came from a particular
‘unknown’ sender. The correct thing to do would be to make a joint model
of the feature values and marginalise over any missing values – but, if data is
rarely missing, the simpler approach is often sufficiently good – indeed it is
what we shall use here.

4.2.1 A one-feature classification model

We will start by building a model that uses only one feature to predict whether
a user will reply to an email: whether the user is on the To line or not (the
ToLine feature). Since we are building a conditional model, we only need to
consider the process of generating the label (whether the user replied to the
email or not) from the feature value. The variable we are trying to generate is
therefore a binary label that is true if the user replied to the mail or false
otherwise – we will call this variable repliedTo. This repliedTo variable is
the variable that we will observe when training the model and which we will
infer when making predictions.

184 ■ Model-Based Machine Learning

It would be difficult to define the process of generating this binary
repliedTo variable directly from the continuous feature values, since it is
not itself a continuous variable. Instead, we introduce an intermediate vari-
able that is continuous, which we shall call the score. We will assume that
the score will be higher for emails which having a higher probability of re-
ply and lower for emails which have a lower probability of reply. Here is the
assumption:

2 Each email has an associated continuous score which is higher when
there is a higher probability of the user replying to the email.

Notice that, unlike a probability, the continuous score value is not required to
lie between zero and one but can take on any continuous value. This makes it
an easier quantity to model since we do not have to worry about keeping its
value constrained to be between zero and one.

We are now ready to make an assumption about how the feature value for
an email affects its score.

3 If an email’s feature value changes by x, then its score will change by
weight × x for some fixed, continuous weight.

This assumption says that the score for an email is either always higher if the
feature value increases (if the weight is positive) or always lower if the feature
value increases (if the weight is negative) or is not affected by the feature
value (if the weight is zero). The size of any change in score is controlled by
the size of the weight: a larger weight means a particular change in feature
value produces a larger change in the score. Remember that, according to
our previous assumption, a higher score means a higher reply probability and
lower score means a lower reply probability.

To build a factor graph to represent Assumption 3 we first need a con-
tinuous featureValue variable to hold the value of the feature for each email
(so it will be inside a plate across the emails). Since this variable will always
be observed, we always show it shaded in the factor graph (Figure 4.1). We
also introduce a continuous weight variable for the feature weight mentioned
in the assumption. Because this weight is fixed, it is the same for all emails
and so lies outside the emails plate. We can then model Assumption 3 by
multiplying the featureValue by the weight, using a deterministic multipli-
cation factor and storing the result in continuous score variable. The factor
graph for a single feature modelled in this way is shown in Figure 4.1.

Uncluttering Your Inbox ■ 185

emails

featureValue weight

score

Gaussian(0,1)

×

FIGURE 4.1: Factor graph for a single feature. Each email has a
featureValue which is multiplied by a single common weight to give a score
for that email. A positive weight means that the score increases if the feature
value increases. A negative weight means that the score decreases if the fea-
ture value increases. A higher score corresponds to a higher probability that
the email is replied to.

In drawing the factor graph, we’ve had to assume some prior distribution
for weight. In this case, we have assumed that the weight is drawn from a
Gaussian distribution with zero mean, so that it is equally likely to be positive
or negative.

4 The weight for a feature is equally likely to be positive or negative.

We have also the prior distribution to be Gaussian with variance 1.0 (so the
standard deviation is also 1.0). This choice means that the weight will most
often be in the range from -1.0 to 1.0, occasionally be outside this in the
range -2.0 to 2.0 and very occasionally be outside even that range (as we
saw in Figure 3.4). We could equally have chosen any value for the variance,
which would have led to different ranges of weight values so there is no implied
assumption here. The effect of this choice will depend on the feature values
which multiply the weight to give the score and also on how we use the score,
which we will look at next.

We now have a continuous score variable which is higher for emails that
are more likely to be replied to and lower for emails that are less likely to
be replied to. Next we need to convert the score into a binary repliedTo

variable. A simple way to do this is to threshold the score – if it is above some
threshold then repliedTo is true, otherwise false. We can do this by adding
a continuous threshold variable and use the deterministicGreaterThan factor
that we met in the previous chapter:

186 ■ Model-Based Machine Learning

emails

featureValue weight

thresholdscore

repliedTo

Gaussian(0,1)

Gaussian(0,10)

×

>

FIGURE 4.2: Factor graph of Figure 4.1 extended so that if the score is
greater than a threshold the binary repliedTo variable is true, otherwise it
is false.

Here we’ve chosen a Gaussian(0, 10) prior for the threshold – we’ll discuss
this choice of prior shortly. Now suppose we try to train this one-feature
model on the training set for one of our users. We can train the model using
probabilistic inference as usual. First we fix the value of repliedTo for each
email (by seeing if the user actually did reply to the email)and also the ToLine
featureValue – which is always available since we can calculate it from the
email To line. Given these two observed values for each email, we can train
by inferring the posterior distributions for weight and threshold.

Unfortunately, if we attempt to run inference on this model then any in-
ference algorithm we try will fail. This is because some of the observed values
have zero probability under the model. In other words, there is no way that
the data-generating process encoded by our model could have generated the
observed data values. When your data has zero probability under your model,
it is a sure sign that the model is wrong!

The issue is that the model is wildly overconfident. For any weight and
threshold values, it will always predict repliedTo to be true with 100%
certainty if the score is greater than the threshold and predict repliedTo
to be false with 100% certainty otherwise. If we plot the reply probability
against the score, it abruptly moves from 0% to 100% as the score passes
the threshold (see the blue line in Figure 4.3). We will only be successful in
training such a model if we are able to find some weight and threshold that
perfectly classifies the training set – in other words gives a score above the
threshold for all replied-to training emails and a score below the threshold
for all emails that were not replied to. As an example, this would be possible

Uncluttering Your Inbox ■ 187

Score - Threshold

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Noiseless model

Noisy model

FIGURE 4.3: Plot of the predicted probability of reply as the score varies
relative to the threshold for the noiseless model of Figure 4.2 and a noisy
score model which adds Gaussian noise to the score before thresholding it.
For the noiseless model, the reply probability abruptly changes from 0.0 to
1.0 as the score passes the threshold. In contrast, for the noisy model, the
reply probability varies smoothly from near 0.0 to near 1.0 over a range of
score values (from about -8 to +8).

if the user replied to every single email where they were on the To line and
did not reply to every single other email. If there is even a single email where
this is not the case, then its observed label will have zero probability under
the model. For example, suppose a not-replied-to email has a score above the
threshold – the prediction will be that repliedTo is true with probability
1.0 and so has zero probability of being false. But in this case repliedTo is
observed to be false, which has zero probability and is therefore impossible
under the model.

Looking back, Assumption 2 said that the reply probability would always
be higher for emails with a higher score. But in fact, in our current model, this
assumption does not hold – if we have two positive scores one higher than the
other, they will both have the same 100% probability of reply. So our model is
instead encoding the assumption that the reply probability abruptly changes
from 0 to 100% as the score increases – it is this overly strong assumption
that is causing training to fail.

Adding noise to a model can be helpful when
it does not perfectly represent the data.

To better represent Assumption 2 ,
we need the reply probability to increase
smoothly as the score increases. The red
curve in Figure 4.3 shows a much smoother
relationship between the score and the re-
ply probability. This curve may look fa-

188 ■ Model-Based Machine Learning

miliar to you, it is the cumulative den-
sity function for a Gaussian distribution,
like the ones that we saw in Figure 3.9 in
the previous chapter. We’d like to change
our model to use this smooth curve. We
can achieve this by adding a Gaussian-
distributed random value to the score

before we threshold it. These are called
‘noise’ values, because they take the clean
0% or 100% prediction and make it ‘noisy’. Now, even if the score is below
the threshold, there is a small probability that the noisy version will be above
the threshold (and vice versa) so that the model can tolerate misclassified
training examples. The exact probability that this will happen will depend on
how far the score is below the threshold and the probability that the added
Gaussian noise will push it above the threshold. This probability is given by
the cumulative density function for the Gaussian noise, and so you end up
with the curve shown in Figure 4.3.

Since the predicted probability varies smoothly from 0.0 to 1.0 over a range
of score values, the model can now vary the confidence of its predictions, rather
than always predicting 0% or 100%. The range of values that this happens
over (the steepness of the curve) is determined by the variance of the Gaussian
noise. The plot in Figure 4.3 is for a noise variance of 10, which is the value
that we will use in our model, for reasons we will discuss in a moment. So
let’s add a new continuous variable called noisyScore and give it a Gaussian
distribution whose mean is at score and whose variance is 10. This gives the
factor graph of Figure 4.4.

In choosing a variance of 10, we have set how much the score needs to
change in order to change the predicted probability. Remember that our
weights are normally in the range -1.0 to 1.0, sometimes in the range -2.0
to 2.0 and occasionally outside this range. Looking at Figure 4.3 you can see
that to change the predicted probability from a ‘don’t know’ prediction of 50%
to a confident prediction of, say, 85% means that the score needs to change
by about 3.0. If we choose feature values in the range -1.0 to 1.0 (which we
will), this means that we are making the following assumption:

5 A single feature normally has a small effect on the reply probability,
sometimes has an intermediate effect and occasionally has a large effect.

This assumption prevents our classification model from becoming too confi-
dent in its predictions too quickly. For example, suppose the system sees a
few emails with a particular feature value, say ToLine=1.0, which are then
all replied to. How confident should the system be at predicting reply for the
next email with ToLine=1.0? The choice of noise variance encodes our as-
sumption of this confidence. Setting the noise variance to a high value means
that the system would need to see a lot of emails to learn a large weight for

Uncluttering Your Inbox ■ 189

emails

featureValue weight

threshold

score

noisyScore

10 (variance)

repliedTo

Gaussian(0,1)

Gaussian(0,10)

×

Gaussian

>

FIGURE 4.4: Factor graph of a classification model with one feature. The
model uses a Gaussian factor to introduce uncertainty in the prediction of
repliedTo for a particular score.

a feature and so would make underconfident predictions. Setting the noise
variance too low would have the opposite effect and the system would make
confident predictions after only a few training emails. A variance of 10 is a
suitable intermediate value that avoids making either under- or over-confident
predictions.

We can now try training this new model on the emails of one of our
users, say, User35CB8E5. As in Chapter 3, we can use expectation propaga-
tion to perform inference. This gives Gaussian distributions over weight and
threshold of Gaussian(3.77,0.028) and Gaussian(7.63,0.019) respectively.

We can now use these Gaussian distributions to make predictions on a new
email (or several emails), using online learning, as we saw in Chapter 3. To
do this, we replace the priors over weight and threshold with the learned
posterior distributions. Then we fix the feature values for each email and run
inference to compute the marginal distribution over repliedTo. Since we’ve
only got one feature in our model and it only has two possible values, the
model can only make two possible predictions for the reply probability, one for
each feature value. Given the above Gaussian distributions for the weight and
threshold, the predicted probability of reply for the two values of the ToLine
feature are shown in Table 4.2a. As we might have expected, the predicted

190 ■ Model-Based Machine Learning

ToLine P(repliedTo=true)

0 0.008

1 0.112

(a)

ToLine Replied to Not replied to Frac�on replied to

0 19 3,046 0.006

1 111 824 0.119

(b)

TABLE 4.2: (a) Predicted probability of reply for our one-feature model, for each feature value. (b) For each
feature value: the number of emails that were replied to, the number of emails that were not replied to and the
fraction of emails that were replied to for the emails of User35CB8E5. Reassuringly, these fractions are close
to the predicted probabilities of the learned model.

probability of reply is higher when the user is on the To line (ToLine=1.0)
than when the user is not on the To line (ToLine=0.0).

To check whether these predicted probabilities are reasonable, we can com-
pute the actual fraction of emails with each feature value that were replied
to in the training set. The predicted probabilities should be close to these
fractions. The counts of replied-to and not-replied-to emails with each feature
value are shown in Table 4.2b, along with the fraction replied to computed
from these counts.

These computed fractions are very close to the predicted probabilities,
which gives us some reassurance that we have learned correctly from our
data set. Effectively, we have provided a long-winded way of learning the
conditional probability table given in Table 4.2a! However, if we want to use
multiple features in our model, then we cannot use a conditional probability
table, since it would become unmanageably large as the number of features
increased. Instead, we will use the score variables to provide a different,
scalable approach for combining features, as we will see in the next section.

REVIEW OF CONCEPTS

classification The task of predicting one of a fixed number of labels for a
given data item. For example, predicting whether or not a user will reply to
a particular email or whether a web site visitor will click on a particular link.
So, in classification, the aim is to make predictions about a discrete variable
in the model.

classifiers Systems that perform classification, in other words, which pre-
dict a label for a data item (or a distribution over labels if the classifier is
probabilistic). Classifiers are probably the best known and most widely used
machine learning systems today.

feature set A set of features that together are used to transform a data
item into a form more suitable to use with a particular model or algorithm.

Uncluttering Your Inbox ■ 191

Feature sets are usually used with classifiers but can also be used with many
other types of models and algorithms.

feature A function which computes a value when given a data item. Features
can return a single binary or continuous value or can return multiple values.
A feature is usually used as part of a feature set to transform a data item into
a form more suitable to use with a particular model or algorithm.

conditional model A model which represents a conditional probability
rather than a joint probability. Conditional models require that the values
of the variables being conditioned on are always known. The advantage of a
conditional model is that the model can be simpler since it does not need to
model the variables being conditioned on.

192 ■ Model-Based Machine Learning

4.3 MODELLING MULTIPLE FEATURES

With just one feature, our classification model is not very accurate at predict-
ing reply, so we will now extend it to handle multiple features. We can do this
by changing the model so that multiple features contribute to the score for
an email. We just need to decide how to do this, which involves making an
additional assumption:

6 A particular change in one feature’s value will cause the same change in
score, no matter what the values of the other features are.

Let’s consider this assumption applied to the ToLine feature and consider
changing it from 0.0 to 1.0. This assumption says that the change in score due
to this change in feature value is always the same, no matter what the other
feature values are. This assumption can be encoded in the model by ensuring
that the contribution of the ToLine feature to the score is always added on to
the contributions from all the other features. Since the same argument holds
for each of the other features as well, this assumption means that the score
for an email must be the sum of the score contributions from each of the
individual features.

So, in our multi-feature model (Figure 4.5), we have a featureScore array
to hold the score contribution for each feature for each email. We can then
use a deterministic summation factor to add the contributions together to give
the total score. Since we still want Assumption 3 to hold for each feature,
the featureScore for a feature can be defined, as before, as the product of
the featureValue and the feature weight. Notice that we have added a new
plate across the features, which contains the weight for the feature, the feature
value and the feature score. The value and the score are also in the emails
plate, since they vary from email to email, whilst the weight is outside since
it is shared among all emails.

We now have a model which can combine together an entire set of features.
This means we are free to put in as many features as we like, to try to predict
as accurately as possible whether a user will reply to an email. More than that,
we are assuming that anything we do not put in as a feature is not relevant
to the prediction. This is our final assumption:

7 Whether the user will reply to an email depends only on the values of
the features and not on anything else.

As before, now that we have a complete model, it is a good exercise to go
back and review all the assumptions that we have made whilst building the
model. The full set of assumptions is shown in Table 4.3.

Assumption 1 arises because we chose to build a conditional model, and
so we need to always condition on the feature values.

In our model, we have used the red curve of Figure 4.3 to satisfy As-
sumption 2 . Viewed as a function that computes the score given the reply
probability, this curve is called the probit function. It is named this way be-
cause the units of the score have historically been called ‘probability units’ or

Uncluttering Your Inbox ■ 193

features

emails

featureValue weight

threshold

featureScore

score

noisyScore

10 (variance)

repliedTo

Gaussian(0,1)

Gaussian(0,10)

×

+

Gaussian

>

FIGURE 4.5: Factor graph of a classification model with multiple features.
Variables within the features plate are duplicated for each feature, so there is a
separate weight for each feature and, for each email, a separate featureValue
and featureScore. The featureScore values for each feature are summed to
give an overall score for each email.

‘probits’ [Bliss, 1934]. Since regression is the term for predicting a continuous
value (in this case, the score) from some feature values, the model as a whole
is known as a probit regression model (or in its fully probabilistic form as the
Bayes Point Machine [Herbrich et al., 2001]). There are other functions that
we could have used to satisfy Assumption 2 – the most well-known is the
logistic function, which equals 1/(1 + e−x) and has a very similar S-shape
(see Figure 4.6 to see just how similar!). If we had used the logistic function
instead of the probit function, we would have made a logistic regression model
– a very widely used classifier. In practice, both models are extremely similar
– we used a probit model because it allowed us to build on the factors and
ideas that you learned about in the previous chapter.

Assumption 3 , taken together with Assumption 6 , means that the score
must be a linear function of the feature values. For example, if we had
two features, the score would be weight1 × featureValue1 + weight2 ×

194 ■ Model-Based Machine Learning

1 The feature values can always be calculated, for any email.

2 Each email has an associated continuous score which is higher when
there is a higher probability of the user replying to the email.

3 If an email’s feature value changes by x, then its score will change
by weight × x for some fixed, continuous weight.

4 The weight for a feature is equally likely to be positive or negative.

5 A single feature normally has a small effect on the reply probability,
sometimes has an intermediate effect and occasionally has a large
effect.

6 A particular change in one feature’s value will cause the same
change in score, no matter what the values of the other features
are.

7 Whether the user will reply to an email depends only on the values
of the features and not on anything else.

TABLE 4.3: The seven assumptions encoded in our classification model.

featureValue2. We use the term linear, because if we plot the first feature

Score - Threshold

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Logistic function

Gaussian CDF

FIGURE 4.6: The logistic function scaled horizontally to match the Gaussian
CDF from Figure 4.3. The similarity of the two functions means that our
probit regression model behaves very similarly to a logistic regression model.

Uncluttering Your Inbox ■ 195

value against the second, then points with the same score will form a straight
line. Any classifier based around a linear function is called a linear classifier.

Assumption 4 and Assumption 5 are reasonable statements about how
features affect the predicted probability. However, Assumption 6 places some
subtle but important limitations on what the classifier can learn, which are
worth understanding. These are explored and explained in Panel 4.2.

Finally, Assumption 7 states that our feature set contains all of the in-
formation that is relevant to predicting whether a user will reply to an email.
We’ll see how to develop a feature set to satisfy this assumption as closely as
possible in the next section, but first we need to understand better the role
that the feature set plays.

4.3.1 Features are part of the model

To use our classification model, we will need to choose a set of features to
transform the data, so that it better conforms to the model assumptions of
Table 4.3. Another way of looking at this is that the assumptions of the
combined feature set and classification model must hold in the data. From
a model-based machine learning perspective, this means that the feature set
combined with the classification model form a larger overall model. In this
way of looking at things, the feature set is the part of this overall model that
is usually easy to change (by changing the feature calculation code) whereas
the classification part is the part that is usually hard to change (for example,
if you are using off-the-shelf classifier software there is no easy way to change
it).

We can represent this overall combined model in a factor graph by includ-
ing the feature calculations in the graph, as shown in Figure 4.7. The email

variable holds all the data about the email itself (you can think of it as an email
object). The feature calculations appear as deterministic ComputeFeature fac-
tors inside of the features plate, each of which computes the feature value for
the feature, given the email. Notice that, although only email is shown as
observed (shaded), featureValue is effectively observed as well since it is
deterministically computed from email.

196 ■ Model-Based Machine Learning

Panel 4.2 – How features combine together

Assumption 6 is quite a strong assumption about how features combine together. To investigate the effect
of this assumption, consider a two-feature model with the existing ToLine feature and a new feature called
FromManager . This new FromManager feature has a value of 1.0 if the sender is the user’s manager and 0.0
otherwise. Suppose a particular user replies to 80% of emails from their manager, but only if they are on the
To line. If they are not on the To line, then they treat it like any other email where they are on the Cc line.
To analyse such a user, we will create a synthetic data set to represent our hypothetical user’s email data. For
email where FromManager is zero, we will take User35CB8E5’s data set from Table 4.2b. We will then add 500
new synthetic emails where FromManager is 1, such that the user is on the To line exactly half of the time,
giving the data set in the table below. The final column of this table gives the predicted probabilities for each
combination of features, for a model trained on this data.

ToLine FromManager Replied to Not replied to Frac�on replied to P(repliedTo=true)

0 0 19 3,046 0.006 0.004

1 0 111 824 0.119 0.144

0 1 2 248 0.008 0.108

1 1 200 50 0.800 0.646

There is quite a big difference between the predicted probability of reply and the actual fraction replied to.
For example, the predicted probability for emails from the user’s manager where the user is on the To line is
much too low: 64.6% not 80%. Similarly, the prediction is too high (10.8% not 0.8%) for emails from the user’s
manager where the user is not on the To line. These inaccurate predictions occur because there is no setting of
the weight and threshold variables that can make the predicted probability match the actual reply fraction.
Assumption 6 says the change in score for FromManager must be the same when ToLine is 1.0 as for when
ToLine is 0.0. But, to match the data, we need the change in score to be higher when ToLine is 1.0 than when
it is 0.0.
Rather than changing the model to remove Assumption 6 , we can work around this limitation by adding a
new feature that is 1.0 only if ToLine and FromManager are both 1.0 (an AND of the two features). This new
feature will have its own weight associated with it, which means there can now be a different score for manager
emails when the user is on the To line to when they are not on the To line. If we train such a three-feature
model, we get the new predictions shown here:

ToLine FromManager And Replied to Not replied to Frac�on replied to P(repliedTo=true)

0 0 0 19 3,046 0.006 0.007

1 0 0 111 824 0.119 0.119

0 1 0 2 248 0.008 0.024

1 1 1 200 50 0.800 0.766

The predicted probabilities are now much closer to the actual reply fractions in each case, meaning that the
new model is making more accurate predictions than the old one. Any remaining discrepancies are due to
Assumption 5 , which controls the size of effect of any single feature.
This problem can be avoided by always using an AND of the values of a subset of features. This is the approach
taken in a decision tree model, a non-linear classifier which we will discuss in Section 8.2. When training a
decision tree, we are effectively searching for combinations of features like the one above, which lead to good
predictions. Unfortunately, decision trees suffer from a different problem, where the values of many features
are ignored when making a prediction. A popular solution to both issues is to combine several decision trees
together through a linear model into a decision forest – this approach is also discussed in Section 8.2.

Uncluttering Your Inbox ■ 197

f : features

emails

email

featureValue weight

threshold

featureScore

score

noisyScore

10 (variance)

repliedTo

Gaussian(0,1)

Gaussian(0,10)

ComputeFeature(·,f)

×

+

Gaussian

>

FIGURE 4.7: Factor graph of a model which includes both feature calculation
and classification. The ComputeFeature factor takes as arguments the current
feature f and the email being considered and computes the value of feature f
for that email.

If the feature set really is part of the model, we must use the same approach
for designing a feature set, as for designing a model. This means that we
need to visualise and understand the data, be conscious of assumptions being
represented, specify evaluation metrics and success criteria, and repeatedly
refine and improve the feature set until the success criteria are met (in other
words, we need to follow the machine learning life cycle). This is exactly the
process we will follow next.

REVIEW OF CONCEPTS

regression The task of predicting a real-valued quantity (for example, a
house price or a temperature) given the attributes of a particular data item
(such as a house or a city). In regression, the aim is to make predictions about
a continuous variable in the model.

logistic function The function f(x) = 1/(1 + e−x) which is often used
to transform unbounded continuous values into continuous values between

198 ■ Model-Based Machine Learning

0 and 1. It has an S-shape similar to that of the cumulative Gaussian (see
Figure 4.6).

linear function Any function of one or more variables f(x1, . . . , xk) which
can be written in the form f(x1, . . . , xk) = a + b1x1 + . . . + bkxk. A linear
function of just one variable can therefore be written as f(x) = a+bx. Plotting
f(x) against x for this equation gives a straight line which is why the term
linear is used to describe this family of functions.

Uncluttering Your Inbox ■ 199

4.4 DESIGNING A FEATURE SET

To use our classification model, we need to design features to transform the
data to conform as closely as possible to the assumptions built into the model
(Table 4.3). For example, to satisfy Assumption 7 (that features contain all
relevant information about the user’s actions) we need to make sure that our
feature set includes all features relevant to predicting reply. Since pretty much
any part of an email may help with making such a prediction, this means that
we will have to encode almost all aspects of the email in our features. This
will include who sent the email, the recipients of the email on the To and Cc
lines, the subject of the email and the main body of the email, along with
information about the conversation the email belongs to.

When designing a new feature, we need to ensure that:

• the feature picks up on some informative aspect of the data,

• the feature output is of the right form to feed into the model,

• the feature provides new information about the label over and above
that provided by existing features.

In this section, we will show how to design several new features for our feature
set, while ensuring that they meet the first two of these criteria. In the next
section we will show how to check the third criterion by evaluating the system
with and without certain features.

4.4.1 Features with many states

So far, we have represented where the user appears on the email using a ToLine
feature. This feature has only two states: the user is either on the To line or
not. So the feature ignores whether the user is on the Cc line, even though
we might expect a user to be more likely to reply to an email if they appear
on the Cc line than if they do not appear at all. The feature also ignores the
position of the user on the To/Cc line. If the user is first on the To line we
might expect them to be more likely to reply than if they are at the end of
a long list of recipients. We can check these intuitions using our data set by
finding the actual fraction of all training/validation emails that were replied
to in a number of cases: when the user is first, second or later than second
on the To line, when the user is first or elsewhere on the Cc line and when
the user is not on either the To or Cc lines (for example, if they received the
email via a mailing list).

Figure 4.8 plots these fractions, showing that the probability of reply does
vary substantially depending on which of these cases applies. This plot demon-
strates that a feature that was able to distinguish these cases would indeed
pick up on an informative aspect of the data (our first criterion above). When
assessing reply fractions, such as those in Figure 4.8, it is important to take
into account how many emails the fraction is computed from, since a fraction

200 ■ Model-Based Machine Learning

computed from a small number of emails would not be very accurate. To check
this, in Figure 4.8 we show the number of emails in brackets below each bar
label, demonstrating that each has sufficient emails to compute the fraction
accurately and so we can rely on the computed values.

ToCcPosition

Not On

To Or Cc

Line

(13961)

First On

To Line

(6783)

Second

On To

Line

(994)

Third Or

Later On

To Line

(949)

First On

Cc Line

(691)

Second

Or Later

On Cc

Line

(603)

0

0.1

0.2

0.3

0.4

FIGURE 4.8: Fraction of emails that were replied to, for each of six possible
positions of the user on the To or Cc line. The number of emails with the
user in each position is shown in brackets (the fraction replied to is a fraction
of these emails that were replied to). The plot shows that, for our data set,
being first on the To line indicates the highest probability of reply, but that
this reduces if the user is second or later. It also shows that if the user is not
mentioned on the To or Cc line, the reply probability is very low.

We can improve our feature to capture cues like this by giv-
ing it multiple states, one for each of the bars of Figure 4.8. So
the states will be: {NotOnToOrCcLine, FirstOnToLine, SecondOnToLine,
ThirdOrLaterOnToLine, FirstOnCcLine, SecondOrLaterOnCcLine}. Now
we just need to work out what the output of the feature should be, to be
suitable for our model (the second criterion). We could try returning a value
of 0.0 for NotOnToOrCcLine, 1.0 for FirstOnToLine and so on up to a value of
5.0 for SecondOrLaterOnCcLine. But, according to Assumption 3 (that the
score changes by the weight times the feature value) this would mean that the
probability of reply would either steadily increase or steadily decrease as the
value changes from 0.0 through to 5.0. Figure 4.8 shows that this is not the
case, since the reply fraction goes up and down as we go from left to right. So
such an assumption would be incorrect. In general, we want to avoid making
assumptions which depend on the ordering of some states that do not have
an inherent ordering, like these. Instead we would like to be able to learn how
the reply probability is affected separately for each state.

To achieve this we can modify the feature to outputmultiple feature values,
one for each state. We will use a value of 1.0 for the state that applies to a

Uncluttering Your Inbox ■ 201

particular email and a value of 0.0 for all other states – this is sometimes called
a one-hot encoding. So an email where the user is first on the To line would be
represented by the feature values {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}. Similarly an email
where the user is first on the Cc line would be represented by the feature
values {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}. By doing this, we have effectively created
a group of related binary features – however it is much more convenient to
think of them as a single ToCcPosition feature which outputs multiple values.
To avoid confusion in terminology, we will refer to the dif-
ferent elements of such a feature as feature buckets – so
the ToCcPosition feature contains six feature buckets. For
a particular email, you can imagine the one-hot encoding
of a feature to be like throwing a ball that lands in one of
the buckets.

Using this terminology, the plate across the features in
our factor graph should now be interpreted as being across
all buckets of all features, so that each bucket has its own
featureValue and its own associated weight. This means
that the weight can be different for each bucket of our
ToCcPosition feature – and so we are no longer assuming
that the reply probability steadily increases or decreases across the buckets.

4.4.2 Numeric features

We also need to create features that encode numeric quantities, such as the
number of characters in the email body. If we used the number of characters
directly as the feature value, we would be assuming that longer emails mean
either always higher or always lower reply probability than shorter emails.
But in fact we might expect the user to be unlikely to respond to a very short
email (“Thanks”) or a very long email (such as a newsletter), but may be
likely to respond to emails whose length is somewhere in between. Again, we
can investigate these beliefs by plotting the fraction of emails replied to for
various body lengths. To get a useful plot, it is necessary to group together
emails with similar lengths so that we have enough emails to estimate the
reply fraction reliably. In Figure 4.9, we label each bar in the bar chart with
the corresponding range of body lengths. The range of lengths for each bar is
roughly double the size of the previous one, and the final bar is for very long
emails (more than 1023 characters).

202 ■ Model-Based Machine Learning

BodyLength

0

(103)

1-4

(90)

5-8

(135)

9-16

(243)

17-32

(541)

33-64

(1177)

65-128

(2287)

129-256

(3206)

257-512

(3930)

513-1023

(6250)

>1023

(6019)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIGURE 4.9: Fraction of emails that were replied to, for various ranges of
body lengths, given by the number of characters in the email body. The num-
ber of emails falling into each length range is shown in brackets. Zero-length
emails are likely to have their message in the subject line and so have quite
a high reply fraction. For other emails, the reply fraction peaks at around
9-16 characters and then generally decreases, until it is very low for very long
emails.

There are several aspects of this plot that are worthy of comment. Zero-
length emails have a quite high reply probability, probably because these are
emails where the message was in the subject. As we anticipated, very short
emails have relatively low reply probability and this increases to a peak in the
9-16 characters and is then roughly constant until we get to very long emails
of 513 characters or more where the reply probability starts to tail off. To pick
up on these changes in the probability of reply, we can use the same approach
as we just used for ToCcPosition and treat each bar of our plot as a different
feature bucket. This gives us a BodyLength feature with 11 buckets. Emails
whose length fall into a particular length range, such as 33-64 characters, all
map to a single bucket. This mapping encodes the assumption that the reply
probability does not depend on the exact body length but only on which range
that length falls into.

4.4.3 Features with many, many states

We might expect that the sender of an email would be one of the most useful
properties for predicting whether a user will reply or not. But why rely on
belief, when we can use data? Figure 4.10 shows the fraction of emails replied
to for the twenty most frequent senders for User35CB8E5. As you can see
there is substantial variation in reply fraction from one sender to another:
some senders have no replies at all, whilst others have a high fraction of
replies. A similar pattern holds for the other users in our data set. So indeed,
the sender is a very useful cue for predicting reply.

Uncluttering Your Inbox ■ 203

Sender

0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 4.10: Fraction of emails replied to for the 20 most common senders
for User35CB8E5 (the number of emails from each sender is shown in brack-
ets). Reply fraction varies significantly from sender to sender, indicating that
this is a very useful cue for predicting reply. As discussed in Section 4.1, the
sender identities have been anonymised to preserve the privacy of the user.

To incorporate the sender information into the feature set, we can use a
multi-state Sender feature, with one state for each sender in the data set. For
example, User35CB8E5 has 658 unique senders in the training and validation
sets combined. This would lead to a feature with 658 buckets of which 657
would have value 0.0 and the bucket corresponding to the actual sender would
have value 1.0. Since so many of the feature bucket values would be zero, it
is much more efficient to change our factor graph to only include the feature
buckets that are actually ‘active’ (non-zero). A suitably modified factor graph
is shown in Figure 4.11.

204 ■ Model-Based Machine Learning

buckets

emails

indices

featureIndices

featureValue

weight

threshold

featureScore

score

noisyScore

10 (variance)

repliedTo

featureWeight

Gaussian(0,1)

Gaussian(0,10)

Subarray

×

+

Gaussian

>

FIGURE 4.11: Modified factor graph which represents only non-zero fea-
ture buckets. The featureIndices variable contains the indices of feature
buckets that have non-zero values. The featureValues variable contains the
corresponding values for those buckets. The Subarray factor is used to pull
out the relevant elements of the weight array, which are placed into the
featureWeight array.

In this modified graph, the feature values for an email are represented by
the indices of non-zero values (featureIndices) along with the corresponding
values at these indices (featureValues). We use the Subarray factor that we
introduced back in Section 2.4 to pull out the weights for the active buckets
(featureWeight) from the full weights array (weight). This new factor graph
allows features like the Sender feature to be added without causing a substan-
tial slow-down in training and classification times. For example, training on
User35CB8E5’s training set takes 9.2 seconds using the old factor graph but
just 0.43 seconds using this new factor graph. This speed up would be even

Uncluttering Your Inbox ■ 205

greater if we had trained on more emails, since there would be more unique
senders.

4.4.4 An initial feature set

Now that we know how to encode all the different types of data properties,
we can complete our initial feature set, ready to start experimenting with.
To encode remaining data properties, we add three further features: FromMe,
HasAttachments and SubjectLength whose feature buckets and reply fractions
are shown in Figure 4.12.

False

(23428)

True

(553)

0

0.1

0.2

0.3

0.4

(a) FromMe

False

(22547)

True

(1434)

0

0.1

0.2

0.3

0.4

(b) HasAttachments

0

(52)

1-2

(21)

3-4

(128)

5-8

(480)

9-16

(2340)

17-32

(7494)

33-64

(9725)

>64

(3741)

0

0.1

0.2

0.3

0.4

(c) SubjectLength

FIGURE 4.12: Fraction of emails that were replied to for each feature bucket,
for the three new features. The number of emails falling into each feature
bucket is shown in brackets.

As we discussed back in Section 4.1, we removed the content of the subject
lines and email bodies from the data set and so cannot add any features to
encode the actual words of the subject or of the email body. To build the
classifier for the Exchange project, anonymised subject and body words were
used from voluntarily provided data. As you might expect, including such
subject and body word features did indeed help substantially with predictive
accuracy.

206 ■ Model-Based Machine Learning

Our initial feature set, with six features, is shown in Table 4.4.

Descrip�on #Buckets

FromMe Whether the message is from you 1

ToCcPosi�on Your posi�on on the To or Cc lines 6

HasA#achments Whether the message has a#achments 1

BodyLength The number of new characters in the body text 11

SubjectLength The number of characters in the subject 8

Sender Who the message is from (varies)

TABLE 4.4: An initial set of features for predicting reply on an email. For
each feature, we show the feature type, a brief description and the number of
feature buckets for that feature (where this number is fixed).

Now that we have a classification model and a feature set, we are ready to
see how well they work together to predict whether a user will reply to a new
email.

REVIEW OF CONCEPTS

one-hot A way of encoding a 1-of-N choice using a vector of size N . The
vector is zero everywhere except at the position corresponding to the choice,
where there is a one. So if there are three options, the first would be encoded
by {1.0, 0.0, 0.0}, the second by {0.0, 1.0, 0.0} and the third by {0.0, 0.0, 1.0}.

feature buckets Labels which identify the values for a feature that re-
turns multiple values. For example, the ToCcPosition feature in Figure 4.8
has six feature buckets: NotOnToOrCcLine, FirstOnToLine, SecondOnToLine,
ThirdOrLaterOnToLine, FirstOnCcLine and SecondOrLaterOnCcLine. For
this feature the value associated with one of the buckets will be 1.0 and the
other values will be 0.0, but for other features multiple buckets may have
non-zero values.

Uncluttering Your Inbox ■ 207

4.5 EVALUATING AND IMPROVING THE FEATURE SET

Using our newly-completed model and feature set, we can train a personalised
classifier for each user in our data set. To be precise, for each user’s training
set, we compute the active feature buckets featureIndices for each email,
along with their feature values featureValue. Given these observed variables,
we can then apply expectation propagation to learn a posterior weight dis-
tribution for each bucket, along with a single posterior distribution over the
value of the threshold. But first we need to look at how to schedule message
passing for our model.

4.5.1 Parallel and sequential schedules

InferenceInference deep-dive
In this optional section, we look at how to schedule the expectation propaga-
tion messages for our model. If you want to go straight to look at the results
of running expectation propagation, feel free to skip this section.

When running expectation propagation in this model, it is important to
choose a good message-passing schedule. In this kind of model, a poor schedule
can easily cause the message-passing algorithm to fail to converge or to con-
verge very slowly. When you have a model with repeated structures (such as
our classification model), there are two main kinds of message-passing sched-
ule that can be used: sequential or parallel. To understand these two kinds of
schedule, let’s look at message passing on a simplified form of our model with
two features and two weights:

B1A1 B2A2

B1A1

B1

A1

B2A2

B2

A2

BA

BA

featureValue1 featureValue2

weight1 weight2

featureScore1 featureScore2

score

Gaussian(0,1) Gaussian(0,1)

× ×

+

In this figure, rather than using a plate across the buckets, we have instead
duplicated the part of the model for each weight. When doing message passing
in this model, two choices of schedule are:

208 ■ Model-Based Machine Learning

• A sequential schedule which processes the two weights in turn. For the
first weight, this schedule passes messages in the order A, A1, B1, B.
After processing this weight, message-passing happens in the bottom
piece of the graph (not shown). The schedule then moves on to the
second weight, passing messages in the order A, A2, B2, B.

• A parallel schedule which processes the two weights at once. In this
schedule, first the messages marked A are passed. Then both sets of
messages (A1 and B1) and (A2 and B2) are passed, where the mes-
sages from the plus factor are computed using the previous B1 and B2
messages. Finally, the message marked B are passed.

To see the difference between the two schedules, look at how the first A2 mes-
sage coming out of the plus factor is calculated. In the sequential schedule, it
is calculated using the B1 message that has just been updated in this iteration
of the schedule. In the parallel schedule, it uses the B1 message calculated in
the previous iteration, in other words, an older version of the message. As a
result, the parallel schedule converges more slowly than the sequential sched-
ule and is also more likely to fail to converge at all. So why would we ever
want to use a parallel schedule? The main reason is if you want to distribute
your inference computation in parallel across a number of machines in order
to speed it up. In this case, the best option is to use a combined schedule
which is sequential on the section of model processed within each machine
but which is parallel across machines.

4.5.2 Visualising the learned weights

To ensure this sequential schedule is working well, we can visualise the learned
weight distributions to check that they match up to our expectations. Fig-
ure 4.13 shows the learned Gaussian distributions over the weights for each
feature bucket for User35CB8E5 (to save space, only the fifteen most frequent
Sender weights are shown).

Looking at each weight in turn, we can see that more positive weights
generally correspond to those feature buckets that we would expect to have a
higher probability of reply, given the histograms in the previous section. For
example, looking at the SubjectLength histogram of Figure 4.12c, you can see
that the positive and negative learned weights correspond to the peaks and
troughs of the histogram. You can also see that the error bars are narrower for
common feature buckets like SubjectLength[33-64] than for rare feature buckets
like SubjectLength[1-2]. This is to be expected since, if there are fewer emails
with a particular feature bucket active, there is less information about the
weight for that bucket and so the learned weight posterior is more uncertain.
For very rare buckets, there are so few relevant emails in the training set that
we should expect the weight posterior to be very close to the Gaussian(0,1)
prior. You can see this is true for SubjectLength[1-2], for example, whose weight

Uncluttering Your Inbox ■ 209

FromMe

ToCcPosition[NotOnToOrCcLine]

ToCcPosition[FirstOnToLine]

ToCcPosition[SecondOnToLine]

ToCcPosition[ThirdOrLaterOnToLine]

ToCcPosition[FirstOnCcLine]

ToCcPosition[SecondOrLaterOnCcLine]

HasAttachments

BodyLength[0]

BodyLength[1-4]

BodyLength[5-8]

BodyLength[9-16]

BodyLength[17-32]

BodyLength[33-64]

BodyLength[65-128]

BodyLength[129-256]

BodyLength[257-512]

BodyLength[513-1023]

BodyLength[>1023]

SubjectLength[0]

SubjectLength[1-2]

SubjectLength[3-4]

SubjectLength[5-8]

SubjectLength[9-16]

SubjectLength[17-32]

SubjectLength[33-64]

SubjectLength[>64]

Sender[User53E8860]

Sender[User1E1C87C]

Sender[User51042C4]

Sender[UserF92C2B9]

Sender[UserCBBD2F6]

Sender[User6D93A4B]

Sender[User3F9EE1F]

Sender[User79FA995]

Sender[UserED3CD0C]

Sender[User6C97BBB]

Sender[UserE804D5C]

Sender[UserE77183]

Sender[UserFEE6D90]

Sender[User1961596]

Sender[User584AE2F]

Weight

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

FIGURE 4.13: Learned Gaussian distributions over the feature bucket weights
for User35CB8E5. For each feature bucket, the blue bar indicates the mean
of the Gaussian weight distribution showing how much the system expects
the feature bucket to increase or decrease the score for an email. The error
bars indicate the uncertainty in this learned value by showing plus/minus one
standard deviation around the mean.

210 ■ Model-Based Machine Learning

mean is close to 0.0 and whose standard deviation is close to 1.0. So, overall,
manual inspection of the learned weights is consistent with what we might
expect. Inspecting the learned weights of other users also show plausible weight
distributions.

Had we found some unexpected weight values here, the most likely ex-
planation would be a bug in the feature calculation. However, unexpected
weight values can also uncover faulty intuitions about the kinds of email a
user is likely to reply to, or even allow us to discover new types of email reply
behaviour that we might not have guessed at.

4.5.3 Evaluating reply prediction

Using the trained model for each user, we can now predict a reply probability
for each email in the user’s validation set. As we saw in Chapter 2, we can
plot an ROC curve to assess the accuracy of these predictions. Doing this for
each user, gives the plots in Figure 4.14.

These curves look very promising – there is some variation from user to
user, but all the curves are all up in the top left of the ROC plot where we
want them to be. But do these plots tell us what we need to know? Given
that our aim is to identify emails with particular actions (or lack of actions),
we need to know two things:

1. Out of all replied-to emails, what fraction do we predict will be replied
to?

This is the true positive rate, which the ROC curve is already giving us on its
y-axis. In this context, the true positive rate is also referred to as the recall
since it measures how many of the replied to emails were successfully ‘recalled’
by the system.

2. Out of emails that we predict will be replied to, what fraction actually
are?

This is a new quantity called the precision and is not shown on the ROC
curve. Note that this is a different meaning of the word precision to its use
as a parameter describing the inverse variance of a Gaussian – it is usually
clear from the context which meaning is intended. To visualise the precision
we must instead use a precision-recall curve (P-R curve) which is a plot of
precision on the y-axis against recall on the x-axis. Figure 4.15 shows precision-
recall curves for exactly the same prediction results as for the ROC curves in
Figure 4.14. For more discussion of precision and recall, see Powers [2008].

To get a summary accuracy number for a precision-recall curve, similar
to the area under an ROC curve, we can compute the average precision
(AP) across a range of recalls – these are shown in the legend of Figure 4.15.
Precision-recall curves tend to be very noisy at the left hand end since at
this point the precisions are being computed from a very small number of
emails – for this reason, we compute the average precision between recalls of

Uncluttering Your Inbox ■ 211

False positive rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User35CB8E5 (AUC=91.0%) UserCE3FDB4 (AUC=89.1%)

User6AACED (AUC=91.4%) User7E601F9 (AUC=80.2%)

User68251CD (AUC=87.3%) User223AECA (AUC=90.1%)

UserFF0F29E (AUC=86.2%) User25C0488 (AUC=83.1%)

User811E39F (AUC=81.9%) User10628A6 (AUC=87.6%)

Random (AUC=50.0%)

FIGURE 4.14: ROC curves for each user in our data set computed using
predictions on the user’s validation set. The legend gives the area under the
curve (AUC) for each user.

0.1 and 0.9 to give a more stable and reliable accuracy metric. Omitting the
right hand end of the plot as well helps correct for the reduction in average
precision caused by ignoring the left hand end of the plot.

Compare the ROC and precision-recall curves – once again we can see the
value of using more than one evaluation metric: the precision-recall curves tell
a very different story! They show that there is quite a wide variability in the
precision we are achieving for different users, and also that the users with the
highest precision-recall curves (such as User68251CD) are not the same users
that have the highest ROC curves (such as User6AACED). So what’s going
on?

To help understand the difference, consider a classifier that predicts reply

212 ■ Model-Based Machine Learning

Recall (true positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User35CB8E5 (AP=52.1%, reply=3.7%) UserCE3FDB4 (AP=35.8%, reply=6.0%)

User6AACED (AP=45.0%, reply=3.2%) User7E601F9 (AP=53.5%, reply=22.5%)

User68251CD (AP=61.4%, reply=23.6%) User223AECA (AP=50.9%, reply=9.6%)

UserFF0F29E (AP=29.3%, reply=5.4%) User25C0488 (AP=32.5%, reply=9.6%)

User811E39F (AP=25.3%, reply=8.2%) User10628A6 (AP=47.3%, reply=12.6%)

FIGURE 4.15: Precision-recall curves for the same prediction results as the
ROC curves of Figure 4.14. The legend gives the average precision (AP) for
each user, along with the percentage of validation set emails that were replied
to by that user.

or no-reply at random. The ROC curve for such a classifier is the diagonal
line labelled ‘Random’ in Figure 4.14. To plot the P-R curve for a random
classifier, we need to consider that it will classify some random subset of
emails as being positives, so the fraction of these that are true positives (the
precision) is just the fraction of emails that the user replies to in general. So
if a user replies to 20% of their emails, we would expect a random classifier to
have a precision of 20%. If another user replies to 2% of their emails, we may
expect a random classifier to have a precision of 2%. The fraction of emails
that each of our users replies to is given in the legend of Figure 4.15, following
the average precision. User68251CD replies to the highest percentage of emails
23.6% which means we might expect it to be easier to get higher precisions

Uncluttering Your Inbox ■ 213

for that user – and indeed that user has the highest average precision, despite
having an intermediate ROC curve. Conversely, User6AACED, who has one
of the highest ROC curves, has only a middling P-R curve, because this user
only replies to 3.2% of their email. Given that our two error metrics are giving
us different information, how can we use them to assess success? How can we
set target values for these metrics? The answer lies in remembering that we
use metrics like AP and AUC only as a proxy for the things that we really
care about – user happiness and productivity. So we need to understand how
the values of our metrics map into the users’ experience of the system.

4.5.4 Understanding the user’s experience

Once the system is being beta tested by large
numbers of users, we can use explicit feedback
(for example, questionnaires) or implicit feedback
(for example, how quickly people process their
email or how many people turn off the feature) to
assess how happy/productive users are for partic-
ular values of the evaluation metrics. During the
early stages of developing the system, however,
we must use our own judgement of how well the
system is working on our own emails.

To understand how our evaluation metrics map into a real user’s experi-
ence, it is essential to get some users using the system as soon as possible,
even if these users are just team members. To do this, we need a working end-
to-end system, including a user interface, that can be used to evaluate qual-
itatively how well the system is performing. Having a working user interface
is particularly important since the choice of user interface imposes require-
ments on the underlying machine learning system. For example, if emails are
to be removed from a user’s inbox without giving any visual indication, then
a very high precision is essential. Conversely, if emails are just to be gently
de-emphasised but left in place, then a lower precision can be tolerated, which
allows for a higher recall. These examples show that the user interface and
the machine learning system need to be well matched to each other. The user
interface should be designed carefully to tolerate any errors made by the ma-
chine learning component, whilst maximising its value to the user (see Patil
[2012]). A well-designed user interface can easily make the difference between
users adopting a particular machine learning system or not.

For our purposes, we need a user interface that emulates an email client
but which also displays the reply prediction probability in some visual way.
Figure 4.16 shows a suitable user interface created as an evaluation and de-
bugging tool.

The tool has a cut-off reply probability threshold which can be adjusted
by a slider – emails with predicted reply probabilities above this threshold
are predicted to be replied to and all other emails are predicted as not being

214 ■ Model-Based Machine Learning

FIGURE 4.16: Screenshot of the user interface of the evaluation and debugging tool which allows the accuracy
of the system to be assessed on real emails. The tool also exposes the calculated features, learned weights and
predicted reply probability for each email, which makes it easier to debug the system. The coloured background
of the reply probabilities indicates whether the prediction is a true positive (green), false positive (orange) or
true negative or false negative for the current cut-off threshold. To preserve the privacy of the user whose emails
are shown here, the content of the emails have been hidden and the identities of all senders and recipients have
been anonymised.

replied to. The tool also marks which emails were correctly classified and which
were false positives or false negatives, given this cut-off threshold. The use of
a threshold on the predicted probability again emphasises the importance of
good calibration. If the calibration of the system is poor, or varies from user to
user, then it makes it much harder to find a cut-off threshold that gives a good
experience. The calibration of our predictions can be plotted and evaluated,
as described in Panel 4.3.

For debugging purposes, the tool shows the feature buckets that are active
for each email along with the corresponding feature value and learned weight

Uncluttering Your Inbox ■ 215

Panel 4.3 – Calibration

A machine learning system is well-calibrated if the predicted probabilities
it gives are accurate [Dawid, 1982]. For example, if a well-calibrated system
predicts an event with a probability of 90%, then we should expect this event
to happen 90% of the time. It is important to evaluate the calibration of any
machine learning system because:

• We often need to be able to trust the probabilities coming from the sys-
tem. For example, they may be used to drive a user interface which varies
with the probability of the prediction (such as only marking emails above
a certain probability). Accurate probabilities are especially important if
they are to be used as input to another machine learning system.

• If a machine learning system is poorly calibrated then it suggests a
problem either in the model (such as an overly restrictive assumption) or
in the approximate inference. Fixing this problem will not only improve
calibration but also usually improve prediction accuracy as well.

We can use a calibration plot to evaluate how well-calibrated our email model
is. To do this we take all the validation set predictions made for each user
and divide them into bins according to the predicted probability of reply (0-
10%,11-20% and so on). For each bin, we then compute the fraction of emails
that were actually replied to (we discard bins with too few emails, since then
this fraction would be very noisy). Finally, we plot the average of this fraction
across users against the predicted probability, as shown below.

Predicted probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Perfect calibration

Average (RMSE=0.094)

The plot also shows the line for a perfectly calibrated system, which is a
diagonal line. Our system is reasonably well-calibrated (within about 0.1 of
this diagonal). We can get an overall calibration metric by measuring how far
we are from this diagonal using – for example, using a root-mean-squared-error
(RMSE) difference, which for our system gives 0.094.

216 ■ Model-Based Machine Learning

distribution. This is extremely helpful for checking that the feature computa-
tion is correct, since the original email and computed features are displayed
right next to each other.

Using this tool, we can assess qualitatively how well the system is working
for a particular threshold on the reply probability. Looking at a lot of different
emails, we find that the system seems to be working very well, despite the
apparently moderate precision. This is because a proportion of the apparent
incorrect predictions are actually reasonable, such as:

• False positives where the user “responded” to the email, but not by
directly replying. This could be because they responded to the sender
without using email, (for example: in person, on the phone or via instant
messaging) or responding by writing a fresh email to the sender or by
replying to a different email.

• False positives where the user intended to reply, but forgot to or didn’t
have time.

• False negatives where a user replied to an email, as a means of replying
to an email earlier in the conversation thread.

• False negatives where a user replied to an email and deleted the con-
tents/subject as a way of starting a new email to the sender.

In all four of these cases the prediction is effectively correct: in the first two
cases this is an email that the user would want to reply to and in the last
two it is not. The issue is that the ‘ground truth’ label that we have for the
item is not correct, since whether or not a user wanted to reply to an email is
assumed to be the same as whether they actually did. But in these four cases,
it is not. Later in the chapter we will look at how to deal with such noisy
ground truth labels.

Since the ground truth labels are used to evaluate the system, such incor-
rect labels can have a big detrimental effect on the measured accuracy. For
example, if 25% of positive emails are incorrectly labelled as negatives, then
the measured precision of a perfect classifier would be only 75% rather than
100%. If 5% of negative emails are also incorrectly labelled as positive then,
for a user who replies to 10% of their emails, the recall of a perfect classi-
fier would be just 62.5%! To see where this number came from, consider 1000
emails received by the user. The user would reply to 100 of these emails (10%)
and so would not reply to 900 emails. Of the replied-to emails, only 75% (=75
emails) would be labelled positive and of the not-replied-to emails, 5% of 900
= 45 emails would be incorrectly labelled positive. So a perfect classifier would
make positive predictions on 75 of the 75+45=120 emails that were labelled
as positive, meaning that the measured recall would be 75

120 = 62.5%.
However, even taking into account noisy ground truth labels, there are

still a number of incorrect predictions that are genuinely wrong. Examples of
these are:

Uncluttering Your Inbox ■ 217

1. False negatives where the email is a reply to an email that the user sent,
but the sender is new or not normally replied to.

2. False negatives where the email is a forward, but the sender is new or
not normally replied to.

3. False negatives for emails to a distribution list that the user owns or
manages and so is likely to reply to.

4. False positives for newsletter/marketing/social network emails (some-
times known as ‘graymail’) sent directly to the user, particularly where
the sender is new.

We will now look at how to modify the feature set to address some of these
incorrect predictions.

4.5.5 Improving the feature set

The first two kinds of incorrect prediction are false negative predictions where
the email is a reply to an email from the user or a forward of an email to the
user. These mistakes occur because no existing feature distinguishes between
these cases and a fresh email coming from the same sender – yet if the email is
a reply or forward, there is likely to be a very different reply probability. This
violates Assumption 7 , that is, whether the user will reply or not depends
only on the feature values. To fix this issue, we need to introduce a new feature
to distinguish these cases. We can detect replies and forwards, by inspecting
the prefix on the subject line – whether it is “re:”, “fw:”, “fwd:” and so
on. Figure 4.17 shows the fraction of emails replied to in the training and
validation sets for known prefixes, an unknown prefix (other) or no prefix at
all. The plot shows that, indeed, users are more likely to reply to messages
which are replies or forwards and a SubjectPrefix feature might therefore be
informative. What this plot does not tell us is whether this new feature gives
additional information over the features we already have in our feature set. To
check whether it does, we need to evaluate the feature set with and without
this new feature. Figure 4.18 gives the area under the ROC curve and the
average precision for each user and averaged, for our feature set with and
without the SubjectPrefix feature.

What these results show is that the new feature sometimes increases accu-
racy and sometimes reduces accuracy depending on the user (whichever metric
you look at). However, on average the accuracy is improved with the feature,
which suggests that we should retain it in the feature set. Notice that the
average precision is a more sensitive metric than the area under the curve – so
it is more helpful when judging a feature’s usefulness. It is also worth bearing
in mind that either evaluation metric only gives an overall picture. Whilst
headline accuracy numbers like these are useful, it is important to always look
at the underlying predictions as well. To do this we can go back to the tool and
check that adding in this feature has reduced the number of false negatives

218 ■ Model-Based Machine Learning

No

Prefix

(11746)

Re

(11381)

Fw

(682)

Other

(172)

0

0.1

0.2

0.3

0.4

FIGURE 4.17: Fraction of emails that were replied to where the email had
different subject prefixes (re,fw/fwd), an unknown prefix (other) or no prefix
at all.

UserName AveragePrecision AreaUnderCurve

User35CB8E5 52.1% 91.0%

UserCE3FDB4 35.8% 89.1%

User6AACED 45.0% 91.4%

User7E601F9 53.5% 80.2%

User68251CD 61.4% 87.3%

User223AECA 50.9% 90.1%

UserFF0F29E 29.3% 86.2%

User25C0488 32.5% 83.1%

User811E39F 25.3% 81.9%

User10628A6 47.3% 87.6%

Average 43.3% 86.8%

(a) Initial results

UserName AveragePrecision AreaUnderCurve

User35CB8E5 54.8% 91.0%

UserCE3FDB4 34.4% 89.1%

User6AACED 46.4% 91.2%

User7E601F9 53.2% 79.9%

User68251CD 62.8% 87.3%

User223AECA 50.2% 89.8%

UserFF0F29E 30.9% 87.2%

User25C0488 31.2% 82.2%

User811E39F 26.4% 82.2%

User10628A6 48.6% 88.6%

Average 43.9% 86.9%

(b) With SubjectPrefix feature

FIGURE 4.18: Evaluation results for each user and overall, for the previous feature set and a feature set with
the new SubjectPrefix feature added. On average, both the area under the curve and the average precision are
slightly improved by adding the SubjectPrefix feature.

for reply/forward emails. Using the tool, we find that this is indeed the case,
but also that we are now slightly more likely to get false positives for the last
email of a conversation. This is because the only difference between the last
email of a conversation and the previous ones is the message content, which we
have limited access to through our feature set. Although incorrect, such false

Uncluttering Your Inbox ■ 219

positives can be quite acceptable to the user, since the user interface will bring
the conversation to the user’s attention, allowing them to decide whether to
continue the conversation or not. So we have removed some false negatives
that were quite jarring to the user at the cost of adding a smaller number of
false positives that are acceptable to the user. This is a good trade-off – and
also demonstrates the risk of paying too much attention to overall evaluation
metrics. Here, a small increase in the evaluation metric (or even no increase
at all for some users) corresponds to an improvement in user satisfaction.

The next kind of error we found were false negatives for emails received
via distribution lists. In these situations, a user is likely to reply to emails
received on certain distribution lists, but not on others. The challenge we face
with this kind of error is that emails often have multiple recipients and, if the
user is not explicitly named, it can be impossible to tell which recipients are
distribution lists and which of these distribution lists contain the user. For
example, if an email is sent to three different distribution lists and the user is
on one of these, it may not be possible to tell which one.

To get around this problem, we can add a Recipients feature that captures
all of the recipients of the email, on the grounds that one of them (at least) will
correspond to the user. Again, this is helping to conform to Assumption 7
since we will no longer be ignoring a relevant signal: the identities of the
email recipients. We can design this feature similarly to the Sender feature,
except that multiple buckets of the feature will have non-zero values at once,
one for each recipient. We have to be very careful when doing this to ensure
that our new Recipients feature matches the assumptions of our model. A
key assumption is the contribution of a single feature to the overall score
is normally in the range -1.0 to 1.0, since the weight for a bucket normally
takes values in the range and we have always used feature values of 1.0. But
now if we have an email with twenty recipients, then we have twenty buckets
active – if each bucket has a feature value of 1.0, then the Recipients feature
would normally contribute between -20.0 to 20.0 to the overall score. To put
it another way, the influence of the Recipients feature on the final prediction
would be twenty times greater for an email with twenty recipients than for
an email with one recipient. Intuitively this does not make sense since we
really only care about the single recipient that caused the user to receive the
email. Practically this would lead to the feature either dominating all the
other features or being ignored depending on the number of recipients – very
undesirable behaviour in either case. To rectify this situation, we can simply
ensure that, no matter how many buckets of the feature are active, the sum
of their feature values is always 1.0. So for an email with five recipients, five
buckets are active, each with a feature value of 0.2. This solution is not perfect
since there is really only one recipient that we care about and the signal from
this recipient will be diluted by the presence of other recipients. A better
solution would be to add in a variable to the model to identify the relevant
recipient. To keep things simple, and to demonstrate the kind of compromises
that arise when designing a feature set with a fixed model, we will keep the

220 ■ Model-Based Machine Learning

UserName AveragePrecision AreaUnderCurve

User35CB8E5 54.8% 91.0%

UserCE3FDB4 34.4% 89.1%

User6AACED 46.4% 91.2%

User7E601F9 53.2% 79.9%

User68251CD 62.8% 87.3%

User223AECA 50.2% 89.8%

UserFF0F29E 30.9% 87.2%

User25C0488 31.2% 82.2%

User811E39F 26.4% 82.2%

User10628A6 48.6% 88.6%

Average 43.9% 86.9%

(a) Without Recipients feature

UserName AveragePrecision AreaUnderCurve

User35CB8E5 57.6% 91.7%

UserCE3FDB4 33.9% 89.0%

User6AACED 46.7% 91.1%

User7E601F9 54.5% 80.2%

User68251CD 63.8% 87.7%

User223AECA 51.5% 89.2%

UserFF0F29E 30.6% 87.2%

User25C0488 32.1% 83.3%

User811E39F 26.4% 82.3%

User10628A6 50.0% 88.9%

Average 44.7% 87.1%

(b) With Recipients feature

FIGURE 4.19: Evaluation results for the previous feature set without the Recipients feature and for a feature
set with the Recipients feature included.

model the same and use a feature-based solution. As before, we can evaluate
our system with and without this new Recipients feature.

The comparative results in Figure 4.19 are more clear-cut than the previ-
ous ones: in most cases the accuracy metrics increase with the Recipients fea-
ture added. Even where a metric does not increase, it rarely decreases by very
much. On average, we are seeing a 0.2% increase in AUC and a 0.8% increase in
AP. These may seem like small increases in these metrics, but they are in fact
quite significant. Using the interactive tool tells us that a 1% increase in av-
erage precision gives a very noticeable improvement in the perceived accuracy
of the system, especially if the change corrects particularly jarring incorrect
predictions. For example, suppose a user owns a particular distribution list
and replies to posts on the list frequently. Without the Recipients feature the
system would likely make incorrect predictions on such emails which would
be quite jarring to the user, as the owner of the distribution list. Fixing this
problem by adding in the Recipients feature would substantially improve the
user’s experience despite leading to only a tiny improvement in the headline
AUC and AP accuracy numbers.

We are now free to go to the next problem on the list and modify the
feature set to try to address it. For example, addressing the issue of ‘graymail’
emails would require a feature that looked at the content of the email – in
fact a word feature works well for this task. For the project with the Exchange
team, we continued to add to and refine the feature set, ensuring at each stage
that the evaluation metrics were improving and that mistakes on real emails

Uncluttering Your Inbox ■ 221

were being fixed, using the tool. Ultimately we reached the stage where the
accuracy metrics were very good and the qualitative accuracy was also good.
At this point you might think we were ready to deploy the system for some
beta testers – but in real machine learning systems things are never that
easy. . .

REVIEW OF CONCEPTS

recall Another term for the true positive rate, often used when we are trying
to find rare positive items in a large data set. The recall is the proportion of
these items successfully found (‘recalled’) and is therefore equal to the true
positive rate.

precision The fraction of positive predictions that are correct. Precision is
generally complementary to recall in that higher precision means lower recall
and vice versa. Precision is often used as an evaluation metric in applications
where the focus is on the accuracy of positive predictions. For example, in a
search engine the focus is on the accuracy of the documents that are retrieved
as results and so a precision metric might be used to evaluate this accuracy.

This kind of precision should not be confused with the inverse variance of
a Gaussian which is also known as the precision. In practice, the two terms
are used in very different contexts so confusion between the two is rare.

precision-recall curve A plot of precision against recall for a machine
learning system as some parameter of the system is varied (such as the thresh-
old on a predicted probability). Precision-recall curves are useful for assessing
prediction accuracy when the probability of a positive prediction is relatively
low.

average precision The average precision across a range of recalls in the
precision-recall curve, used as a quantitative evaluation metric. This is effec-
tively the area under the P-R curve if the full range of recalls is used. However,
the very left hand end of the curve is often excluded from this average since
the precision measurements are inaccurate, due to being computed from a
very small number of data items.

222 ■ Model-Based Machine Learning

4.6 LEARNING AS EMAILS ARRIVE

So far we’ve been able to train our model on a large number of emails at once.
But for our application we need to be able to learn from a new email as soon
as a user replies to it, or as soon as it becomes clear that the user is not going
to reply to it. We cannot wait until we have received a large number of emails,
then train on them once and use the trained model forever. Instead, we have
to keep training the model as new emails come in and always use the latest
trained model to make predictions.

As we saw in Section 3.3 in the previous chapter, we can use online learning
to continually update our model as we receive new training data. In our model
online learning is straightforward: for each batch of emails that have arrived
since we last trained, we use the previous posterior distributions on weight and
threshold as the priors for training. Once training on the batch is complete,
the new posterior distributions over weight and threshold can be used for
making predictions. Later when the next batch of emails is trained on, these
posterior distributions will act as the new priors. We can check how well
this procedure works by dividing our training data into batches and running
online learning as each batch comes in. We can then evaluate this method
in comparison to offline training, where all the training data seen up to that
point is presented at once. Figure 4.20 shows the AUC and AP averaged across
all 10 users using either offline training or online training with different batch
sizes.

of emails

0 100 200 300 400 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 5 10 50 Offline

(a) Area Under Curve

of emails

0 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 5 10 50 Offline

(b) Average Precision

FIGURE 4.20: Prediction accuracy as more and more training emails become
available, averaged over all 10 users. For each metric, the offline curve shows
the accuracy if we retrain the model from scratch on all emails received up to
that point. The four other curves show the accuracy if we instead do online
training to update the model incrementally after every 1, 5, 10 or 50 emails.

Uncluttering Your Inbox ■ 223

These results show that online learning gives an accuracy similar to, but
slightly lower than offline training, with larger batch sizes giving generally
better accuracy. The plots also show that the difference in accuracy decreases
as more emails are received. So it seems like online learning could be a suit-
able solution, once sufficient emails have been received. But this brings us to
another problem: it takes around 400 to 500 emails for the average precision
to get close to a stable value. For a time before that number is reached, and
particularly when relatively few emails have been trained on, the accuracy
of the classifier is low. This means that the experience for new users would
be poor. Of course, we could wait until the user has received and acted on
sufficient emails, but for some users this could take weeks or months. It would
be much better if we could give them a good experience straight away. The
challenge of making good predictions for new users where there is not yet any
training data is known as a cold start problem.

4.6.1 Modelling a community of users

We’ve already shown that we can solve certain prediction problems by chang-
ing the feature set. But in this case, there is no change to the feature set
that can help us – we cannot even compute feature values until we have seen
at least one email! But since we have a classification model rather than a
fixed classification algorithm, we have an additional option available to us: to
change the model.

Learning from many users will help us to make
better predictions for a new user.

How can we change our model
to solve the cold start problem? We
can exploit the fact that different
users tend to reply to the same
kinds of emails. For example, users
tend to be more likely to reply to
emails where they are first on the
To line or where the email is for-
warded to them. This suggests that
we might expect the learned weights
to be similar across users, at least
for those feature buckets that cap-
ture behaviours common amongst users. However, there may also be other
feature buckets which capture differences in the behaviour from user to user,
where we may expect the learned weights to differ between users. To investi-
gate which feature buckets are similar across users, we can plot the learned
weights for the first five of our users, for all feature buckets that they have
in common (that is, all buckets except those of the Sender and Recipients
features). The resulting plot is shown in Figure 4.21.

As you can see, for many feature buckets, the weights are similar for all
five users and even for buckets where there is more variability across users the
weights tend to be all positive or all negative. But in a few cases, such as the

224 ■ Model-Based Machine Learning

FromMe

ToCcPosition[NotOnToOrCcLine]

ToCcPosition[FirstOnToLine]

ToCcPosition[SecondOnToLine]

ToCcPosition[ThirdOrLaterOnToLine]

ToCcPosition[FirstOnCcLine]

ToCcPosition[SecondOrLaterOnCcLine]

HasAttachments

BodyLength[0]

BodyLength[1-4]

BodyLength[5-8]

BodyLength[9-16]

BodyLength[17-32]

BodyLength[33-64]

BodyLength[65-128]

BodyLength[129-256]

BodyLength[257-512]

BodyLength[513-1023]

BodyLength[>1023]

SubjectLength[0]

SubjectLength[1-2]

SubjectLength[3-4]

SubjectLength[5-8]

SubjectLength[9-16]

SubjectLength[17-32]

SubjectLength[33-64]

SubjectLength[>64]

SubjectPrefix[no prefix]

Weight

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

FIGURE 4.21: Learned Gaussian distributions for the weights for each feature
bucket for the first five users in our data set. For most feature buckets the
learned weights are similar across users, demonstrating that they reply to
emails with similar characteristics.

Uncluttering Your Inbox ■ 225

FromMe feature, there is more variability from user to user. This variability
suggests that these features capture differences in behaviour between users,
such as whether a particular user sends emails to themselves as reminders.
Overall it seems like there is enough similarity between users that we could
exploit this similarity to make predictions for a completely new user. To do
this, we need to make a new modelling assumption about how the weights
vary across multiple users:

8 Across many users the variability in the weight for a feature bucket can
be captured by a Gaussian distribution.

This assumptions says that we can represent how a weight varies across users
by an average weight (the mean of the Gaussian distribution) and a measure
of how much a typical user’s weight deviates from this average (the standard
deviation of the Gaussian distribution).

Let’s change our model to add in this assumption. Since we are now mod-
elling multiple users, we need to add a plate across users and put our entire
existing model inside it. The only variables outside of this new plate will be two
new variables per feature bucket: weightMean to capture the average weight
across users and weightPrecision to capture the precision (inverse variance)
across users. We then replace the Gaussian(0,1) factor inside the plate (that
we used to use as a prior) by a Gaussian factor connected to weightMean and
weightPrecision. The resulting factor graph is shown in Figure 4.22.

You’ll notice that we have used precision (inverse variance) rather
than variance to capture the variability in weights across users. A high
weightPrecision for a bucket means that its weight tends to be very similar
from user to user, whilst a low weightPrecision means the bucket weight
tends to vary a lot from user to user. We choose to use precision because we
are now trying to learn this variability and it turns out to be much easier to
do this using a precision rather than a variance. This choice allows us to use a
gamma distribution to represent the uncertainty in the weightPrecision

variable, either when setting its prior distribution or when inferring its pos-
terior distribution. The gamma distribution is a distribution over continuous
positive values (that is, values greater than zero). We need to use a new dis-
tribution because precisions can only be positive – we cannot use a Gaussian
distribution since it allows negative values, and we cannot use a beta distribu-
tion since it only allows values between zero and one. The gamma distribution
also has the advantage that it is the conjugate distribution for the precision
of a Gaussian (see Panel 3.2 and Bishop [2006]).

The gamma distribution has the following density function:

Gamma(x; k, θ) =
xk−1e−

x
θ

θk Γ(k)
(4.1)

where Γ() is the gamma function, used to ensure the area under the density
function is 1.0. The gamma distribution has two parameters: the shape pa-
rameter k and the scale parameter θ – example gamma distributions with

226 ■ Model-Based Machine Learning

different values of these parameters are shown in Figure 4.23a. Confusingly,
the gamma distribution is sometimes parameterised by the shape and the
inverse of the scale, called the rate. Since both versions are common it is im-
portant to check which is being used – in this book, we will always use shape
and scale parameters.

Since we have relatively few users, we will need to be careful in our choice
of gamma prior for weightPrecision since it will have a lot of influence on
how the model behaves. Usually we expect the precision to be higher than
1.0, since we expect most weights to be similar across users. However, we also
need to allow the precision to be around 1.0 for those rarer weights that vary

buckets

users

emails

indices

featureIndices

featureValue

0

featureScore

score

noisyScore

10 (variance)

repliedTo

weightMean weightPrecision

weight

featureWeight

Gaussian(0,1) Gamma(4,0.5)

Gaussian

Subarray

×

+

Gaussian

>

FIGURE 4.22: Model for jointly classifying emails of multiple users. Our
classification model is duplicated for each user by placing it inside a users

plate. We then introduce two shared variables for each feature bucket:
weightMean captures the typical (average) weight for that bucket across users
and weightPrecision captures how much the weight tends to vary across
users.

Uncluttering Your Inbox ■ 227

substantially across users. Figure 4.23b shows a Gamma(4,0.5) distribution
that meets both of these requirements.

There is one more point to discuss about the model in Figure 4.22, before
we try it out. If you are very observant, you will notice that the threshold

variable has been fixed to zero. This is because we want to use our communal
weightMean and weightPrecision to learn about how the threshold varies
across users as well as how the weights vary. To do this, we can use a common
trick which is to fix the threshold to zero and create a new feature which
is always on for all emails – this is known as the bias. The idea is that
changing the score by a fixed value for all emails is equivalent to changing
the threshold by the same value. So we can use the bias feature to effectively
set the threshold, whilst leaving the actual threshold fixed at 0. Since feature
weights have a Gaussian(0,1) prior but the threshold has a Gaussian(0,10)
prior, we need to set the value of this new bias feature to be

√
10, in order

to leave the model unchanged – if we have a variable whose uncertainty is
Gaussian(0,1) and we multiply it by

√
10, we get a variable whose uncertainty

is Gaussian(0,10), as required.

4.6.2 Solving the cold start problem

A hands-on solution to the cold start
problem

We can now train our communal model on the
first five users (the users whose weights were plot-
ted in Figure 4.21). Even though we have sub-
stantially changed the model, we are still able to
use expectation propagation to do inference tasks
like training or prediction. So we do not need to
invent a new algorithm to do joint training on

x

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Gamma(1.00, 1.00) Gamma(1.00, 2.00)

Gamma(2.00, 1.00) Gamma(4.00, 0.50)

Gamma(8.00, 0.25) Gamma(16.00, 0.25)

(a)

x

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

(b)

FIGURE 4.23: (a) Example gamma distributions for different values of the
shape and scale parameters. (b) The Gamma(4, 0.5) distribution which we
use as a prior for the precision of the weights.

228 ■ Model-Based Machine Learning

multiple users – we can just run the familiar EP
algorithm on our extended model.

Figure 4.24 shows the community weight dis-
tributions learned: each bar shows the mean of
the posterior over weightMean and the error bars
show a standard deviation given by the mean
value of weightPrecision. Note the different use
of error bars – to show weightPrecision (the learned variability across users)
rather than the uncertainty in weightMean itself. If you compare the distri-
butions of Figure 4.24 with the individual weights of Figure 4.21, you can see
how the learned distributions have nicely captured the variability in weights
across users.

Uncluttering Your Inbox ■ 229

FromMe

ToCcPosition[NotOnToOrCcLine]

ToCcPosition[FirstOnToLine]

ToCcPosition[SecondOnToLine]

ToCcPosition[ThirdOrLaterOnToLine]

ToCcPosition[FirstOnCcLine]

ToCcPosition[SecondOrLaterOnCcLine]

HasAttachments

BodyLength[0]

BodyLength[1-4]

BodyLength[5-8]

BodyLength[9-16]

BodyLength[17-32]

BodyLength[33-64]

BodyLength[65-128]

BodyLength[129-256]

BodyLength[257-512]

BodyLength[513-1023]

BodyLength[>1023]

SubjectLength[0]

SubjectLength[1-2]

SubjectLength[3-4]

SubjectLength[5-8]

SubjectLength[9-16]

SubjectLength[17-32]

SubjectLength[33-64]

SubjectLength[>64]

SubjectPrefix[no prefix]

SubjectPrefix[re]

SubjectPrefix[fw]

SubjectPrefix[Other]

Bias

Mean

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

FIGURE 4.24: Community weight distributions learned from the first five
users in our data set. The blue bar shows the expected value of weightMean
and the errors bars show one standard deviation either side of this correspond-
ing to the expected value of weightPrecision. Comparing to Figure 4.21
shows that the learned weight distributions are consistent with the weights
learned individually for each user.

To apply our learned community weight distributions for a new user, we
can use the same model configured for a single user with the priors over

230 ■ Model-Based Machine Learning

weightMean and weightPrecision replaced by the Gaussian and gamma pos-
teriors learned from the first five users. We can use this model to make pre-
dictions even when we have not seen any emails for the new user. But we can
also use the model to do online training, as we receive emails for a new user.
As we do online training using the community model, we can smoothly evolve
from making generic predictions that may apply to any user to making per-
sonalised predictions specific to the new user. This evolution happens entirely
automatically through doing inference in our model – there is no need for us
to specify an ad-hoc procedure for switching from community to personalised
predictions.

Figure 4.25 shows the accuracy of predictions made using online training
in the community model compared to the individual model (using a batch
size of 5) for varying amounts of training data. For this plot we again average
across all ten users – we make prediction results for the first five users using a
separate community model trained on the last five users. The results are very
satisfactory – the initial accuracy is high (an average AP of 41.8%) and then
it continues to rise smoothly until it reaches an average AP of 43.2% after 500
emails have been trained on. As we might have hoped, our community model
is making good predictions from the start, which then become even better
as the model personalizes to the individual user. The cold start problem is
solved!

In the production system used by Exchange, we had a much larger num-
ber of users to learn community weights from. In this case, the posteriors over
weightMean and weightPrecision became very narrow. When these poste-
riors are used as priors, the values of weightMean and weightPrecision are
effectively fixed. This allows us to make a helpful simplification to our system:
once we have used the multi-user model to learn community weight distri-
butions, we can go back to the single user model to do online training and
make predictions. All we need to do is replace the Gaussian(0,1) prior in the
single user model with a Gaussian prior whose mean and precision are given
by the expected values of the narrow weightMean and weightPrecision dis-
tributions. So, in production, the multi-user model is trained once offline on
a large number of users and the learned community weight distributions are
then used to do training and prediction separately for each user. This separa-
tion makes it easier to deploy, manage and debug the behaviour of the system
since each user can be considered separately.

There is one final thing to do before we deploy our system to some beta
testers. Remember the test sets of email data that we put to one side at the
start of the chapter? Now is the time to break them out and see if we get
results on the test sets that are comparable to the results we have seen on our
validation sets. Comparative results for the validation and test sets are shown
in Table 4.5.

Uncluttering Your Inbox ■ 231

of emails

0 100 200 300 400 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Online Community-Online

(a) Area Under Curve

of emails

0 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Online Community-Online

(b) Average Precision

FIGURE 4.25: Prediction accuracy against amount of training data using individual models or the community
model. In both cases training is done online with batches of 5 emails. Results are averaged over all 10 users –
for the first five users prediction uses a community model trained on the second five users, and vice versa for
the second five users.

UserName
AveragePrecisio

nValida�on

AveragePrecisio

nTest

AreaUnderCurv

eValida�on

AreaUnderCurv

eTest

Valida�onReply

Count
TestReplyCount

User35CB8E5 57.6% 90.6% 91.7% 92.3% 74 10

UserCE3FDB4 33.9% 38.5% 89.0% 88.2% 64 21

User6AACED 46.7% 46.0% 91.1% 91.7% 58 16

User7E601F9 54.5% 54.2% 80.2% 84.3% 119 36

User68251CD 63.8% 78.8% 87.7% 89.3% 142 62

User223AECA 51.5% 24.3% 89.2% 82.6% 51 12

UserFF0F29E 30.6% 24.3% 87.2% 85.5% 119 40

User25C0488 32.1% 39.4% 83.3% 86.1% 114 44

User811E39F 26.4% 36.9% 82.3% 82.6% 129 64

User10628A6 50.0% 55.5% 88.9% 90.3% 61 24

Average 44.7% 48.9% 87.1% 87.3% 93.1 32.9

TABLE 4.5: Final accuracy results for the validation and test sets for each user and overall. The right-hand
columns show the number of replied to emails in each data set, which gives an indication of the reliability of
the corresponding average precision metric.

232 ■ Model-Based Machine Learning

The table shows that the AUC measurements for the users’ test sets are
generally quite similar to those of the validation sets, with no obvious bias
favouring one or the other. This suggests that in designing our model and
feature set we have not overfit to the validation data. The AP measurements
are more different, particularly for some users – this is because the test sets
are quite small and some contain only a few replied-to emails. In such situa-
tions, AP measurements become quite noisy and unreliable. However, even if
we focus on those users with more replied to emails, it does not appear that
the test AP is consistently lower than the validation AP. So both evaluation
metrics suggest that there is no fundamental difference between test and val-
idation set accuracies and so we should expect to achieve similar prediction
accuracy for real users.

4.6.3 Final testing and changes

At this point, the prediction system was deployed to beta testers for further
real-world testing. Questionnaires were used to get feedback on how well the
system was working for users. This testing and feedback highlighted two ad-
ditional issues:

• The predictions appeared to get less accurate over time, as the user’s
behaviour evolved, for example, when they changed projects or changed
teams the clutter predictions did not seem to change quickly enough to
match the updated behaviour.

• The calibration of the system, although correct on average, was incorrect
for individual users. The predicted probabilities were too high for some
users and too low for others.

Investigation of the first issue identified a similar problem to the one we
diagnosed in Chapter 3. We have assumed that the weights in the model are
fixed across time for a particular user. This assumption does not allow for
user behaviour to change. The solution was to change the model to allow the
weights to change over time, just as we allowed the skills to change over time
in the TrueSkill system. The modified model has random variables for each
bucket weight for each period of time, such as a variable per week. Figure 4.26a
shows an example model segment that contains weights for two consecutive
weeks weight(1) and weight(2). To allow the weights to change over time, the
weight for the second week is allowed to vary slightly from the weight for the
first week, through adding Gaussian noise with very low variance. As with the
TrueSkill system, this change allows the system to track slowly-changing user
behaviours.

The second issue was harder to diagnose. Investigation of the issue found
that the too-high predicted probabilities occurred for users that had a low
volume of clutter and the too-low predicted probabilities occurred for users
that had a high volume of clutter. It turned out that the problem was the

Uncluttering Your Inbox ■ 233

buckets

weight₍₁₎ weight₍₂₎

Gaussian(0,1)

Gaussian(·,0.01)

(a)

emails

repliedTo

noisyScore

intendedToReply

threshold

>

AddNoise

(b)

FIGURE 4.26: Modifications to the model to fix issues found by beta testers
(a) Allowing the weights to change over time addresses the issue that action
predictions do not evolve as user behaviour changes (b) Explicitly modelling
the difference between the intended action label and the actual action label
addresses poor calibration that occurs when the intended and actual labels do
not match.

noisy ground truth labels that we encountered in Section 4.5 – for users with
a high volume of clutter, a lot of clutter items were incorrectly labelled as
not clutter and vice versa for users with a low volume of clutter. Training
with these incorrect labels introduced a corresponding bias into the predicted
probability of clutter. The solution here is to change the model to represent
label noise explicitly. For example, for reply prediction, we can create a new
variable in the model intendedToReply representing the true label of whether
the user truly intended to reply to the message. We then define the observed
label repliedTo to be a noisy version of this variable, using a factor like
the AddNoise factor that we used back in Chapter 2. Figure 4.26b shows the
relevant piece of a modified model with this change in place. Following this
change, the calibration was found to be much closer to ideal across all users
and the systematic calibration variation for users with high or low clutter
volume disappeared.

In addressing each of these issues we needed to make changes to the model,
something that would be impossible with a black box classification algorithm,
but which is central to the model-based machine learning approach. With
these model changes in place, the Clutter prediction system is now deployed
as part of Office365, helping to remove clutter emails from peoples’ inboxes.
Figure 4.27 shows a screenshot of the system in action, all using model-based
machine learning!

234 ■ Model-Based Machine Learning

FIGURE 4.27: The clutter system in action in Office 365.

REVIEW OF CONCEPTS

cold start problem The problem of making good predictions for a new
entity (for example, a new user) when there is very little (or no) training data
available that is specific to that entity. In general, a cold start problem can
occur in any system where new entities are being introduced – for example, in
a recommendation system, a cold start problem occurs when trying to predict
whether someone will like a newly released movie that has not yet received
any ratings.

gamma distribution A probability distribution over a positive continuous
random variable whose probability density function is

Gamma(x; k, θ) =
xk−1e−

x
θ

θk Γ(k)
(4.1)

where Γ() is the gamma function, used to ensure the area under the density
function is 1.0. The gamma distribution has two parameters shape parameter
k and the scale parameter θ.

bias A feature which is always on for all data items. Since the bias feature is
always on, its weight encodes the prior probability of the label. For example,
the bias weight might encode probability that a user will reply to an email,
before we look at any characteristics of that particular email. Equivalently,

Uncluttering Your Inbox ■ 235

use of a bias features allows the threshold variable to be fixed to zero, since
it is no longer required to represent the prior label probability.

CHA PT E R 5

Making Recommendations

Whether you’re into music, books, films or video games, a good
recommendation can be a real joy – and can help less well known
works get into the spotlight. But what one person considers a new
classic, another will write off as a dud. Can a model be used to
understand what someone likes and dislikes well enough to provide
tailored recommendations?

Retailers of all kinds are keen to make accurate, personalized recommen-
dations to their customers. But developing an automatic recommendation
system requires expertise and investment beyond the means of many retail-
ers, especially smaller ones. Instead, such retailers can turn to the cloud and
make use of online recommendation services.

In Microsoft, the Azure Machine Learning team wanted to make it easy
for developers and data scientists to embed predictive analytics and machine
learning into their applications. The team’s solution was a cloud-based plat-
form for building and exploring analytics pipelines, constructed from a number
of machine learning building blocks (Figure 5.1). Crucially, the platform also
lets these pipelines be deployed as web services which can then be accessed
from within an application. With high demand for automated recommenda-
tion, the Azure ML team wanted to have building blocks for making recom-
mender systems, flexible enough to meet the needs of different customers.

237

238 ■ Model-Based Machine Learning

FIGURE 5.1: The goal: make it possible to construct customized recommen-
dation services in Azure Machine Learning.

Potential customers had varying requirements that a recommender system
needed to fulfill. Some wanted to make recommendations based solely on other
items that a user has liked or disliked. Some had extra information about each
item (such as the genre of a movie) that they wanted the system to take into
account. Similarly, some had additional data about their users (such as age or
gender) that they wanted to use to improve recommendations. Furthermore,
while some user feedback came in the form of star ratings, other feedback
systems only allowed users to like or dislike items. In addition, the items being
recommended varied from traditional retail products like books and films, to
restaurants and online services.

We needed to construct a model that could meet all of these requirements.
In this chapter, we’ll show how to develop such a flexible model and how to
use it to make personalised recommendations. As an example, we will be using
movies as the items to make recommendations for, since these have been very
well explored and there are freely available data sets of movie ratings. We will
start with an initial model that can predict like or dislike and then extend it
to meet the additional customer requirements mentioned above. The model
that we will develop in this chapter is closely based on the Matchbox model
of Stern et al. [2009].

You can recreate all results in this chapter using the companion source
code [Diethe et al., 2019].

Making Recommendations ■ 239

5.1 LEARNING ABOUT PEOPLE AND MOVIES

The goal of this chapter is to make personalized movie recommendations to
particular people. One way to think about this problem is to imagine a table
where the rows are movies and the columns are people. The cells of the table
show whether the person likes or dislikes the movie – for example, as shown
in Table 5.1. This table is an illustration of the kind of data we might have to
train a recommender system, where we have asked a number of people to say
whether they like or dislike particular movies.

Movie

The Lion King

Lethal Weapon

The Sound of Music

Amadeus

When Harry Met Sally

TABLE 5.1: A table showing the kind of data used to train a recommender
system. Each row is a movie and each column is a person. Filled cells show
where a person has said that they liked or disliked a movie. Empty cells show
where we do not have any information about whether the person liked the
movie, and so are where we could make a like/dislike prediction. Making such
a prediction for every empty cell in a person’s column would allow us to make
a movie recommendation for that person – for example, by recommending the
movie with the highest probability that the person would like it.

The empty cells in Table 5.1 show where we do not know whether the
person likes the movie or not. There are bound to be such empty cells – we
cannot ask every person about every movie and, even if we did, there will be
movies that a person has not seen. The goal of our recommender system can
be thought of as filling in these empty cells. In other words, given a person
and a movie, predict whether they will like or dislike that movie. So how can
we go about making such a prediction?

5.1.1 Characterizing movies

Let’s start by considering how to characterize a movie. Intuitively, we can
assume that each movie has some traits, such as whether it is an escapist or

240 ■ Model-Based Machine Learning

realistic, action or emotional, funny or serious. If we consider a particular trait
as a line, we can imagine placing movies on that line, like this:

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

FIGURE 5.2: Movies placed on a line representing how much each movie is
an emotional movie or as an action movie (or neither).

Movies towards the left of the line are emotional movies, like romantic
comedies. Movies towards the right of the line are action movies. Movies near
the middle of the line are neutral – neither action movies nor emotional movies.
Notice that, in defining this trait, we have made the assumption that action
and emotional are opposites.

Now let’s consider people. A particular person might like emotional movies
and dislike action movies. We could place that person towards the left of the
line (Figure 5.3). We would expect such a person to like movies on the left-
hand end of the line and dislike movies on the right-hand end of the line.

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

FIGURE 5.3: A person placed on the left of the line would be expected to like
emotional movies and dislike action movies.

Another person may have the opposite tastes: disliking emotional movies
and loving action movies. We can place this person towards the right of the
line (Figure 5.4). We would expect such a person to dislike movies on the
left-hand end of the line and like movies on the right-hand end of the line.

Making Recommendations ■ 241

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

FIGURE 5.4: A person placed on the right of the line would be expected to
like action movies and dislike emotional movies.

It is also perfectly possible a person to like (or dislike) both action and
emotional movies. We could consider such a person to be neutral to the ac-
tion/emotion trait and place them in the middle of the line (Figure 5.5). We
would expect that such a person might like or dislike movies anywhere on the
line.

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

FIGURE 5.5: A person placed in the middle of the line, would be expected to
not care whether a movie was an action movie or an emotional one.

We’d like to use an approach like this to make personalized recommenda-
tions. The problem is that we do not know where the movies lie on the line
or where the people lie on the line. Luckily, we can use model-based machine
learning to infer both of these using an appropriate model.

5.1.2 A model of a trait

Let’s build a model for the action/emotion trait we just described. First, let’s
state some assumptions that follow from the description above:

242 ■ Model-Based Machine Learning

1 Each movie can be characterized by its position on the trait line, repre-
sented as a continuous number.

2 A person’s preferences can be characterized by a position on the trait
line, again represented as a continuous number.

In our model, we will use a trait variable to represent the position of each
movie on the trait line. Because it is duplicated across movies, this variable
will need to lie inside a movies plate. We also need a variable for the position
of the person on the line, which we will call preference since it encodes the
person’s preferences with respect to the trait. To make predictions, we need
a variable showing how much the person is expected to like each movie. We
will call this the affinity variable and assume that a positive value of this
variable means that we expect the person to like the movie and a negative
value means that we expect the person to dislike the movie.

We need a way to combine the trait and the preference to give the
behaviour described in the previous section. That is, a person with a negative
(left-hand end) preference should prefer movies with negative (left-hand end)
trait values. A person with a positive (right-hand end) preference should
prefer movies with positive (right-hand end) trait values. Finally, a neutral
person with a preference near zero should not favour any movies, whatever
their trait values. This behaviour can be summarised as an assumption:

3 A positive preference value means that a person prefers movies with
positive values of the trait (and vice versa for negative values). The
absolute size of the preference value indicates the strength of preference,
where zero means indifference.

This behaviour assumption can be encoded in our model by defining affinity
to be the product of the trait and the preference. So we can connect these
variables using a product factor, giving the factor graph of Figure 5.6.

movies

preferencetrait

affinity

Gaussian(0,1)Gaussian(0,1)

×

FIGURE 5.6: Factor graph for a single trait. Each movie has a trait value
which is multiplied by the person’s preference to give their affinity for that
movie. More positive affinity values mean that the person is more likely to
like the movie.

Making Recommendations ■ 243

If you have a very good memory, you might notice that this factor graph
is nearly identical to the one for a one-feature classifier (Figure 4.1) from the
previous chapter. The only difference is that we have an unobserved trait

variable where before we had an observed featureValue. In a way, we can
think of our recommendation model as learning the features of a movie based
on people’s likes and dislikes – a point we will discuss more later. As we
construct our recommendation model, you will see that it is similar in many
ways to the classification model from Chapter 4.

Given this factor graph, we want to infer both the movies’ trait values
and the person’s preference from data about the person’s movie likes and
dislikes. To do any kind of learning we need to have some variable in the
model that we can observe – more specifically, we need a binary variable
that can take one of two values (like or dislike). Right now we only have
a continuous affinity variable rather than a binary one. Sounds familiar?
Yes! We encountered exactly this problem back in Section 4.2 of the previous
chapter, where we wanted to convert a continuous score into a binary reply
prediction. Our solution then was to add Gaussian noise and then threshold
the result to give a binary variable. We can use exactly the same solution here
by making a noisy version of the affinity (called noisyAffinity) and then
thresholding this to give a binary likesMovie variable. The end result is the
factor graph of Figure 5.7 (which closely resembles Figure 4.4 from the last
chapter).

movies

likesMovie

preferencetrait

affinity

noisyAffinity

Gaussian(0,1)Gaussian(0,1)

×

Gaussian(·,1)

>0

FIGURE 5.7: Extended factor graph that converts the continuous affinity
into a binary likesMovie variable, which can be observed to train the model.

244 ■ Model-Based Machine Learning

We could start using this model with one trait and one person, but that
wouldn’t get us very far – we would only learn about the movies that the
person has already rated and so would only be able to recommend movies that
they have already seen. In the next section, we will extend our model to handle
multiple traits and multiple people so that we can characterise movies more
accurately and use information from many peoples’ ratings pooled together,
to provide better recommendations for everyone.

Making Recommendations ■ 245

5.2 MULTIPLE TRAITS AND MULTIPLE PEOPLE

Our model with just one trait is not going to allow us to characterize movies
very well. To see this, take another look at Figure 5.4:

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

Using just the action/emotion trait, we can hardly distinguish between
The Lion King and Amadeus since these have very similar positions on this
trait line. So for the woman in this figure, we would not be able to recommend
films like Amadeus (which she likes) without also recommending films like The
Lion King (which she doesn’t like).

We can address this problem by using additional traits. If we include a
second trait representing how escapist or realist the film is, then each movie
will now have a position on this second trait line as well as on the original
trait line. This second trait value allows us to distinguish between these two
movies. To see this, we can show the movies on a two-dimensional plot where
the escapist/realist trait position is on the vertical axis, as shown in Figure 5.8.

246 ■ Model-Based Machine Learning

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

FIGURE 5.8: Two-dimensional plot where the new vertical axis shows how
escapist or realist a movie is. Dotted lines show that the horizontal position
of the movies has not changed.

In Figure 5.8, the more escapist movies have moved above the emo-
tion/action line and the more realist movies have moved below. The left/right
position of these movies has not changed from before (as shown by the dotted
lines). This two-dimensional space allows Amadeus to be move far away from
the The Lion King which means that the two movies can now be distinguished
from each other.

Given this two dimensional plot, we can indicate each person’s preference
for more escapist or realist movies by positioning them appropriately above
or below the emotion/action line, as shown in Figure 5.9. Looking at this
figure, you can see that the woman from Figure 5.4 has now moved below
the emotion/action line, since she has a preference for more realistic movies.
Her preference point is now much closer to Amadeus than to The Lion King –
which means it is now possible for our system to recommend Amadeus without
also recommending The Lion King.

Making Recommendations ■ 247

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

FIGURE 5.9: Placing people on the two-dimension plot allows us to capture
their preferences for escapist/realist movies, whilst still representing their pref-
erences for emotional/action movies.

We have now placed movies and people in a two-dimensional space, which
we will call trait space. If we have three traits then trait space will be 3-
dimensional, and so on for higher numbers of traits. We can use the concept
of trait space to update our first two assumptions to allow for multiple traits:

1 Each movie can be characterized by its position on the trait line in trait
space, represented as a continuous number for each trait.

2 A person’s preferences can be characterized by a position on the trait
line in trait space, again represented as a continuous number for each
trait.

Assumption 3 does not need to be changed since we are combining each
trait and preference exactly as we did when there was just one trait. How-
ever, we do need to make an additional assumption about how a person’s
preferences for different traits combine together to make an overall affinity.

4 The effect of one trait value on whether a person likes or dislikes a movie
is the same, no matter what other trait values that movie has.

248 ■ Model-Based Machine Learning

We can encode this assumption in our model by computing a separate affinity
for each trait (which we will call the traitAffinity) and then just add them
together to give an overall affinity. Figure 5.10 gives the factor graph for
this model with a new plate over traits that contains the trait value for each
movie, the preference for each person and the traitAffinity, indicating
that all of these variables are duplicated per trait.

traits

movies

likesMovie

preferencetrait

traitAffinity

affinity

noisyAffinity

Gaussian(0,σ²)Gaussian(0,σ²)

×

+

Gaussian(·,1)

>0

FIGURE 5.10: Factor graph for combining together multiple traits.

This model combines together traits in exactly the same way that we
combined together features in the previous chapter. Once again, it leads to
a very similar factor graph – to see this, compare Figure 5.10 to Figure 4.5.
The main difference again is that we now have an unobserved trait variable
where before we had an observed featureValue. This may seem like a small
difference, but the implications of having this variable unobserved are huge.
Rather than using features which are hand-designed and provide given values
for each item, we are now asking our model to learn the traits and the trait
values for itself! Think about this for a moment – we are effectively asking
our system to create its own feature set and assign values for those features
to each movie – all by just using movie ratings. The fact that this is even

Making Recommendations ■ 249

possible may seem like magic – but it arises from having a clearly defined
model combined with a powerful inference algorithm.

One new complexity arises in this model around the choice of the prior
variance σ2 for the trait and preference variables. Because we are now
adding together several trait affinities, we risk changing the range of values
that the affinity can take as we vary the number of traits. To keep this range
approximately fixed, we set σ2 = 1/

√
T where T is the number of traits. The

intuition behind this choice of variance is that we would then expect the trait
affinity to have a variance of approximately 1/

√
T × 1/

√
T = 1/T . The sum

of T of these would have variance of approximately 1, which is the same as
the single trait model.

5.2.1 Learning from many people at once

If we try to use this model to infer traits and preferences given data for just one
person, we will only be able to learn about movies which that person has rated
– probably not very many. We can do much better if we pool together the data
from many people, since this is likely to give a lot of data for popular movies
and at least a little data for the vast majority of movies. This approach is
called collaborative filtering – a term coined by the developers of Tapestry,
the first ever recommender system. In Tapestry, collaborative filtering was
proposed for handling email documents, where “people collaborate to help
one another perform filtering by recording their reactions to documents they
read” [Goldberg et al., 1992]. In our application we want to filter movies by
recording the ratings (that is, reactions) that other people have to the movies
they watch – a different application, but the underlying principle is the same.

To extend our factor graph to handle multiple people, we add a new plate
over people and put all variables inside it except the trait variable, (which
is shared across people). The resulting factor graph is shown in Figure 5.11.
Looking at this factor graph, you can see that it is symmetric between people
and movies. In other words, we could swap over people and movies and we
would end up with exactly the same model!

250 ■ Model-Based Machine Learning

traits

peoplemovies
likesMovie

preferencetrait

traitAffinity

affinity

noisyAffinity

Gaussian(0,σ²)Gaussian(0,σ²)

×

+

Gaussian(·,1)

>0

FIGURE 5.11: Factor graph for a recommender model which can learn from
like/dislike data pooled across many people.

In this model we have chosen to threshold the noisyAffinity at zero,
roughly corresponding to the assumption that half the ratings will be ‘like’
and half will be ‘dislike’. This is quite a strong assumption to be making, so
we could instead learn this threshold value as we did for the classifier model.
Instead we will do something better – we will make a change that effectively
allows different thresholds to be learned for each movie and for each person. We
will add a bias variable per movie and a bias variable per user and include these
two variables in the sum when we compute the total affinity. Introducing
biases in this way allows the model to capture the general popularity of a movie
and the degree to which each person likes movies in general. For example, if
a user likes nearly every movie then they will get a high user bias. Similarly,
if a movie is liked by nearly every user then it will get a high movie bias.

We can add in biases without changing the factor graph from the one in
Figure 5.11 – all we do is use a traits plate that is two bigger than the desired
number of traits and fix the first preference value and the second trait

value to be exactly 1.0. Then, the first trait value will be the bias for a
movie and the second preference value will be the bias for a person. We will

Making Recommendations ■ 251

use this trick to include biases in all models in this chapter, but they will not
be shown explicitly in the factor graphs, to keep them uncluttered.

Our final assumption is that we do not need any more variables in our
model – or to put it another way:

5 Whether a person will like or dislike a movie depends only on their
preferences for the movie’s traits and not on anything else.

We will assess the validity of this assumption shortly, but first let’s put all
of our assumptions together in one place so that we can review them all
(Table 5.2).

1 Each movie can be characterized by its position in trait space, rep-
resented as a continuous number for each trait.

2 A person’s preferences can be characterized by a position in trait
space, again represented as a continuous number for each trait.

3 A positive preference value means that a person prefers movies with
positive values of the trait (and vice versa for negative values).
The absolute size of the preference value indicates the strength of
preference, where zero means indifference.

4 The effect of one trait value on whether a person likes or dislikes
a movie is the same, no matter what other trait values that movie
has.

5 Whether a person will like or dislike a movie depends only on their
preferences for the movie’s traits and not on anything else.

TABLE 5.2: The assumptions encoded in our recommender model.

Assumption 1 seems reasonable since we can theoretically make trait
space as large as we like, in order to completely characterize any movie –
for smaller numbers of traits this assumption will hold less well, but still
hopefully be a good enough assumption for practical purposes. Assumption 2
assumes that a person’s tastes can be well represented by a single point in trait
space. Quite possibly, people could occupy multiple points in trait space, for
example a person may like both children’s cartoons and very violent movies,
but nothing in between. However, it may be reasonable to assume that such
people are rare and so a person occupying a single point is a decent assumption
in most cases.

Assumption 3 and Assumption 4 relate to how movie and person traits
combine together to give an affinity. Perhaps the most questionable assump-
tion here is Assumption 4 which says that the effect of each trait does not

252 ■ Model-Based Machine Learning

depend on the other traits. In practice, we might expect some traits to over-
ride others or to combine in unusual ways. For example, if someone only likes
action movies that star Arnold Schwarzenegger, but dislikes all the other kinds
of movies that he appears in – then this would be poorly modelled by these
assumptions because the ‘stars Arnold Schwarzenegger’ trait would have a
positive effect in some cases and a negative effect in others.

A person may only like some
movies at particular times of year

Finally, we have Assumption 5 which says that
whether someone likes or dislikes a movie will depend
only on their preferences for the movie’s traits – in
fact it may depend on many other things. For exam-
ple, the time of year may be a factor – someone may
love Christmas movies in December but loathe them
in January. Another factor could be the other people
that are watching the movie – whether someone en-
joys a movie could well depend on who is watching it
with them. Following this line of thought, we could
imagine a recommendation system that recommends
movies for groups of people – this has in fact been
explored by, for example, Zhang et al. [2015]. Other
things that could influence a person’s enjoyment could include: the time of
day or time of week, their emotional state (do they want a happy movie or
a sad one? do they want to be distracted from real life or challenged?) and
so on. In short, there is plenty to question about Assumption 5 – but it’s
fine to stick with it for now and then consider extending the model to capture
additional cues later on.

So let’s keep the model as it is and use it to make some recommendations!

REVIEW OF CONCEPTS

trait space A multi-dimensional space where each point in the space cor-
responds to an item with a particular set of trait values. Nearby points will
correspond to items with similar traits, whereas points that are further apart
represent items with less in common. A trait space is useful for identifying
similar items and also for making item recommendations. See Figure 5.9 for
a visualisation of a two-dimensional trait space.

collaborative filtering A means of filtering items for one user of a system
based on the implicit or explicit rating of items by other users of that system.
For example, filtering emails based on others’ responses to the same emails or
recommending movies based on others’ ratings of those movies.

Making Recommendations ■ 253

5.3 TRAINING OUR RECOMMENDER

Before we can train our model, we need some data to train it on. The good
news here is that there are some high quality public data sets which can
be used for training recommender models. We will use one of the excellent
MovieLens data sets by GroupLens Research at the University of Minnesota
[Harper and Konstan, 2015]. We will use a data set that has been made freely
available for education and development purposes – thank you, MovieLens!

5.3.1 Getting to know our data

As with any new data set, our first task is to get to know the data. First of
all, here is a sample of 10 ratings from the data set:

User Movie Ra�ng

1 Willow (1988) 2

1 Antz (1998) 2

1 Fly, The (1986) 2.5

1 Time Bandits (1981) 1

1 Blazing Saddles (1974) 3

2 GoldenEye (1995) 4

2 Sense and Sensibility (1995) 5

2 Clueless (1995) 5

2 Seven (a.k.a. Se7en) (1995) 4

2 Usual Suspects, The (1995) 4

TABLE 5.3: A sample of ratings from the MovieLens data set.

The sample shows that each rating gives the ID of the person providing the
rating, the movie being rated, and the number of stars that the person gave
the movie. In addition to ratings, the data set also contains some information
about each movie – we’ll look at this later on, in Section 5.6.

It’s a good idea to view a new data set in many different ways, to get a
deeper understanding of the data and to identify any possible data issues as
early as possible. As an example, let’s make a plot to understand what kind
of ratings people are giving. The above sample suggests that ratings go up to
5 stars and that half stars are allowed. To confirm this and to understand how
frequently each rating is given, we can plot a histogram of all the ratings in
the data set.

254 ■ Model-Based Machine Learning

Number of stars

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5000

10000

15000

20000

25000

30000

FIGURE 5.12: The number of ratings given for each possible number of stars
(from half a star up to five stars).

We can learn a few things about the ratings from Figure 5.12. The first
is that whole star ratings are given more than nearby ratings with half stars.
Secondly, the plot is biased to the right, showing that people are much more
likely to give a rating above three stars than below. This could perhaps be
because people are generous to the movies and try to give them decent ratings.
Another possibility is that people only rate movies that they watch and they
only watch movies that they expect to like. For example, someone might hate
horrors movies and so would never watch them, and so never rate them. If they
were forced to watch the movie, they would likely give it a very low rating.
Since people are not usually forced to watch movies, such ratings would not
appear in the data set, leading to the kind of rightward bias seen in Figure 5.12.

This issue of missing data is an important one and we will discuss it in
detail in Section 6.2.1 of the next chapter. For now we will just have to bear in
mind that this missing data will likely have a negative effect on our prediction
accuracy – since we have less data about the movies a person does not like.

5.3.2 Training on MovieLens data

The model we have developed allows for two possible ratings: ‘like’ or ‘dislike’.
If we want to use the MovieLens data set with this model, we need a way to
convert each star rating into a like or a dislike (we’ll look at how we can use
the star ratings directly later). Guided by Figure 5.12, we will assume that
3 or more stars means that a person liked the movie, and that 2.5 or fewer
stars means they did not like the movie. Applying the transformation gives
us a data set of like/dislike ratings.

We need to split this like/dislike data into a training set for training our
model, and a validation set to evaluate recommendations coming from the
model. For each person we will use 70% of their likes/dislikes to train on and
leave 30% to use for validation. We also remove ratings from the validation
set for any movies that do not appear anywhere in the training set (since the
trait position for these movies cannot be learned). The result of this process
is:

Making Recommendations ■ 255

• a training set of 69,983 ratings (57,383 likes/12,600 dislikes) covering
8,032 movies,

• a validation set of 28,831 ratings (23,952 likes/4,879 dislikes) covering
4,761 movies.

Both data sets contain ratings from 671 different people.
To train the model, we attach the training set data to the likesMovie

variable and once again use expectation propagation to infer the trait values
for each movie and the preference values for each person. However, when
we try to do this, the posterior distributions for these variables remain broad
and centered at zero. What is going on here?

Symmetries can cause inference
problems.

To understand the cause of this problem, let’s
look again at the picture of trait space from Fig-
ure 5.9, which we’ve repeated in Figure 5.13a. The
choice of having emotion on the left and action on
the right was completely arbitrary. We could flip
these over so that action is on the left and emo-
tion is on the right, whilst also flipping the posi-
tions of all the people and movies correspondingly,
as shown in Figure 5.13b. The result is a flipped
trait space that gives exactly the same predictions.
We could also swap the action/emotion trait with
the escapist/realist trait, as shown in Figure 5.13c.
Again the result would give exactly the same predic-
tions. Notice that Figure 5.13c is also the same as
Figure 5.13b rotated by 90-degrees to the left. We
can also apply other rotations so that the axes of
the plot no longer lined up with our original traits (Figure 5.13d) and we
still get the same predictions! When a model’s variables can be systematically
transformed without changing the resulting predictions, the model is said to
contain symmetries. During inference, these symmetries cause the posterior
distributions to get very broad, as they try to capture all rotations and flips
of trait space simultaneously. Not helpful!

256 ■ Model-Based Machine Learning

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

The
Lion King

Action Emotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

The
Lion King

Action

Emotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

EscapistRealist Trait 1

Trait 2

(a) (b)

(c) (d)

FIGURE 5.13: Examples of symmetries in our recommender model. (a) Orig-
inal trait space (b) A left-right flip symmetry (c) A flip symmetry caused by
swapping the axes (d) A rotational symmetry.

To solve this inference problem, we need to do some kind of symmetry
breaking. Symmetry breaking is any modification to the model or inference
algorithm with the aim of removing symmetries from the posterior distribu-
tions of interest. For a two-trait version of our model, we can break symmetry
by fixing the position of two points in trait space – for example, fixing the
positions of the first two movies in the training set. We choose to fix the first
movie to (1,0) and the second to (0,1). These two points mean that rota-
tions and flips of the trait space now lead to different results, since these two
movies cannot be rotated/flipped correspondingly – and so we have removed
the symmetries from our model.

With symmetry breaking in place, EP now converges to a meaningful re-
sult. However, the EP message passing algorithm runs extremely slowly due
to the high cost of computing messages relating to the product (×) factor.
In Stern et al. [2009] a variation of the EP message calculation is used for

Making Recommendations ■ 257

these messages (as shown in equation (6) in the paper), which has the effect
of speeding up the message calculation dramatically.

This faster inference algorithm gives posteriors over the position in trait
space for each movie and each person. In many cases, these posteriors are
quite broad because there were not enough ratings to place the movie or
person accurately in trait space. In Figure 5.14, we plot the inferred positions
of those movies where the posterior was narrow enough to locate the movie
reasonably precisely. Specifically, we plot a point at the posterior mean for
each movie where the posterior variance is less than 0.2 in each dimension
– this means that points are plotted for only 158 of our 8,032 movies. The
learned positions of people in trait space are distributed in broadly similar
fashion to the positions of movies, and so we will not show a plot of their
positions.

This plot shows that our model has been able to learn two traits and
assign values for these traits to some movies, entirely using ratings – a pretty
incredible achievement! We can see that the learned trait values have some
reassuring characteristics – for example, movies in the same series have been
placed near each other (such as the two Lord of the Rings movies or the two
Ace Ventura movies). This alone is pretty incredible – our system had no idea
that these movies were from the same series, since it was not given the names
of the movies. Just using the like/dislike ratings alone, it has placed these
movies close together in trait space! Beyond these characteristics, it is hard
to interpret much about the traits themselves at this stage. Instead, we’ll just
have to see how useful they are when it comes to making recommendations.

REVIEW OF CONCEPTS

symmetries A symmetry in a model is where parts of the model are in-
terchangeable or can act as equivalent to each other. When a model contains
symmetries, this means there are multiple configurations of the models vari-
ables that give rise to the same data. During inference, such symmetries cause
problems, since the posterior distributions will try to capture all these equiv-
alent configurations simultaneously, usually with unhelpful results. When a
model contains symmetries, it is usually necessary to do some kind of symme-
try breaking.

symmetry breaking Modifications to a model or inference algorithm that
allow symmetries to be removed, leading to more useful posterior distributions.
A typical method of symmetry breaking involves adding perturbations to the
initial messages in a message passing algorithms. Other approaches involve
making changes to the model to remove the symmetries, such as fixing the
values of certain latent variables or adding ordering constraints.

258 ■ Model-Based Machine Learning

Mulholland Drive

Usual Suspects, The

American Beauty

Kill Bill: Vol. 2

Groundhog Day

Fight Club

Léon: The Professional

Willy Wonka & the
Chocolate Factory

Pirates of the Caribbean:
The Curse of the Black Pearl

Toy Story 2

Harry Potter and the
Sorcerer's Stone

Lord of the Rings: The
Fellowship of the Ring, The

Good Will Hunting

Fargo

Shakespeare in Love

2001: A Space Odyssey Leaving Las Vegas

Speed

Saving Private RyanSilence of the Lambs, The

Twister

Robin Hood: Men in Tights

Rock, The

True Lies

Ghostbusters

BatmanLord of the Rings: The
Return of the King, The

Blair Witch Project, The

Back to the Future Part III

Shrek 2

Austin Powers: International
Man of Mystery

Gladiator

Die Hard

Star Wars: Episode V - The
Empire Strikes Back

Waterworld

Stargate

Indiana Jones and the Last
Crusade

Amelie (Fabuleux destin
d'Amélie Poulain, Le)

Million Dollar Baby

Honey, I Shrunk the Kids

Jumanji

Twelve Monkeys

Signs

Clueless

Ace Ventura: Pet Detective

Charlie's Angels

Terminator 2: Judgment Day

Patriot, The

Runaway Bride

Liar Liar

Sense and Sensibility

Ace Ventura: When Nature
Calls

-1.6

-1.1

-0.6

-0.1

0.4

0.9

1.4

1.9

-2.2 -1.7 -1.2 -0.7 -0.2 0.3 0.8 1.3 1.8 2.3

Tr
ai

t
2

Trait 1

FIGURE 5.14: Learned positions of movies in trait space. For readability, only a subset of points have been
labelled with the name of the movie (centered on the corresponding point). The two ‘anchor’ movies, The
Usual Suspects and Mulholland Drive are shown in red at (0,1) and (1,0).

Making Recommendations ■ 259

5.4 OUR FIRST RECOMMENDATIONS

With our trained two-trait model in hand, we are
now ready to make some recommendations! During
training we learned the (uncertain) position of each
movie and each person in trait space. We can now
make a prediction for each of the held out ratings in
our validation set. We do this one rating at a time
– that is, for one person and one movie at a time.
First, we set the priors for the movie trait and the
person preference to the posteriors learned during
training. Then we run expectation propagation to
infer the posterior distribution over likesMovie to
compute the probability that the person would like the movie. Repeating this
over all ratings in the validation set gives a probability of ‘like’ for each rating,
which we can compare with the ground truth like/dislike label. Figure 5.15
shows the predicted like probability and the ground truth for the ratings from
the first 25 people in the validation set with more than five ratings.

Movies

(a) Inferred probability of like

Movies

(b) Ground truth like/dislike

FIGURE 5.15: Initial results of our recommender model. (a) Computed prob-
ability of each person liking each movie. White squares correspond to prob-
ability 1.0, black to probability 0.0 and shades of grey indicate intermediate
probability values. (b) Ground truth – where white indicates that the person
liked the movie, black indicates they disliked it.

The first thing that stands out from Figure 5.15b is that people mostly
like movies, rather than dislike them. In a sense then, the task that we have
set our recommender is to try and work out which are the few movies that a
person does not like. Looking at the predicted probabilities in Figure 5.15a,
we can see some success in this task – because some of the darker squares
do correctly align with black squares in the ground truth. In addition, some
rows are generally darker or lighter than average indicating that we are able to
learn how likely each person is to like or dislike movies in general. However, the

260 ■ Model-Based Machine Learning

predictions are not perfect – there are many disliked movies that are missed
and some predictions of dislike that are incorrect. But before we make any
improvements to the model, we need to decide which evaluation metrics we
will use to measure and track these improvements.

5.4.1 Evaluating our predictions

In order to evaluate these predictions, we need to decide on some evaluation
metrics. As discussed in Chapter 2, it makes sense to consider multiple metrics
to avoid falling into the trap described by Goodhart’s law. For the first metric,
we will just use the fraction of correct predictions, when we predict the most
probable value of likesMovie. For the two-trait experiment above, we see
that we get 84.8% of predictions correct. This metric is helpful for tracking
the raw accuracy of our recommender but it does not directly tell us how good
our recommendation experience will be for users. To do this, we will need a
second metric more focused on how the recommender will actually be used.

The most common use of a recommender system is to provide an ordered
list of recommendations to the user. We can use our predicted probabilities
of ‘like’ to make such a list by putting the movie with the highest probability
first, then the one with the second highest probability and so on. In this
scenario, a reasonable assumption is that the user will scan through the list
looking for a recommendation that appeals – but that they may give up at
some point during this scan. It follows that it is most important that the first
item in the list is correct, then the second, then the third and so on through
to the end of the list. We would like to use an evaluation metric which rewards
correct predictions at the start of the list more than at the end (and penalises
mistakes at the start of the list more than mistakes at the end).

A metric that has this behaviour is Discounted Cumulative Gain
(DCG) which is defined as the sum of scores for individual recommenda-
tions, each weighted by a discount function that depends on the position of
the recommendation in the list. Figure 5.16 shows the calculation of DCG for
a list of five recommendations. In this figure, the discount function used is

1
log2(position+1) where position the position in the list, starting at 1. This func-

tion is often used because it smoothly decreases with list position, as shown by
the blue bars in the figure. The score that we will use for a recommendation is
the ground truth number of stars that the person gave that movie. So if they
gave three stars then the score will be 3. Since we are calculating DCG for a
list of five recommendations, we sometimes write this as DCG@5.

Making Recommendations ■ 261

1st Lethal Weapon

2nd The Lion King

3rd Amadeus

4th Lost in Translation

5th Waterworld

1.00

0.63

0.50

0.43

0.39

1

log2(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1)

3 ×

2 ×

3 ×

5 ×

1 ×

= 3.00

= 1.00

= 1.29

= 3.15

= 0.39

Sum = 8.83

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑢𝑒 𝑟𝑎𝑡𝑖𝑛𝑔

FIGURE 5.16: Calculation of Discounted Cumulative Gain (DCG) for a list
of five movie recommendations.

We can only evaluate a recommendation when we know the person’s actual
rating for the movie being recommended. For our data set, this means that
we will only be able to make recommendations for movies from the 30% of
ratings in the validation set. Effectively we will be ordering these from ‘most
likely to like the movie’ to ‘least likely to like the movie’, taking the top 5 and
using DCG to evaluate this ordering.

One problem with DCG is that the maximum achievable value varies de-
pending on the ratings that the person gave to the validation set movies. If
there are 5 high ratings then the maximum achievable DCG@5 will be high.
But if there are only 2 high ratings then the maximum achievable DCG@5
will be lower. To interpret the metric, all we really want to know is how close
we got to the maximum achievable DCG. We can achieve this by computing
the maximum DCG (as shown in Figure 5.17) and then dividing our DCG
value by this maximum possible value. This gives a new metric called the
Normalized Discounted Cumulative Gain (NDCG). An NDCG of 1.0
always means that the best possible set of recommendations were made. Us-
ing the maximum value from Figure 5.17, the NDCG for the recommendations
in Figure 5.16 is equal to 8.83/9.64 = 0.916.

262 ■ Model-Based Machine Learning

1.00

0.63

0.50

0.43

0.39

1

log2(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1)

5 ×

3 ×

2 ×

3 ×

1 ×

= 5.00

= 1.50

= 0.86

= 1.89

= 0.39

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑢𝑒 𝑟𝑎𝑡𝑖𝑛𝑔

Sum = 9.64

2nd Lethal Weapon

1st The Lion King

4rd Amadeus

3th Lost in Translation

5th Waterworld

FIGURE 5.17: Calculation of the maximum possible DCG for the five movies
from Figure 5.16. The maximum DCG is for the movies in decreasing order
of the number of stars in the ground truth rating.

We produce a list of recommendations for each person in our validation
set, and so can compute an NDCG for each of these lists. To summarise these
in a single metric, we then take an average of all the individual NDCG values.
For the experiment we just ran, this gives an average NDCG@5 of 0.857.

5.4.2 How many traits should we use?

The metrics computed above are for a model with two traits. In practice, we
will want to use the number of traits that gives the best recommendations
according to our metrics. We can run the model with 1, 2, 4, 8, and 16 traits
to see how changing the number of traits affects the accuracy of our recom-
mendations. We can also run the model with zero traits, meaning that it gives
the same recommendations to everyone – this provides a useful baseline and
indicates how much we are gaining by using traits to personalise our recom-
mendations to individual people. Note that when using zero traits, we do still
include the movie and user biases in the model.

Figure 5.18 shows how our two metrics vary as we change the number of
traits. Looking at the like/dislike accuracy in Figure 5.18a, shows that the
accuracy is essentially unchanged as we change the number of traits. But the
NDCG in Figure 5.18b tells a very different story , with noticeable gains in
NDCG@5 as we increase the number of traits up to around 4 or 8. Beyond this
point adding additional traits does not seem to help (and maybe even reduces
the accuracy slightly). You might think that adding more traits would always
help, but with more traits we need more data to position movies in trait space.
With a fixed amount of data, the increase in position uncertainty caused by
adding traits can actually reduce overall recommendation accuracy.

Making Recommendations ■ 263

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

(a) Fraction of predictions correct

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

(b) Average NDCG@5

FIGURE 5.18: Accuracy and NDCG metrics computed for different numbers
of traits. To make the change in metrics visible in these bar charts, we have
had to start the y-axis at 0.8 rather than zero. In general, this practice should
be avoided since it falsely exaggerates the differences between the bars. Since
we have chosen to use it here and in some later charts, please do bear in mind
that the actual differences are smaller than the charts might suggest.

You may be wondering why we see an increase in average NDCG when
there is no increase in prediction accuracy. The answer is that NDCG is a
more sensitive metric because it makes use of the original ground truth star
ratings, rather than these ratings converted into likes/dislikes. This sensitivity
suggests that we would benefit by training our model on the full range of star
ratings rather than just on a binary like or dislike. In the next section, we will
explore what model changes we need to make to achieve this.

REVIEW OF CONCEPTS

Discounted Cumulative Gain A metric for a list of recommendations that
is defined as the sum of scores for each individual recommendation, weighted
by a discount function that depends on the position of that recommendation in
the list. The discount function is selected to give higher weights to recommen-
dations at the start of the list and lower weights towards the end. Therefore,
the DCG is higher when good recommendations are put at the start of the
list than when the list is reordered to put them at the end. See Figure 5.16
for a visual example of calculating DCG.

Normalized Discounted Cumulative Gain A scaled version of the Dis-
counted Cumulative Gain, where the scaling makes the maximum possible
value equal to 1. This scaling is achieved by dividing by the actual DCG
by the maximum possible DCG. See Figure 5.16 and Figure 5.17 for visual
examples of calculating a DCG and a maximum possible DCG.

264 ■ Model-Based Machine Learning

5.5 MODELLING STAR RATINGS

Our model turns the full range of star ratings into
a simple like or dislike, which means it is throwing
away a lot of useful information. There is a world
of difference between rating a movie at 3 stars and
rating it at 5 stars, yet we are treating both of these
cases the same. In order to make use of the different
star ratings, we need to change our model to work
with the full range of ratings rather than a binary
like/dislike. Not only will this let us train on star
ratings, but we will also be able to predict star rat-
ings – a double benefit!

We can make this change by building on the binary like/dislike model that
we have already designed. Inside this model we have an affinity variable
which is a continuous number representing how much a person likes a movie.
We currently threshold this affinity at zero and say that values above zero
mean the person likes the movie and values below zero mean that they do not
like the movie. To model different star ratings, we can assume that a higher
affinity means that a person will give a higher star rating. More precisely,
rather than thresholding only at zero, we can now introduce thresholds for
each star rating. If a person’s affinity for a movie is above the threshold for
a particular number of stars, then we expect them to give the movie at least
that number of stars.

To add these thresholds into our model, we need to make one additional
assumption. We need to decide whether the same thresholds should be used for
everyone, or whether different people can have different thresholds. Allowing
different thresholds might be useful – for example, it is possible that some
people give a really bad movie a rating of two stars, while other people give
a really bad movie a rating of one star or even half a star. If we want to
model these different behaviours, we would need to allow different people to
have different thresholds. This can be done but it would introduce problems
of data scarcity since some people might not have any ratings for particular
thresholds. Rather than tackle these problems, we will make the simplifying
assumption that the thresholds are the same for everyone. We can express this
assumption precisely, like so:

6 When two people have the same affinity for a movie, they will give it
the same number of stars.

Figure 5.19 shows the factor graph for an extended model that encodes
this assumption. In this model, we have added a new variable starThreshold
which is inside a stars plate, meaning that there is a threshold for each
number of stars.

Making Recommendations ■ 265

traits

people
movies

stars
hasStar

preferencetrait

starThreshold

traitAffinity

affinity

noisyAffinity

Gaussian(0,σ²)Gaussian(0,σ²)

Gaussian(0,10)

×

+

Gaussian(·,1)

>

FIGURE 5.19: Factor graph for a recommender model that can consume and
predict star ratings. Ratings are indirectly represented using binary values of
the variable hasStar as discussed in the text.

For each movie and person, the observed variable in this graph is now
called hasStar. This variable lies inside the stars plate and so has a value
for each number of stars. In other words, each single star rating is represented
as a set of binary variables. The binary variable for a particular number of
stars is true if the rating has at least that number of stars. As an example, a
rating of three stars means that the first three binary variables are true and
the other two are false. Figure 5.20 shows the relationship between the star
rating and the binary values used for the observation of hasStar.

266 ■ Model-Based Machine Learning

T T T F F

T T T T TT T T T F

T T F F FT F F F F

𝑟𝑎𝑡𝑖𝑛𝑔

𝑏𝑖𝑛𝑎𝑟𝑦

FIGURE 5.20: Relationship between different star ratings and the binary val-
ues used for the hasStar variable in the factor graph of Figure 5.19.

When we train this model, we set hasStar to the observed values given
in Figure 5.20 for the corresponding rating. When using the model to make a
recommendation, we get back a posterior probability of each binary variable
being true. These can be converted into the probability of having a particular
number of stars using subtraction. For example, if we predict the probability of
having 3 or more stars is 70% and the probability of having 4 or more stars is
60%, then the probability of having exactly 3 stars must be 70%−60% = 10%.
Using this trick, we can convert the individual binary probabilities back into
separate probabilities for each star rating.

There are a few more details we need to work out before we can train this
model. First, in our data set we need to be able to work with half-star ratings,
such as 3 1

2 stars. We can handle these by doubling the number of thresholds,
so that there are thresholds for both whole and half star ratings. Second,
there is a symmetry between the star thresholds and the biases – adding a
constant value to all user or movie biases and subtracting that value off all
thresholds leads to the same predictions. This can be solved by fixing one of
the thresholds to be zero – for our experiments we choose to fix the three star
threshold to be zero. Finally, if you look at Figure 5.20, you will note that the
first binary value is always true. This means that the affinity must always be
greater than the lowest threshold, so we can simply remove it from the model.
In our case, that means there will be no threshold for a 1

2 star and so the
lowest threshold will be for 1 star. With these changes in place, we are now
ready to train!

5.5.1 Results with star ratings

Now that we can train on star ratings, we can use the same training data as
before (Section 5.3) but without converting ratings to like/dislike. When we
do this training, we expect that the extra information coming from the star
ratings will allow us to locate movies more precisely in trait space. Back in

Making Recommendations ■ 267

Figure 5.14 we found that, after training on like/dislike, 158 of the movies had
a posterior variance of less than 0.2 in each dimension of trait space. After
training on star ratings, the number of movies with such low posterior variance
increases to 539, showing that we have indeed managed to locate movies more
precisely.

As part of training the model, we also learn Gaussian posterior thresholds
for each star rating – these are shown in Figure 5.21.

x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

20

40

60

80

100

1 star

1.5 stars

2 stars

2.5 stars

3 stars

3.5 stars

4 stars

4.5 stars

5 stars

FIGURE 5.21: Posterior distributions for star ratings thresholds from 1 star
to 5 stars. The threshold for 3 stars is fixed to be exactly zero – all other
thresholds have been learned.

These threshold posteriors are worth looking at. The first thing to note
is that the thresholds are ordered correctly from 1 star through to 5 stars,
as we would expect. This ordering was not enforced directly in the model
since the priors for all the thresholds were the same – instead, the ordering
has arisen from the way the model has been trained. Another thing to note
is that the posterior distribution for 1 star is much broader than for other
thresholds. This is because there are very few half stars and one stars in the
training set (to confirm this look back at Figure 5.12). It is these ratings which
are used to learn the 1 star threshold and so their relative scarcity leads to
higher uncertainty in the threshold location. A final note is that the half star
thresholds are generally closer to the star rating above than the one below.
For example, the 3 1

2 star threshold is much closer to the 4 star threshold than
to the 3 star threshold. This implies that when a person gives 31

2 stars to
a movie, in their minds they consider that to be almost as good as a 4 star
movie, rather than just better than a 3 star movie. Another explanation is
that some people may never use half stars (which would explain why they are
relatively scarcer than the surrounding whole stars), which would introduce
some bias in the inferred thresholds. It is an interesting exercise to think about
how the model could be changed to reflect the fact that some people never
use half stars.

Using our newly trained model, we can make predictions for exactly the
same people and movies as we did in Section 5.4. Now our model is predicting

268 ■ Model-Based Machine Learning

star ratings, we can plot the most probable star rating, instead of posterior
probabilities of like.

Movies

(a) Inferred most probable number of
stars

Movies

(b) Ground truth number of stars

FIGURE 5.22: Results of our recommender model with star ratings. (a) Pre-
dicted most probable ratings, where white squares correspond to five stars,
black to half a star and shades of grey represent intermediate numbers of stars.
(b) Ground truth ratings using the same colour key.

Figure 5.22a shows nicely that we are now able to predict numbers of stars,
rather than just like or dislike. Comparing the two plots, we can see that
there are sometimes darker or lighter regions in our predictions corresponding
to those in the ground truth – but that equally often there are not. It is
almost impossible to look at Figure 5.22 and say whether the new model is
making better recommendations than the old one. Instead we need to make
a quantitative comparison, by re-computing the same metrics as before and
comparing the results. For NDCG, we can rank our recommendations by star
rating and compute the metric exactly as before. For like/dislike accuracy, we
need to convert our star predictions back into binary like/dislike predictions.
We can do this by summing up the probabilities of all ratings of 3 stars or
higher – if this sum is greater than 0.5, then we predict that the person will
like the movie, otherwise that they will dislike it. Figure 5.23 shows that
our new model has a significantly improved NDCG than the previous model,
demonstrating the value of using the full star ratings. The improvement even
shows up in our relatively insensitive fraction-correct metric, although the
change is much smaller.

Making Recommendations ■ 269

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

Initial

With stars

(a) Fraction of predictions correct

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

Initial

With stars

(b) Average NDCG@5

FIGURE 5.23: Comparison of two metrics for the old like/dislike model and
the new model with star ratings. The star ratings model gives a significant
boost to NDCG, and even shows a small improvement in like/dislike accuracy.

Because we add together probabilities of different star ratings when com-
puting that the like/dislike accuracy metric, we are throwing away information
about our recommendations. For example, we are throwing away whether we
predicted 3, 4 or 5 stars. The result will be to make the metric less sensitive
to improvements in accuracy. We only computed it for Figure 5.23 so that
we could compare to the results of the initial model. Now that we have pre-
dictions of star ratings, we need to replace this metric with a new one that
can make use of ratings. For this new metric, we could look at the fraction
of times that the predicted rating correctly matched the ground truth rating.
However, this would mean that a prediction that is half a star out would be
treated the same as one that is four stars out. Instead, we can look at how far
the predicted number of stars was from the actual number of stars, so that
the error is:

Error = |Predicted star rating −Ground truth star rating|. (5.1)

In equation (5.1), the vertical bars mean that we take the absolute size of the
difference. For example, if the prediction is two stars and the ground truth is
five stars, the error will be 3.0. The error will also be 3.0 if we swap these over
so that the prediction is five stars and the ground truth is two stars. Because
we use this absolute size, we call this error the absolute error. To compute a
metric over all predictions, we average the absolute errors of each prediction,
giving a metric called the mean absolute error (MAE).

270 ■ Model-Based Machine Learning

Number of traits

0 1 2 4 8 16

0.56

0.58

0.6

0.62

0.64

0.66

0.68

FIGURE 5.24: Mean absolute error for different numbers of traits in our new
star rating model. The MAE generally decreases slightly as we increase the
number of traits.

Figure 5.24 shows this metric computed for varying numbers of traits in
our new model. Taking all three metrics together, having more traits generally
seems to give better quality recommendations. So we can choose to use the
16-trait version of our latest model which gives an NDCG@5 of 0.881 and an
MAE of 0.663. While this gives us our best performing recommender system
yet, it would still be good to make further improvements. In the next section
we’ll diagnose where we are still making mistakes and look at one way to
further improve our recommendation accuracy.

REVIEW OF CONCEPTS

absolute error The difference between a predicted value and the corre-
sponding ground truth value, ignoring the sign of the result. The absolute
error between 2 stars and 5 stars is 3. The absolute error between 5 stars
and 2 stars is also 3. Because we ignore the sign, the absolute error is always
positive (or zero).

mean absolute error The average (mean) of the absolute error between a
predicted value and the ground truth value, across all predictions. The best
possible value for this metric is 0. All other values will be positive numbers,
with smaller values considered better than larger ones.

Making Recommendations ■ 271

5.6 ANOTHER COLD START PROBLEM

When we plotted the position of movies in trait space (Figure 5.14), we showed
only those movies where the position was known reasonably accurately (that
is, where the posterior variance was low). It follows that there are many movies
where the posterior variance is larger, possibly much larger. This means that
we essentially do not know where some movies are in trait space. We might
expect these to be the movies which do not have many ratings. If we do not
know where some movies are in trait space, then we might expect the accuracy
of recommendations relating to such movies to be low. How can we diagnose
if this is the case?

First, it would be useful to understand how many ratings each movie typ-
ically has. Figure 5.25 shows the number of ratings for each movie in the data
set as a whole, with the movies ordered from most ratings on the left to least
ratings on the right.

Movie rank

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

0

50

100

150

200

250

300

FIGURE 5.25: The number of ratings given for each movie in the data set as
a whole. The movies are ordered from most ratings on the left to least ratings
on the right.

From Figure 5.25, we can see that only about 500 of the 9000 movies
have more than 50 ratings. Looking more closely, only around 2000 movies
have more than 10 ratings. This leaves us with 7000 movies that have 10 or
fewer ratings – of which about 3000 have only a single rating! It would not
be surprising if such movies cannot be placed accurately in trait space, using
rating information alone. As a result, we might expect that our prediction
accuracy would be lower for those movies with few ratings than for those with
many.

To confirm this hypothesis, we can plot the mean absolute error across the
movies divided into groups according to the number of ratings they have in
the training set. This plot is shown in Figure 5.26 for an experiment with 16
traits. For this experiment, we added into the validation set the movies that
do not have any ratings in the training set (the left-hand bar in Figure 5.26).

272 ■ Model-Based Machine Learning

This provides a useful reference since it shows what the MAE is for movies
with no ratings at all. The plot shows that when we have just one rating
(second bar), we do not actually reduce the MAE much compared to having
zero ratings (first bar). For movies with more and more ratings, the mean
absolute error drops significantly, as shown by the third and fourth bars in
Figure 5.26. Overall, this figure shows clearly that we are doing better at
predicting ratings for movies that have more ratings – and very badly for
those movies with just one.

Number of ratings

0 ratings

(1,015)

1 rating

(710)

2 - 7

ratings

(2,017)

8 - 251

ratings

(2,034)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 5.26: Mean absolute error for movies with different numbers of rat-
ings in the training set, for a model with 16 traits. Each bar is labelled with
the range of ratings and, in brackets, the number of movies that fall into
that range. For example, the left-hand bar gives the MAE for movies with
no ratings in the training set, of which there are 1,015. Comparing the four
bars shows that movies with many ratings have substantially lower prediction
errors than those with few or zero ratings.

Figure 5.26 confirms that we have an accuracy problem for movies with few
ratings. This is particularly troubling in practice since newly released movies
are likely to have relatively few ratings but are also likely to be the most
useful recommendations for users. So how can we solve this problem? Recalling
Section 4.6 from the previous chapter, we can think of this as another cold
start problem. We need to be able to make recommendations about a movie
even though we have few or even zero ratings for that movie.

Apart from ratings, what other information do we have that could be used
to improve our recommendations? Looking at our data set, we see that it
also includes the year of release and the genres that each movie belongs to. A
sample of this additional information is shown in Table 5.4.

Making Recommendations ■ 273

Name Year Genres

GoldenEye 1995 {Ac�on, Adventure, Thriller}

Sense and Sensibility 1995 {Drama, Romance}

Willow 1988 {Ac�on, Adventure, Fantasy}

Antz 1998 {Adventure, Anima�on, Children, Comedy, Fantasy}

Fly, The 1986 {Drama, Horror, SciFi, Thriller}

Time Bandits 1981 {Adventure, Comedy, Fantasy, SciFi}

Blazing Saddles 1974 {Comedy, Western}

Clueless 1995 {Comedy, Romance}

Seven (a.k.a. Se7en) 1995 {Mystery, Thriller}

Usual Suspects, The 1995 {Crime, Mystery, Thriller}

TRIAL MODE − Click here for more information

TABLE 5.4: A sample of the additional information available for each movie.

274 ■ Model-Based Machine Learning

If we could use this information to place our movies more accurately in trait
space, perhaps that would improve our recommendations for movies where we
only have a few ratings. We can try this out by adding this information to our
model using features, just like we did in the previous chapter.

5.6.1 Adding features to our model

To add features to our recommender model, we can re-use a chunk of the
classification model from Section 4.3. Specifically, we will introduce variables
for the featureValue for each movie and feature, along with a weight for each
feature and trait. As before, the product of these will give a featureScore.
The sum of these feature scores will now be used as the mean for the trait prior
– which we shall call traitMean. It follows that the prior position of the movie
in trait space can now change, depending on the feature values, before any
ratings have been seen! The resulting factor graph is shown in Figure 5.27 –
the unchanged part of the graph has been faded out to make the newly-added
part stand out.

Making Recommendations ■ 275

movies

stars

featureValue

weight

trait

featureScore

traitMean

Gaussian(0,1)

×

+

Gaussian(·,σ²)

FIGURE 5.27: Factor graph for a recommender model that can consume fea-
ture values for individual movies. To emphasize the variables and factors which
have been added, the remaining parts of the graph have been faded out.

276 ■ Model-Based Machine Learning

In taking this chunk of model from the previous chapter, we must remem-
ber that we have also inherited the corresponding assumptions. Translated
into the language of our model, these are:

7 The feature values can always be calculated, for any movie.

8 If a movie’s feature value changes by x, then each trait mean will move
by weight × x for some fixed, continuous, trait-specific weight.

9 The weight for a feature and trait is equally likely to be positive or
negative.

10 A single feature normally has a small effect on a trait mean, sometimes
has an intermediate effect and occasionally has a large effect.

11 A particular change in one feature’s value will cause the same change in
each trait mean, no matter what the values of the other features are.

We explored these assumptions extensively in the previous chapter, so will not
discuss them again here. However, it would be a worthwhile exercise to spend
some time reflecting on how each assumption will affect the behaviour of our
recommender system.

As in the previous chapter, we need to decide how to represent our movie
information as features. The features that we will use are:

1. A constant feature set to 1.0 for all movies, used to capture any fixed
bias.

2. A ReleaseYear feature which is represented using buckets, much like the
BodyLength feature we designed in Section 4.4. We choose the buckets
to be every ten years until 1980 and then every five years after that –
giving 17 buckets in total.

3. A Genres features which has the same design as the Recipients feature
from Section 4.5. That is, a total feature value of 1.0 is split evenly
among the genres that a movie has. So if a movie is a Drama and a
Romance, the Drama bucket will have a value of 0.5 and the Romance
bucket will also have a value of 0.5.

This data set contains additional information about the movies but not
about the people giving the ratings (such as age or gender). If we had such
additional information we could incorporate it into our model using features,
just as we did for movies. All we would need to do is add a features model for
the mean of the preference prior of the same form as the one used for the
trait prior in Figure 5.27. The resulting model would then be symmetrical
between the movies/traits and people/preferences.

Making Recommendations ■ 277

5.6.2 Results with features

Let’s see what effect using movie features has on our accuracy metrics. Fig-
ure 5.28 shows the mean absolute error for models with and without features,
for groups of movies with different numbers of ratings. We can see that adding
features has improved accuracy for all four groups, with the biggest improve-
ments in the groups with zero ratings. While there is still better accuracy for
movies with more ratings, using features has helped narrow the gap between
these movies and movies where few ratings are available.

Number of ratings

0 ratings

(1,015)

1 rating

(710)

2 - 7

ratings

(2,017)

8 - 251

ratings

(2,034)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

With stars

With stars and features

FIGURE 5.28: Including feature information in our model has reduced the
prediction error, particularly for movies with only no ratings in the training
set.

We can also look at the effect of using features on our overall metrics. These
are shown for different numbers of traits in Figure 5.29. For comparison with
previous results, we once again exclude ratings for movies that do not occur
in the training set (that is, the left-hand bar of Figure 5.28). The chart shows
that features increase accuracy whichever metric we look at. Interestingly,
this increase is greater when more traits are used. The explanation for this
effect is that we are not directly using features to make recommendations but
instead we are using them indirectly to position movies in trait space. Using
more traits helps us to capture the feature information more precisely, since a
position in trait space conveys more information when there are more traits.

278 ■ Model-Based Machine Learning

Number of traits

0 1 2 4 8 16

0.56

0.58

0.6

0.62

0.64

0.66

0.68

(a) Mean absolute error (MAE)

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

Initial

With stars

With stars and features

(b) Average NDCG@5

FIGURE 5.29: Comparison of MAE and NDCGmetrics for each of our models.
Note that MAE cannot be calculated for the initial model because it does not
predict star ratings. According to these metrics, feature increases accuracy for
any model with at least one trait, with the increase being larger as more traits
are used.

Overall, using features has provided a good increase in accuracy, particu-
larly for items with few ratings. This means that our model should now do a
much better job of making recommendations for new movies – which is a very
desirable characteristic!

5.6.3 Final thoughts

In this chapter, we have developed a recommender model that can consume
either like/dislike labels or full star ratings. The model can also make use
of additional information about the items being recommended. As a result,
this model is already enough to be valuable for many customers of Azure
machine learning – and indeed is very close to the one that was actually
used in Azure ML. The main difference is that the Azure ML model can also
learn personalised star ratings thresholds. This was achieved by moving the
starThreshold variable inside the people plate and giving each threshold a
suitably informative prior, to allow for data scarcity.

In developing our model, we have assumed that a good recommendation
is one where the user will rate the item highly, but in fact this may not be the
case. A science fiction fan may rate Star Wars highly, but it would be a poor
recommendation since they would almost certainly already seen it. In other
words, a good recommendation is for a movie that you are likely to enjoy but
not to have already seen. Real recommendation systems keep a record of what
movies a person has seen through the system and these are automatically re-
moved from any list of recommendations. But such systems have no knowledge
of what movies have been watched outside of the system. We could modify
our model to predict both whether someone would like a movie and whether
they are likely to have seen it. Using both of these predictions together would
lead to more valuable recommendations.

Similar items are nearby in trait space.

By learning the positions of items in trait
space, we have also learned which items are

Making Recommendations ■ 279

similar, since these will be close to each other.
Given a target item, we can find similar items
by searching for nearby items in trait space.
More precisely, we can do this by making
recommendations for an imaginary person lo-
cated at the same position in trait space as
the target item. The result of this process is useful for making item-specific
recommendations, such as “people who liked this movie, also liked”. Item
relatedness can also be used to improve the diversity in a set of recommenda-
tions. For example, we might not want to have two very similar movies in a
list of recommendations (such as two movies in the same series). We could use
the distance between the movies in trait space to remove such similar movies
and so create a more diverse list of recommendations.

There are further model extensions that could usefully be made. One would
be to make use of implicit feedback about an item. For example, many people
never rate any movie, but instead just watch them. Even in this case, there
is still useful information about the movies that the person likes. We may
assume that they watch movies that they expect to like – so watching a movie
is an implicit signal that the person liked the movie. It is harder to get an
implicit signal that a person did not like a movie and so often implicit feedback
provides positive-only data. In other words we have only the good ratings and
none of the bad ones. Having a model that can cope with such positive-only
data would be very useful – the most common approach today is to treat a
random sample of unrated movies as if they were negatively rated.

Even when we do have ratings, the information about which ratings we
have and which we do not have is very valuable. Having a rating is a bit like
watching a movie – it provides a positive signal about liking the movie. The
best performing recommender systems make use of missing ratings to provide
information about what a person likes or dislikes. With any piece of data that
can be missing, we can model whether or not it is missing, as well as modelling
the data itself. In the next chapter, we will discuss different kinds of missing
data and how to handle them – in the very different scenario of understanding
childhood asthma.

CHA PT E R 6

Understanding Asthma

Globally around 450,000 people die each year from asthma. If we
could better understand what causes people to develop asthma, it
would have a hugely beneficial impact on asthma detection, diagno-
sis and treatment. Can model-based machine learning help provide
this deeper understanding?

Asthma is a very common disease which
affects around 5% of people in the UK [An-
derson et al., 2007] and about 7% in the US
[Fanta, 2009]. Asthma can have extremely se-
rious outcomes for those who suffer from it.
One known risk factor for developing asthma
is if a person has allergies, but the relationship
between allergies and asthma is not well un-
derstood. An improved understanding of this
relationship could potentially allow early de-
tection of the kind of severe asthma that can
lead to hospitalisation or worse.

The Manchester Asthma and Allergy
Study (MAAS) is a study designed to help un-
derstand the causes of childhood asthma and
allergies [Custovic et al., 2002]. In particular,
the study aims to understand why some chil-
dren with allergies develop asthma while oth-
ers do not. MAAS is a birth cohort study –
in other words, people were recruited into the
study at birth – and consists of around 1,000
people. The study began in 1995 and contin-
ues to this day, collecting ongoing data about
the study participants, who are now young
adults. As you might imagine, a huge amount of dedication and commitment

281

282 ■ Model-Based Machine Learning

is required of these participants and their families – we and the study team
are immensely grateful to them all!

In this chapter, we will look at how to apply model-based machine learning
to data collected in this study, to model the onset of childhood allergies and see
how this relates to the development of asthma. This kind of machine learning
application is different to those we have looked at in previous chapters, because
we are interested in improving understanding as a primary goal of the project,
rather than predicting who will develop asthma without any understanding
of why. It’s worth looking at these two contrasting goals in a bit more detail:

• Predictive machine learning – the goal is to make predictions, with-
out requiring an explanation of the predictions. This kind of goal is
common when building automated systems where explanations are not
needed.

• Explanatory machine learning – the goal is to explain or understand
patterns in the data. This kind of goal is common when doing scientific
or medical research, where there is a human in the loop who wishes to
understand the processes that give rise to the data.

Often there are elements of both of these goals in a particular machine learning
project. For example, when doing predictions it may be useful to provide some
explanation of those predictions. And even when the primary goal is improved
understanding, such as in this asthma project, it may still be useful to apply
that understanding to make predictions, such as predicting whether a child
will develop asthma.

The model developed in this chapter was created as part of a collaboration
with the MAAS team, particularly Professors Adnan Custovic and Angela
Simpson, as described in Simpson et al. [2010] and Lazic et al. [2013].

You can create results like those in this chapter using the companion source
code [Diethe et al., 2019]. Since we cannot distribute the actual medical data
used in this work, we have provided a synthetic data set that gives similar
results to the true data.

Understanding Asthma ■ 283

6.1 A MODEL OF ALLERGIES

Our primary goal is to improve our understanding
of allergy development, as it relates to childhood
asthma, by looking for patterns in the MAAS
data. To understand the relevant data in the
study, we need to learn a little bit about diag-
nosing allergies. The doctors in the study used
two types of test to try to detect if a person is
allergic to a specific allergen, such as cat hair or
peanuts. The two types of test were:

• A skin prick test where a drop of allergen
solution is placed on the patient’s skin (see
image) which is then pricked with a needle.
If the skin shows an immune response in the
form of a red bump of a certain size, then
the test is positive, otherwise it is negative.

• An allergen-specific IgE test – this is a
blood test that looks for a kind of antibody
called Immunoglobulin E (IgE) that specifi-
cally targets a particular allergen. The pres-
ence of this antibody is an indicator that
the patient is allergic to that allergen. If
this antibody is present in sufficient quan-
tities the test is positive, otherwise negative.

If a child has a positive skin prick test or IgE test for an allergen, then they
are said to be sensitized to that allergen.

For the children taking part in this study, both of these tests were per-
formed for eight allergens: dust mite, cat, dog, pollen, mould, milk, egg and
peanut. So that the development of allergies could be tracked over time, the
tests were repeated at different ages (1, 3, 5 and 8). Therefore, the available
data points are the two test results for each allergen, for each child, at each
of the four ages.

The clinicians on the study believe that different patterns of allergies make
children susceptible to different diseases, some of which may have significant
impact on the child’s health (such as severe asthma) and some of which may
be more benign (such as mild hayfever). The goal of the project is to identify
such patterns and see if they are indicative of developing particular diseases
and of the severity of the disease. Our task is to develop a model of the allergen
data set that can achieve this.

284 ■ Model-Based Machine Learning

6.1.1 Modelling test results

To start with, let’s consider a model of a child’s test results for one allergen
at one point in time. First, we need variables for the results of each test –
we will call these skinTest and igeTest. These variables will be true if the
corresponding test is positive and false if the test is negative.

Remember that the purpose of these tests is to try and detect whether a
child is actually sensitized (allergic) to a particular allergen. However, the tests
are not perfectly consistent – for example, it is not unusual for a child to have
a positive IgE test but a negative skin test. To cope with such inconsistencies,
we can have a variable representing whether the child is truly sensitized to
the allergen, which we will call sensitized. This variable will be true if the
child is actually sensitized to the allergen and false if they are not sensitized.
We then allow for the results of the tests to occasionally disagree with the
value of this variable. In other words, we assume that each test can give a
false positive (where the test is positive but the child is not sensitized) or a
false negative (where the test is negative but the child is sensitized).

If a child is sensitized to a particular allergen (sensitized=true), then
a skin prick test will be positive (skinTest=true) with some probability,
which we will call probSkinIfSens. Since we expect the test to be mostly
correct we would expect this probability to be high but less than one, since
a skin prick test can give false negatives. Conversely, even if a child is not
sensitized to a particular allergen (sensitized=false), then we might occa-
sionally expect a skin prick test to be positive, but with some low probability
probSkinIfNotSens. Although this probability is low, we still expect it to be
greater than zero because a skin prick test can give false positives.

These two probabilities together define a conditional probability table for
skinTest conditioned on sensitized.

Understanding Asthma ■ 285

sensi�sed skinTest=true (posi�ve) skinTest=false (nega�ve)

true probSkinIfSens 1 - probSkinIfSens

false probSkinIfNotSens 1 - probSkinIfNotSens

TRIAL MODE − Click here for more information

TABLE 6.1: The conditional probability table for P (skinTest|sensitized).
Table columns correspond to values of the conditioned variable skinTest,
rows correspond to values of the conditioning variable sensitized, and table
cells contain the conditional probability values.

286 ■ Model-Based Machine Learning

We have introduced these two probabilities as random variables in our
model because we will want to learn them from data, in order to determine
the false positive and false negative rates for the skin prick test. In order
to learn their values, we must provide suitable prior distributions for each
variable, that encode our assumptions about them. Let’s write down those
assumptions:

1 If a child is sensitized to a particular allergen, there is a high probability
that they will get a positive test.

2 If a child is NOT sensitized to a particular allergen, there is a low prob-
ability that they will get a positive test.

As in Section 2.6, we can use beta distributions as prior distributions
over probabilities that can represent these assumptions. Assumption 1 says
that we expect probSkinIfSens to be high so we can use a Beta(2,1) prior
which favours higher probability values. Assumption 2 says that we expect
probSkinIfNotSens to be low so we can use a Beta(1,2) prior which favours
low probability values. Armed with these prior probabilities, we can now draw
a factor graph for a skin test, using the Table factor that we introduced back
in Section 2.6.

Now that we have a model for a skin test, we can add in the corre-
sponding model for an IgE test. We again need probability variables for the
probability of a positive test if sensitized probIgeIfSens and if not sensi-
tized probIgeIfNotSens with the corresponding beta distribution priors. The
sensitized variable is shared between the two tests, because both tests are
attempting to detect the same underlying sensitization. The resulting factor
graph for both tests is shown in Figure 6.2.

Inference in this model enables us to fuse the outcomes of both tests into
a single underlying sensitization state. Learning the probabilities of true and
false positives will let the model learn which test to pay most attention to.
For example, if a test has a high false positive probability, then a positive
outcome would influence the inference of the sensitization state less than a
positive outcome for a test with a low false positive probability.

6.1.2 Modelling tests through time

For each child, we have test measurements at multiple points in time – ages 1,
3, 5 and 8. Such a collection of measurements is known as a time series, and
analysis of such data is known as time series analysis. To understand the
development of allergies, we need to build a model of a time series of allergy
test results.

We could start building a time series model by duplicating the fac-
tor graph of Figure 6.2 at each time point. This would introduce a sep-
arate sensitized variable at each age, which we could call sensitized1,
sensitized3, sensitized5 and sensitized8. It would also introduce sepa-
rate test result variables at each age, which we could similarly call skinTest1,

Understanding Asthma ■ 287

igeTest1, skinTest3, igeTest3 and so on. However, directly duplicating the
factor graph would also mean having separate variables at each time point for
the probability of a positive test given sensitized/not sensitized. Do we really
expect the false positive and false negative rates for the tests to change over
time? If exactly the same tests were done at each age, it would be reasonable
to assume that the false positive and false negative rates did not change over
time. Let’s write down this assumption:

3 For each type of test, the false positive and false negative rates are the
same for all such tests carried out in the study.

The consequence of this assumption is that the skin test probability vari-
ables (probSkinIfSens, probSkinIfNotSens) and the IgE test probability
variables (probIgeIfSens, probIgeIfNotSens) will be shared across all time
points. The result of this sharing is the factor graph of Figure 6.3.

You might wonder why we have drawn out the variables for each time
point, rather than use a plate to collapse them all together. This is because,
when modelling time series, we expect variables later in time to depend on the
values of variables earlier in time. By drawing out all variables, we can now
add factors connecting variables across time. But what should these factors
be?

At age 1, there is a certain initial probability that a child will already be
sensitized to a particular allergen – let’s call this probSens1. Now, suppose
the child is not sensitized at age 1 (sensitized1=false), there is some prob-
ability that they will become sensitized by age 3 – let’s call this probGain3.
Conversely, if the child is sensitized at age 1 (sensitized1=true), there is
some probability that they retain that sensitization to age 3 – let’s call this
probRetain3. We can model this using a Table factor, just as we did for
modelling the skin and IgE tests.

When we consider age 5, we need to ask ourselves a question: do we think
that the sensitization at age 5 depends on both previous sensitizations (at ages
1 and 3), or just the most recent one (at age 3). Similarly, do we think that
sensitization at age 8 depends on all three previous sensitizations (at ages 1,
3 and 5) or just the most recent one (at age 5). Either of these assumptions
might be reasonable, depending on the details of how the immune system
functions. For now, we will assume that just the most recent sensitization is
relevant, since that simplifies the model the most:

4 Whether a child is sensitized to an allergen at a particular time point
depends only on whether they were sensitized to that allergen at the
previous time point.

This kind of assumption is so common in time series modelling that it
even has a name – it is called a Markov assumption after the Russian
mathematician Andrey Markov. Our Markov assumption means that we can
model sensitization at ages 5 and 8 just like we did at age 3. So for age 5, we

288 ■ Model-Based Machine Learning

have variables probGain5 and probRetain5 for the probabilities of gaining or
retaining sensitization between the ages of 3 and 5. Similarly, for age 8, we
have variables probGain8 and probRetain8 for the probabilities of gaining
or retaining sensitization between the ages of 5 and 8. As for age 3, we can
model sensitivity at ages 5 and 8 using a Table factor, giving the factor graph
of Figure 6.4.

Looking at Figure 6.4, you can see the chain of factors connecting the sen-
sitization variables through time, from sensitized1 through to sensitized8.
This kind of chain structure is a common feature of time series model that
make Markov assumptions, and so is called a Markov chain.

6.1.3 Completing the model

To complete our time series model, we need to extend it to cover multiple
allergens and multiple children. We can add plates for allergens and children
and place the sensitization and skin/IgE test variables inside both plates,
since there are tests and sensitization states for every child and allergen. As-
sumption 3 says that the false positive and false negative rates of our tests
are the same throughout the study, and so the variables probSkinIfSens,
probIgeIfSens, probSkinIfNotSens and probIgeIfNotSens lie outside both
plates. This leaves only the variables relating to the probability of initial hav-
ing, gaining and retaining sensitization. We want these variables to be able to
vary between allergens, so we can learn if different allergies are gained or lost
at different points in time. So these variables must lie inside the allergens

plate. But if we are trying to learn patterns of gaining or losing sensitiza-
tion that are common to multiple children, we must have these probability
variables shared across children. Right now, the only way of doing this is
to place them outside the children plate. This corresponds to the following
assumption, which is the final assumption of the model:

5 The probabilities relating to initially having, gaining or retaining sensi-
tization to a particular allergen are the same for all children.

Given this assumption, we can now draw the factor graph with plates,
where the variables have been appropriately placed inside or outside each
plate (see Figure 6.5).

Reviewing Figure 6.5, you can see that:

• the test false positive/false negative probabilities are outside both plates
and so are shared across all children and allergens;

• the probabilities of initially having, gaining and retaining sensitization
are inside the allergens plate but outside the children plate, so are shared
across children but can differ across allergens;

• the test results and sensitization are inside both plates, since there are
tests and sensitization states for each child and allergen.

Understanding Asthma ■ 289

Given these plates, we now have a complete model that we can use with
our data set of skin and IgE test results.

6.1.4 Reviewing our assumptions

As in previous chapters, we should take a moment to review our modelling
assumptions. They are shown all together in Table 6.2.

1 If a child is sensitized to a particular allergen, there is a high prob-
ability that they will get a positive test.

2 If a child is NOT sensitized to a particular allergen, there is a low
probability that they will get a positive test.

3 For each type of test, the false positive and false negative rates are
the same for all such tests carried out in the study.

4 Whether a child is sensitized to an allergen at a particular time
point depends only on whether they were sensitized to that allergen
at the previous time point.

5 The probabilities relating to initially having, gaining or retaining
sensitization to a particular allergen are the same for all children.

TABLE 6.2: The five assumptions encoded in our allergy model.

Assumption 1 and Assumption 2 seem to be safe assumptions – doctors
would not use these tests if they were not correct most of the time. Assump-
tion 3 seems like a plausible assumption, but we might worry that the tests
have different false positive/false negative rates for different allergens. It might
also be possible that the test was improved or updated during the study and
so that the rates would change over time. To check this out we consulted with
the MAAS clinicians and they confirmed that the tests were performed ex-
actly the same way throughout the study – the same test methodology, the
same allergen solutions, even the same person doing the tests! So it seems like
this assumption is a relatively safe one.

Assumption 4 is our Markov assumption – this is a common simplifying
assumption but is also commonly criticised as being too simplistic. For exam-
ple, in our case, it says that the probability of gaining/retaining sensitization
depends only the sensitization state at the previous time point and not, for
example, on how long the child has had the sensitization (or lack of sensiti-
zation). Nonetheless, this assumption keeps the model simple and so we will
stick with it.

Finally, Assumption 5 says that all children have the same patterns of
gaining and losing sensitization. This assumption goes against the very pur-

290 ■ Model-Based Machine Learning

pose of the project, which is to identify how these patterns vary between
children. We will spend much of the rest of this chapter looking at how to
improve on this assumption, but it is useful to keep it in place for now so we
explore the behaviour of our new model.

REVIEW OF CONCEPTS

allergen A substance which someone can be allergic to, such as cat hair or
peanuts.

skin prick test A test where a drop of allergen solution is placed on the
patient’s skin, which is then pricked with a needle. If the skin shows an immune
response in the form of a red bump of a certain size, then the test is positive,
otherwise it is negative.

IgE test A blood test that looks for a kind of antibody called Immunoglob-
ulin E (IgE) that specifically targets a particular allergen. If this antibody is
present in sufficient quantities the test is positive, otherwise negative.

time series A series of data points, listed in time order, that represent
the measurement of some quantity over time – such as a stock price, blood
pressure or population counts.

time series analysis Analysis of a time series, so as to understand the
time-varying process underlying the time series data.

Markov assumption The assumption that a state of a process depends
only on the previous state of that process, and not any earlier states. Named
after the Russian mathematician Andrey Markov.

Markov chain A random process such that the probability distribution of
the next state depends only on the previous state and not on any earlier state.
In a factor graph, a Markov chain appears as a chain of time series variables
with adjacent variables connected by factors.

Understanding Asthma ■ 291

skinTest

sensitised

probSkinIfSens probSkinIfNotSens

Beta(2,1) Beta(1,2)

Table

TRIAL MODE − Click here for more information

FIGURE 6.1: A model relating the result of a skin prick test (skinTest) to the
underlying allergic sensitization state (sensitized). The skinTest variable
is observed to equal the actual outcome of the test and so is shown shaded.

292 ■ Model-Based Machine Learning

skinTest igeTest

sensitised

probSkinIfSens probSkinIfNotSens probIgeIfSens probIgeIfNotSens

Beta(2,1) Beta(1,2) Beta(2,1) Beta(1,2)

Table Table

TRIAL MODE − Click here for more information

FIGURE 6.2: A model relating the results of both kinds of allergy test to the
underlying allergic sensitization state. Each type of test has its own probability
variables which means that each test can have different false positive and false
negative rates. The test results are observed and so are shown shaded.

Understanding Asthma ■ 293

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

probSkinIfSens probSkinIfNotSens

probIgeIfSens probIgeIfNotSens

sensitised1 sensitised3 sensitised5 sensitised8

Beta(2,1) Beta(1,2)

Beta(2,1) Beta(1,2)

Table

Table

Table

Table

Table

Table

Table

Table

TRIAL MODE − Click here for more information

FIGURE 6.3: An initial model of a time series of allergy test results, which are explained by a series of
underlying sensitizations. The false positive/false negative probability variables for each test are shared across
all time points.

294 ■ Model-Based Machine Learning

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

probSens1 probGain3

probRetain3

probGain5

probRetain5 probGain8

probRetain8

sensitised1 sensitised3 sensitised5 sensitised8
Bernoulli

Table Table Table

Table

Table

Table

Table

Table

Table

Table

Table

TRIAL MODE − Click here for more information

FIGURE 6.4: An improved time series model where the allergic sensitization at each point in time, depends on
the sensitization at the previous point in time. The variables and factors relating to the test false positive/false
negative rates have been dimmed, to emphasize the new factors added in the model.

Understanding Asthma ■ 295

allergens

children

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

probSens1 probGain3

probRetain3

probGain5

probRetain5

probGain8

probRetain8

sensitised1 sensitised3 sensitised5 sensitised8
Bernoulli

Table Table Table

Table

Table

Table

Table

Table

Table

Table

Table

TRIAL MODE − Click here for more information

FIGURE 6.5: A complete model of a set of allergy tests for multiple children and multiple allergens. Plates
are used to duplicate certain variables across children and allergens (see text for discussion). As in Figure 6.4,
the variables and factors relating to the test false positive/false negative rates have been dimmed, to make the
factor graph easier to read and to emphasise the Markov chain.

296 ■ Model-Based Machine Learning

6.2 TRYING OUT THE MODEL

Now that we have a complete model, we are ready to try it out on some
study data. As we’ve emphasised many times before in this book, when using
a real data set, it is essential to look carefully at the data set to make sure
that it is complete, correct and has the form that you expect. Remember that
many common machine learning problems are caused by problems with data
(such as those listed in Section 2.5). A good way to check your data set is to
construct visualisations that let you to see at a glance what it looks like. In
this case, we need to create visualisations of the test results for each child,
allergen and time point. However, this study data set contains private medical
data and so we cannot share the data publicly in this book, even in the form
of a visualisation. The most important thing that we learned from doing this
visualisation is that there are a lot of test results missing from the data set.

When there are missing data, it is always worth analysing to understand
why they are missing. In Figure 6.6, we plot the number of test results in the
data set (whether positive or negative) for each age and type of test.

Test type and age

Skin1 IgE1 Skin3 IgE3 Skin5 IgE5 Skin8 IgE8
0

200

400

600

800
Mite

Cat

Dog

Pollen

Mould

Milk

Egg

Peanut

FIGURE 6.6: The test results recorded for each of the two types of tests, split
by age of child.

You can see several different patterns of missing data in Figure 6.6. First,
the plot shows that there are ages and test types that have no data for par-
ticular allergens. For example, peanut has no results at all for ages 1 and 3,
and only IgE results at age 5. Mould has no IgE results at all, and no skin
test results at age 1. Second, there is a lot more missing data at early ages,
particularly age 1. Third, the plot shows that there is a lot more missing data
overall for IgE tests than skin tests. We need to take into consideration the
effect of all these missing data points.

6.2.1 Working with missing data

Understanding Asthma ■ 297

Missing data can obscure or distort
the patterns in a data set

Missing data can introduce bias into the posterior
distributions computed by running inference on a
model, leading to incorrect or misleading results.
Whether or not this effect will occur, and how big
the bias will be, depends on why the data points
are missing in the first place. In statistics, it is com-
mon to consider three kinds of missingness, which
are referred to using the following (quite confusing!)
terms:

• missing completely at random (MCAR) –
where the missing data points occur entirely at
random. In other words, the fact that the data
is missing is independent of the value of the missing data point (the test
result that would have been given had the test actually happened).

When data is MCAR, the remaining, non-
missing, data points are effectively just a ran-
dom subset of the overall data set. In this
case, the posterior distributions computed by
probabilistic inference will be unbiased by the
missing data. Unfortunately, in reality, missing
data is rarely missing completely at random.
However, it may be an acceptable approxima-
tion to assume that it is – in which case, this
assumption should be made with full under-
standing of the possibility of introducing bi-
ases.

• missing at random (MAR) – where the miss-
ingness is not random, but where other known
data values fully account for the fact that the
data is missing. For example, suppose that
boys are more likely to refuse an IgE test than
girls. Considering the fact that boys are more
likely to have allergies, this would introduce
a bias in our results, since the missing tests
would be more likely to be positive than the
non-missing tests.

When data is MAR, it is possible to correct for
the bias, at least to some extent, by changing
the model appropriately to account for why the
data is missing. This extension requires creat-
ing a new variable in the model for each data
point, which is true if the data point is missing
and false otherwise, and then building a suit-
able sub model to explain this new variable.

298 ■ Model-Based Machine Learning

For example, if boys are more likely than girls
to skip an IgE test, then to correct for bias we
would need to extend our model to represent
this effect, such as by adding a new gender

variable connected to the missingness variable.
We would also need to allow this gender vari-
able to affect the probability of sensitization
in an appropriate way. The degree to which
this approach corrects the bias introduced by
missing data, depends on how good the model
of missingness is. As ever, a better model will
give better results.

• missing not at random (MNAR) – where
the missingness is not either MCAR or MAR.
In this case, the fact that a data point is miss-
ing depends on the value of that data point.
For example, this would occur if children with
lots of allergies were more likely to skip a skin
prick test because of concerns about the dis-
comfort involved in having a positive test. Or
such children might be more used to medical
interventions and so may be less likely to skip
a blood test due to fear of needles.

When data is MNAR, it is not possible to cor-
rect for the bias without making modelling as-
sumptions about the nature of the bias (which
could be dangerous as there would be no data
to verify such assumptions). One possible ap-
proach would be to try and collect additional
information relevant to why the data is miss-
ing, in the hope that this would now make it
missing at random (MAR).

For more information on handling missing data, see Little and Rubin [2014].
For our study, we need to find out why the various patterns of missing

data arose. Consulting again with the MAAS team, we find that:

1. The clinicians chose to omit mould tests at age 1, since this is a rare
allergy and there was a desire to minimise the number of tests performed
on babies. Similarly, a decision was made half way through the study to
add in peanut tests.

2. The reduced number of tests at age 1 are due to manpower limitations
as the study was ramped up – not all children could be brought in for
testing by age 1.

Understanding Asthma ■ 299

3. The greater number of missing IgE tests are due to children not wanting
to give blood, or parents not wanting babies or young children to have
blood taken.

For 1, we know why the data is missing - because the clinicians chose
not to do certain tests. Such data can be assumed to be missing completely
at random, since the choice of which tests to perform at each age was made
independently of any test results. For 2, the study team chose whether to
invite a child in for testing by age 1 and so could choose in a way that was
not influenced by the child’s allergies (such as, at random). So again, we could
assume such data to be missing completely at random. For 3, we might be
more concerned, as now it is a decision of the child or the parents that is
influencing whether the test is performed. This is more likely to be affected
by the child’s allergies, as we discussed above, and so it is possible that such
missing data is not missing completely at random. For the sake of simplicity,
we will assume that it is – this is such an important assumption that we should
record it:

6 Missing test results are missing completely at random.

Having made this assumption, we should bear in mind that our inference
results may contain biases. One reassuring point is that where we do not have
an IgE test result, we often have a skin test result. This means that we still
have some information about the underlying sensitization state even when an
IgE test result is missing, which is likely to diminish any bias caused by its
missingness.

There is another impact of missing data. Even when missing data is not
introducing bias, if there is a lot of missing data it can lead to uncertainty, in
the form of very broad posterior distributions. For example, at several time
points we have no data for mould or peanut and so the gain/retain proba-
bilities for those ages would be very uncertain, and so have broad posterior
distributions. When included in results plots, such broad distributions can
distract from the remaining meaningful results. To keep our plots as clear as
possible, we will simply drop the mould and peanut allergens from our data
set and consider only the remaining six allergens.

6.2.2 Some initial results

Having decided to treat our missing data as missing completely at random, we
are now in a position to apply expectation propagation to our model and get
some results. Where we have a missing data point, we simply do not observe
the value of the corresponding random variable.

Having run our inference algorithm, the first posterior distributions we will
look at are those for probSkinIfSens, probSkinIfNotSens, probIgeIfSens
and probIgeIfNotSens. These posteriors are beta distributions, which we can
summarise using a mean plus or minus a value indicating the width of the beta
distribution, as shown in Table 6.3.

300 ■ Model-Based Machine Learning

If Sensi	sed If Not Sensi	sed

Prob. of Pos. Skin Test 79.0%±0.7% 0.5%±0.04%

Prob. of Pos. IgE Test 93.0%±0.6% 3.7%±0.1%

TRIAL MODE − Click here for more information

TABLE 6.3: The probability of a positive test for each test type and for
each sensitization state. The plus/minus values indicate the uncertainty in
the probability given by the posterior beta distributions. The table shows that
the skin test has a low false positive probability, but also a lower true positive
probability. Conversely, the IgE test has a higher false positive probability, but
a very high true positive probability. These results show that, taken together,
the tests have complementary strengths and weaknesses.

Understanding Asthma ■ 301

The results in Table 6.3 show that the two types of test are complemen-
tary: the skin prick test has a very low false positive rate (¡1%) but as a result
has a reduced true positive rate (∼ 79%); in contrast, the IgE test has a high
true positive rate (∼ 93%) but as a result has a higher false positive rate
(∼ 4%). The complementary nature of the two tests show why they are both
used together – each test brings additional information about the underlying
sensitization state of the child. During inference, our model will automatically
take these true and false positive rates into account when inferring the sensi-
tization state at each time point, so it will gain the advantage of the strengths
of both tests, whilst being able to minimise the weaknesses.

Next let’s look at the inferred probabilities of initially having, gaining and
retaining sensitization for each allergen. Figure 6.7a shows the probability of
initially having a sensitization (age 1) and then the probability of gaining
sensitization (ages 3, 5, 8). Similarly, Figure 6.7b shows the probability of
retaining sensitization since the previous time point (for ages 3, 5 and 8 only).
Since each probability has a beta posterior distribution, the charts show the
uncertainty associated with the probability values, using the lower and upper
quartiles of each beta distribution.

302 ■ Model-Based Machine Learning

Age of child

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

Mite

Cat

Dog

Pollen

Milk

Egg

TRIAL MODE − Click here for more information

(a) The probability of having sensitivity (age 1)
or subsequently gaining sensitivity (ages 3, 5
and 8).

Age of child

2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mite

Cat

Dog

Pollen

Milk

Egg

TRIAL MODE − Click here for more information

(b) The probability of retaining sensitivity since
the previous time point at ages 3, 5 and 8.

FIGURE 6.7: Plots showing the probabilities for (a) having/gaining and (b) retaining sensitization for each
time point and allergen.

Looking at Figure 6.7a and Figure 6.7b together, we can see that different
allergens have different patterns of onset and loss of sensitization. For example,
there is a high initial probability of sensitivity to egg but, after that, a very
low probability of gaining sensitivity. Egg also has the lowest probability of
retaining sensitization, meaning that children tend to have egg sensitivity very
early in life and then rapidly lose it. As another example, mite and pollen have
very low initial probabilities of sensitization, but then very high probabilities
of gaining sensitization by age 3. Following sensitization to mite or pollen, the
probability of retaining that sensitization is very high. In other words, children
who gain sensitization to mite or pollen are most likely to do so between ages
1 and 3 and will then likely retain that sensitization (at least to age 8). Cat
and dog have similar patterns of gain and loss to each other, but both have
a higher initial probability of sensitization and a lower peak than mite and
pollen. Milk shows the lowest probabilities of sensitization, meaning that it is
a rare allergy in this cohort of children. As a result, the probability of retaining

Understanding Asthma ■ 303

a milk sensitization is more uncertain, since it is learned from relatively few
children. This uncertainty is shown by the broad shaded region for milk in
Figure 6.7b.

Another way of visualizaing these results, is to look at the inferred sen-
sitizations. We have inferred the posterior probability of each child having
a sensitization to each allergen at each time point. We can then count the
number of children who are more likely to be sensitized than not sensitized
(that is, where the probability is ¿50%). Plotting this count of sensitizations
for each allergen and age gives Figure 6.8.

Allergen

Mite Cat Dog Pollen Milk Egg
0

50

100

150

200

Age 1 Age 3 Age 5 Age 8

FIGURE 6.8: The number of children with inferred sensitizations for each
allergen, at each point in time.

Figure 6.8 shows the patterns of gaining and losing sensitization in a dif-
ferent way, by showing the count of sensitized children. The chart shows that
egg allergies start off common and disappear over time. The chart also shows
that mite and pollen allergies start between ages 1 and 3 and the total num-
ber of allergic children only increases with age. In many ways, this chart is
easier to read than the line charts of Figure 6.7a and Figure 6.7b because it
looks directly at the counts of sensitizations rather than at changes in sensi-
tizations. Also, all the information appears on one chart rather than two. For
this reason, we will use this kind of chart to present results as we evolve the
model later in the chapter.

To summarize, we have built a model that can learn about the patterns
of gaining and losing allergic sensitization. The patterns that we have found
apply to the entire cohort of children – effectively they are patterns for the
population as a whole. What the model does not tell us is whether there are
groups of children within the cohort that have different patterns of allergic
sensitization, which might give rise to different diseases. By looking at all
children together, this information is lost. Reviewing our assumptions, the
problematic assumption is this one:

304 ■ Model-Based Machine Learning

5 The probabilities relating to initially having, gaining or retaining sensi-
tization to a particular allergen are the same for all children.

We’d really like to change the assumption to allow children to be in dif-
ferent groups, where each group of children can have different patterns of
sensitization. Let’s call these groups ‘sensitization classes’. The assumption
would then be:

5 The probabilities relating to initially having, gaining or retaining sen-
sitization to a particular allergen are the same for all children in each
sensitization class.

The problem is that we do not know which child is in which sensitization
class. We need a model that can represent alternative processes for gaining
and losing sensitization, and which can determine which process took place
for each individual child. In other words, we need to be able to compare
alternative models for each child’s data and determine which is likely to be
the one that gave rise to the data. To achieve this will require some new tools
for modelling and inference, which we will introduce in the next section.

REVIEW OF CONCEPTS

missing data In a data set, a missing data point is one where no value
is available for a variable in an observation. The reason for the value being
missing is important and can affect the validity of probabilistic inference using
the remaining non-missing values. See Section 6.2.1.

missing completely at random Where missing data points occur entirely
at random. In other words, the fact that the data is missing is independent of
the value of the missing data point.

missing at random Where missing data points do not occur at random,
but where other known data values fully account for the fact that the data is
missing.

missing not at random Where missing data is neither missing completely
at random (MCAR) not missing at random (MAR). In this case, the fact that
a data point is missing depends on the value of that data point. Where data
is missing not at random, it is very difficult to avoid biases in the results of
inference.

Understanding Asthma ■ 305

6.3 COMPARING ALTERNATIVE MODELS

In all the previous chapters, we have assumed that the data arose from a
single underlying process. But now we can no longer presume this, since we
expect there to be different processes for children who do develop allergies
and asthma and for those who do not. To handle these kinds of alternative
processes, we need to introduce a new modelling technique.

This technique will allow us to:

• Represent multiple alternative processes within a single model;

• Evaluate the probability that each alternative process gave rise to a
particular data item (such as the data for a particular child);

• Compare two or more different models to see which best explains some
data.

To introduce this new technique, we will need to put the asthma project
to one side for now and instead look at a simple example of a two-process
scenario (if you’d prefer to stay focused on the asthma project, skip ahead
to Section 6.5). Since we are in the medical domain, there is a perfect two-
process scenario available: the randomised controlled trial. A randomised
controlled trial is a kind of clinical trial commonly used for testing the effec-
tiveness of various types of medical intervention, such as new drugs. In such
a trial, each subject is randomly assigned into either a treated group (which
receives the experimental intervention) or a control group (which does not
receive the intervention). The purpose of the trial is to determine whether the
experiment intervention has an effect on one or more outcomes of interest,
and to understand the nature of that effect.

The goal of our randomized controlled
trial will be to find out if a new drug is

effective.

Let’s consider a simple trial to test the ef-
fectiveness of a new drug on treating a particu-
lar illness. We will use one outcome of interest
– whether the patient made a full recovery from
the illness. In modelling terms, the purpose of
this trial is to determine which of the following
two processes occurred:

1. A process where the drug had no effect on
whether the patient recovered.

2. A process where the drug did have an effect
on whether the patient recovered.

To determine which process took place, we need
to build a model of each process and then com-
pare them to see which best fits the data. In
both models, the data is the same: whether or
not each subject recovered. We can attach the

306 ■ Model-Based Machine Learning

control grouptreated group

recoveredControlrecoveredTreated

probRecovery

Beta(1,1)

BernoulliBernoulli

FIGURE 6.9: Factor graph for a process where the experimental drug has no
effect. In this case, the probability of recovery is the same for the treated and
control groups.

data to each model using binary variables which
are true if that subject recovered and false

otherwise. We’ll put these binary variables into
two arrays: recoveredControl contains the vari-
ables for each subject in the control group and
recoveredTreated similarly contains the vari-
ables for each subject in the treated group.

6.3.0.1 Model where the drug had no effect

Let’s start with a model of the first process, where the drug had no effect. In
this case, because the drug had no effect, there is no difference between the
treated group and the control group. So we can use an assumption like this
one:

1 The (unknown) probability of recovery is the same for subjects in the
treated and control groups.

It is perfectly possible that a subject could recover from the illness without
any medical intervention (or with a medical intervention that does nothing). In
this model, we assume that the drug has no effect and therefore all recoveries
are of this kind. We do not know what the probability of such a sponta-
neous recovery is and so we can introduce a random variable probRecovery

to represent it, with a uniform Beta(1,1) prior. Then for each variable in the
recoveredControl and recoveredTreated arrays, we assume that they were
drawn from a Bernoulli distribution whose parameter is probRecovery. The
resulting model is shown as a factor graph in Figure 6.9 – for a refresher on
Beta-Bernoulli models like this one, take a look back at Chapter 2.

Understanding Asthma ■ 307

control grouptreated group

recoveredControlrecoveredTreated

probControlprobTreated

Beta(1,1)

Bernoulli

Beta(1,1)

Bernoulli

FIGURE 6.10: Factor graph for a process where the experimental drug does
have an effect, and so the probability of recovery is different for the treated
group and for the control group.

6.3.0.2 Model where the drug did have an effect

Now let’s turn to the second process, where the drug did have an effect on
whether the patient recovered. In this case, we need to assume that there is
a different probability of recovery for the treated group and for the control
group. We hope that there is a higher probability of recovery for the treated
group, but we are not going to assume this. We are only going to assume that
the probability of recovery changes if the drug is taken.

2 The probability of recovery is different for subjects in the treated group
and for subjects in the control group.

To encode this assumption in a factor graph, we need two variables:
probTreated which is the probability of recovery for subjects who were given
the drug and probControl which is the probability of recovery for subjects
in the control group who were not given the drug. Once again, we choose
uniform Beta(1,1) priors over each of these variables. Then for each vari-
able in the recoveredControl array we assume that they were drawn from a
Bernoulli distribution whose parameter is probControl. Conversely, for each
variable in the recoveredTreated array we assume that they were drawn
from a Bernoulli distribution whose parameter is probTreated. The resulting
model is shown in Figure 6.10.

Compare the models of the two different processes given in Figure 6.9
and Figure 6.10. You can see that the factor graphs are pretty similar. The
only difference is that the ‘no effect’ model has a single shared probability of
recovery whilst the ‘has effect’ model has different probabilities of recovery
for the treated and control groups.

6.3.0.3 Selecting between the two models

We now need to decide which of these two models gave rise to the actual
outcomes measured in the trial. The task of choosing which of several models

308 ■ Model-Based Machine Learning

best fits a particular data set is called model selection. In model-based
machine learning, if we want to know the value of an unknown quantity, we
introduce a random variable for that quantity and infer a posterior distribution
over the value of the variable. We can use exactly this approach to do model
selection. Let’s consider a random variable called model which has two possible
values NoEffect if the ‘no effect’ model gave rise to the data and HasEffect

if the ’has effect’ model gave rise to the data. Notice the implicit assumption
here:

3 Either the ‘no effect’ model or the ‘has effect’ model gave rise to the
data. No other model will be considered.

For brevity, let’s use data to refer to all our observed data, in other words,
the two arrays recoveredTreated and recoveredControl. We can then use
Bayes’ rule (Panel 1.1) to infer a posterior distribution over model given the
data.

P (model|data) = P (model)P (data|model)
P (data)

. (6.1)

Models can be compared using model
evidence, in a process called Bayesian

model selection.

Unsurprisingly, this technique of using Bayes’s
rule to do model selection is called Bayesian
model selection. In equation (6.1), the left hand
side is the posterior distribution over models that
we want to compute. On the right hand side,
P (model) encodes our prior belief about which
model is more probable – usually, this prior is
chosen to be uniform so as not to favour any one
model over another. Also on the right hand side,
P (data|model) gives the probability of the data
conditioned on the choice of model. This is the
data-dependent term that varies from model to model and so provides the
evidence for or against each model. For this reason, this quantity is known as
the model evidence or sometimes just as the evidence.

With a uniform prior over models, the result is that the posterior distribu-
tion over model is equal to the model evidence values normalised to add up to
1. In other words, the posterior probability of a model is proportional to the
model evidence for that model. For this reason, when comparing two models,
it is common to look at the ratio of their model evidences – a quantity known
as a Bayes factor. For example, the Bayes factor comparing the ‘has effect’
model evidence to the ‘no effect’ model evidence is:

Bayes factor =
P (data|model = HasEffect)

P (data|model = NoEffect)
(6.2)

The higher the Bayes factor, the stronger the evidence that the top model
(in this case the ’has effect’ model) is a better model than the bottom model
(the ’no effect’ model). For example, Kass and Raftery [1995] suggest that

Understanding Asthma ■ 309

a Bayes factor between 3-20 is positive evidence for the top model, a Bayes
factor between 20-150 is strong evidence, and a Bayes factor above 150 is very
strong evidence. However, it is important to bear in mind that this evidence
is only relative evidence that the top model is better than the bottom one –
it is not evidence that this is the true model of the data or even that it is a
good model of the data.

You might worry that the ‘has effect’ model will always be favoured over
the ‘no effect’ model, because the ‘has effect’ model includes the ‘no effect’
model as a special case (when probTreated is equal to probControl). This
means that the ‘has effect’ model can always fit any data generated by the
‘no effect’ model. So, even if the drug has no effect, the ‘has effect’ model will
still fit the data well. As we will see when we start computing Bayes factors,
if the drug has no effect the Bayes factor will correctly favour the ‘no effect’
model.

So why is the ‘no effect’ model favoured in this case? It is because of a prin-
ciple known as Occam’s razor (named after William of Ockham who popu-
larized it) which can be expressed as “where multiple explanations fit equally
well with a set of observations, favour the simplest”. Bayesian model selection
applies Occam’s razor automatically by favouring simple models (generally
those with fewer variables) over complex ones. This arises because a more
complex model can generate more different data sets than a simpler model,
and so will place lower probability on any particular data set. It follows that,
where a data set could have been generated by either model, it will have higher
probability under the simpler model – and so a higher model evidence. We will
see this effect in action in the next section, where we show how to compute
model evidences and Bayes factors for different trial outcomes.

6.3.1 Comparing the two models using Bayesian model selection

InferenceInference deep-dive
In this optional section, we show the inference calculations needed to do
Bayesian model selection for the two models we just described. If you want to
focus on modelling, feel free to skip this section.

Next we can look at how to perform Bayesian model selection between
the two models in our randomised controlled trial. As an example, we will
consider a trial with 40 people: 20 in the control group and 20 in the treated
group. In this example trial, we found that 13 out of 20 people recovered in
the treated group compared to just 8 out of 20 in the control group. To do
model selection for this trial, we will need to compute the model evidence for
each of our two models.

6.3.1.1 Computing the evidence for the ‘no effect’ model

Let’s first compute the evidence for the ‘no effect’ model, which is given by
P (data|model = NoEffect). Remembering that data refers to the two arrays

310 ■ Model-Based Machine Learning

recoveredTreated and recoveredControl, we can write this more precisely
as P (recoveredTreated, recoveredControl|model = NoEffect).

If we write down the joint probability for the ‘no effect’ model, it looks
like this:

P (recoveredTreated,recoveredControl, probRecovery|model = NoEffect)

= Beta(probRecovery; 1, 1)

×
∏

i∈treated

Bernoulli(recoveredTreated[i]|probRecovery)

×
∏

i∈control

Bernoulli(recoveredControl[i]|probRecovery)

(6.3)

In equation (6.3), the notation
∏

i∈treated means a product of all the contained
terms where i varies over all the people in the treated group. Notice that
there is a term in the joint probability for each factor in the factor graph of
Figure 6.9, as we learned back in Section 2.1. Also notice that when working
with multiple models, we write the joint probability conditioned on the choice
of model, in this case model = NoEffect. This conditioning makes it clear
which model we are writing the joint probability for.

We can simplify this joint probability quite a bit. First, we can note that
Beta(probRecovery; 1, 1) is a uniform distribution and so we can remove it
(because multiplying by a uniform distribution has no effect). Second, we
can use the fact that recoveredTreated and recoveredControl are both
observed variables, so we can replace the Bernoulli terms by probRecovery for
each subject that recovered and by (1− probRecovery) for each subject that
did not recover. It is helpful at this point to define some counts of subjects.
Let’s call the number of treated group subjects that recovered TT and the
number which did not recover TF . Similarly, let’s call the number of control
group subjects that recovered CT and the number which did not recover CF .

P (recoveredTreated, recoveredControl, probRecovery|model = NoEffect)

= probRecoveryTT (1− probRecovery)TF × probRecoveryCT (1− probRecovery)CF

= probRecovery(TT+CT)(1− probRecovery)(TF+CF) (6.4)

This joint probability P (recoveredTreated, recoveredControl, probRecovery|model =
NoEffect) is quite similar to the model evidence that we are trying to com-
pute P (recoveredTreated, recoveredControl|model = NoEffect). The dif-
ference is that the joint probability includes the probRecovery variable. In
order to compute the model evidence, we need to remove this variable by
marginalising (integrating) it out.

Understanding Asthma ■ 311

P (recoveredTreated, recoveredControl|model = NoEffect)

=

∫
P (recoveredTreated, recoveredControl, probRecovery|model = NoEffect) dprobRecovery

=

∫
probRecovery(TT+CT)(1− probRecovery)(TF+CF) dprobRecovery

(6.5)

To evaluate this integral, we can compare it to the probability density
function of the beta distribution, that we introduced back in equation (2.1):

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(6.6)

We know that the integral of this density function is 1, because the area under
any probability density function must be 1. Our model evidence in equation
(6.5) looks like the integral of a beta distribution with α = TT + CT + 1 and
β = TF +CF + 1, except that it is not being divided by the normalising beta
function B(α, β). If we did divide by B(α, β), the integral would be 1. Since
we are not, the integral must equal B(α, β) for the above values of α and β.
In other words, the model evidence is equal to B(TT +CT + 1, TF +CF + 1).

For the counts in our example, this model evidence is B(13+8+1, 7+12+1),
which equals B(22, 20).

6.3.1.2 Computing the evidence for the ‘has effect’ model

The computation of the model evidence for the ‘has effect’ model is actually
quite similar. Again, we write down the joint distribution

P (recoveredTreated,recoveredControl, probTreated, probControl|model = HasEffect)

= Beta(probTreated; 1, 1)

× Beta(probControl; 1, 1)

×
∏

i∈treated

Bernoulli(recoveredTreated[i]|probTreated)

×
∏

i∈control

Bernoulli(recoveredControl[i]|probControl)

(6.7)

We now condition the joint distribution on model = HasEffect, which shows
that this is the joint distribution for the ‘has effect’ model. We can simplify
this expression by removing the uniform beta distributions and again using
the counts of recovered/not recovered subjects in each group:

P (recoveredTreated, recoveredControl, probTreated, probControl|model = HasEffect)

= probTreatedTT (1− probTreated)TF × probControlCT (1− probControl)CF

(6.8)

312 ■ Model-Based Machine Learning

Notice that in this model we have two extra variables that we need to get
rid of by marginalisation: probTreated and probControl. To integrate this
expression over these extra variables, we can use the same trick as before
except that now we have two beta densities: one over probTreated and one
over probControl. The resulting model evidence is:

P (recoveredTreated,recoveredControl|model = HasEffect)

= B(TT + 1, TF + 1)× B(CT + 1, CF + 1) (6.9)

For the counts in our example, this model evidence is B(13 + 1, 7 + 1)B(8 +
1, 12 + 1), which simplifies to B(14, 8)B(9, 13).

6.3.1.3 Computing the Bayes factor for the ‘has effect’ model over the
‘no effect’ model

We now have the model evidence for each of our two models:

• P (data|model = NoEffect) = B(TT + CT + 1, TF + CF + 1)

• P (data|model = HasEffect) = B(TT + 1, TF + 1)× B(CT + 1, CF + 1)

These model evidence values can be plugged into equation (6.1) to compute
a posterior distribution over the model variable.

Let’s compute the Bayes factor for our example trial, where 8/20 of the
control group recovered, compared to 13/20 of the treated group:

Bayes factor =
P (data|model = HasEffect)

P (data|model = NoEffect)
=

B(14, 8)B(9, 13)

B(22, 20)
= 1.25

(6.10)
A Bayes factor of just 1.25 shows that the ’has effect’ model is very slightly
favoured over the ’no effect’ model but that the evidence is very weak. Note
that this does not mean that the drug has no effect, but that we have not yet
shown reliably that it does have an effect. The root problem is that the trial
is just too small to provide strong evidence for the effect of the drug. We’ll
explore the effect on the Bayes factor of increasing the size of the trial in the
next section.

Earlier, we claimed that the Bayes factor will correctly favour the ‘no
effect’ model in the case where the drug really has no effect. To prove this,
let’s consider a trial where the drug does indeed have no effect, which leads
to an outcome of 8/20 recovering in both the control and treated groups. In
this case, the Bayes factor is given by:

Bayes factor =
P (data|model = HasEffect)

P (data|model = NoEffect)
=

B(9, 13)B(9, 13)

B(17, 25)
= 0.37

(6.11)
Now we have a Bayes factor of less than 1 which means that the ‘no effect’
model has been favoured over the ‘has effect’ model, despite them both fitting

Understanding Asthma ■ 313

the data equally well. This tendency of Bayesian model selection to favour
simpler models is crucial to selecting the correct model in real applications.
As this example shows, without it, we would not be able to tell that a drug
doesn’t work! For more explanation of this preference for simpler, less flexible
models take a look at Section 7.3.2 in the next chapter.

The model evidence calculations we have just seen have a familiar form. We
introduced a random variable called model and then used Bayes’ rule to infer
the posterior distribution over that random variable. However, the random
variable model did not appear in any factor graph and we manually computed
its posterior distribution, rather than using a general-purpose message passing
algorithm. It would be simpler, easier and more consistent if the posterior
distribution could be calculated by defining a model containing the model

variable and running a standard inference algorithm on that model. In the
next section, we show that this can be achieved using a modelling structure
called a gate.

REVIEW OF CONCEPTS

randomised controlled trial A randomised controlled trial is a kind of
clinical trial commonly used for testing the effectiveness of various types of
medical intervention, such as new drugs. In such a trial, each subject is ran-
domly assigned into either a treated group (which receives the experimental
intervention) or a control group (which does not receive the intervention). The
purpose of the trial is to determine whether the experimental intervention has
an effect or not on one or more outcomes of interest, and to understand the
nature of that effect.

model selection The task of choosing which of several models best fits a
particular data set. Model selection is helpful not only because it allows the
best model to be used, but also because identifying the best model helps to
understand the processes that gave rise to the data set.

Bayesian model selection The process of doing model selection by com-
puting a posterior distribution over the choice of model conditioned on a given
data set. Rather than given a single ‘best’ model, Bayesian model selection
returns a probability for each model and the relative size of these probabilities
can be used to assess the relative quality of fit of each model.

model evidence The probability of the data conditioned on the choice of
model, in other words P (data|model). This conditional probability provides
evidence for or against each model being the one that gave rise to the data
set, thus the name ‘model evidence’. Comparing model evidence values for
different models allows for Bayesian model selection. Because it is a frequently
used concept, model evidence is often called just the ‘evidence’.

Bayes factor The ratio of the model evidence for a particular model of

314 ■ Model-Based Machine Learning

interest to the model evidence for another model, usually a baseline or ‘null’
model. The higher the Bayes factor, the greater the support for the proposed
model relative to the a baseline model.

Occam’s razor Where multiple explanations fit equally well with a set of
observations, favour the simplest. It is named after William of Ockham who
used it in his philosophical arguments. He did not invent the concept, however,
there are references to it as early as Aristotle (384-322 BC).

Understanding Asthma ■ 315

6.4 MODELLING WITH GATES

A gate allows part of a
factor graph to be turned

on or off.

In the previous section, we saw how to compare alternative
processes by manually inferring the posterior distribution over
a random variable that selects between them. What we will
now see is how to do the same calculation by defining an ap-
propriate model and performing inference within that model.
To do this, we need a new modelling structure that allows al-
ternatives to be represented within a model. The modelling
structure that we can use to do this is called a gate, as de-
scribed in Minka and Winn [2009].

A gate encloses part of a factor graph and switches it on or
off depending on the state of a random variable called the se-
lector variable. The gate is on when the selector variable has
a particular value, called the key, and off for all other values.
An example gate is shown in the factor graph of Figure 6.11.
The gate is shown as a dashed rectangle with the key value
(true) in the top left corner. The selector variable selector has an edge con-
necting it to the gate – the arrow on the edge shows that the gate is considered
to be a child of the selector variable. When selector equals true, the gate is
on and so x has a Bernoulli(0.2) distribution. Otherwise, the gate is off and
x has a uniform distribution, since it is not connected to any factors.

True

selector

x

Bernoulli(0.2)

FIGURE 6.11: An example of a factor graph which contains a gate, shown as
a dashed rectangle. When selector equals the key value true (shown in the
top left of the gate), the gate is on and the variable x has a Bernoulli(0.2)
distribution. When selector is false, the gate is off and x has a uniform
distribution since it is not connected to any factors.

When writing the joint distribution for a factor graph with a gate, all
terms relating to the part of the graph inside the gate need to be switched
on or off according to whether the selector variable takes the key value or
not. Such terms can be turned off by raising them to the power zero and left
turned on by raising to the power one. For example, the joint distribution for
Figure 6.11 is

P (selector, x) ∝ Bernoulli(x; 0.2)δ(selector=true) (6.1)

316 ■ Model-Based Machine Learning

True False

selector

x

Bernoulli(0.2) Bernoulli(0.9)

FIGURE 6.12: An example of a factor graph which contains a gate block.
When selector equals true, the left gate is on and the right gate is off and
so x has a Bernoulli(0.2) distribution. When selector equals false, the left
gate is off and the right gate is on and so x has a Bernoulli(0.9) distribution.

where the function δ() equals one if the expression in brackets is true and zero
otherwise. If selector is not true the Bernoulli(x; 0.2) term will be raised
to the power zero, making the term equal to one – equivalent to removing it
from the product (i.e. turning it off).

When using gates inside a model, it is common to have a gate for each
value of the selector variable. In this case, the resulting set of gates is called a
gate block. Because the selector variable can only have one value, only one
gate in a gate block can be on at once. An example gate block is shown in the
factor graph of Figure 6.12. In this example, the selector variable is binary and
so there are two gates in the gate block, one with the key value true and one
with the key value false. It is also possible to have selector variables with any
number of values, leading to gate blocks containing the corresponding number
of gates.

The joint probability distribution for this factor graph is

P (selector, x) ∝ Bernoulli(x; 0.2)δ(selector=true) Bernoulli(x; 0.9)δ(selector=false).
(6.2)

Looking at this joint probability, you might be able to spot that the gate block
between selector and x represents a conditional probability table, like so:

selector x=true x=false

true 0.200 0.800

false 0.900 0.100

TABLE 6.4: The conditional probability table represented by the gate block
in Figure 6.12.

As another example, we can represent the conditional probability table for
the skin test (Figure 6.1) using gates like this:

Representing this conditional probability table using a gate block is less

Understanding Asthma ■ 317

compact than using a Table factor (as we did in Figure 6.1) but has the
advantage of making the relationship between the parent variable and child
variable more clear and precise. When a variable has multiple parents, using
a gate block to represent a conditional probability table can also lead to more
accurate or more efficient inference.

6.4.1 Using gates for model selection

Representing a conditional probability table is just the start of what can be
achieved using gates. For example, they can also be used to do model selection.
To see how, let’s return to our model selection problem from the previous
section. Remember that we wanted to select between a ‘has effect’ model and
a ‘no effect’ model, by inferring the posterior distribution of a random variable
called model. Using gates, we can represent this model selection problem as
a single large factor graph, using a gate block where the selector variable is
model. We then place the entire ‘no effect’ model inside a gate whose key
value is NoEffect and the entire ‘has effect’ model inside the other gate of the
block whose key value is HasEffect. The observed variables are left outside
of both gates because they are common to both models and so are always on.
The result is the factor graph in Figure 6.14.

This factor graph may look a bit scary, but it can be interpreted in pieces.
The top gate contains exactly the model from Figure 6.10 with the observed
variables outside the gate. The bottom gate contains exactly the model from
Figure 6.9 drawn upside down and sharing the same observed variables. Fi-
nally we have one new variable which is our model variable used to do model
selection.

Given this factor graph, we just need to run expectation propagation to
infer the posterior distribution over model. Right? Well, almost – it turns
out that first we need to make some extensions to expectation propagation
to be able to handle gates. The good news is that these modifications allow
expectation propagation to be applied to any factor graph containing gates.

6.4.2 Expectation propagation in factor graphs with gates

InferenceInference deep-dive
In this optional section, we see how to use expectation propagation to compute
model evidence and then how to extend expectation propagation to work on
graphs containing gates. If you want to focus on modelling, feel free to skip
this section.

To run expectation propagation in a factor graph which contains gates, we
first need to be able to compute the model evidence for a factor graph with-
out gates. It turns out that we can compute an approximation to the model
evidence by using existing EP messages to compute evidence contributions
for each variable and factor individually, and then multiplying them together.

318 ■ Model-Based Machine Learning

For example, the evidence contribution for a variable x is given by:

evidencex =
∑
x

product of all messages into x (6.3)

This equation states that to compute the evidence for a variable x, first take
the product of all incoming messages on edges connected to the variable, then
sum the result over the values that x can take (this is what the notation∑

x means). Because of this sum the result is a single number rather than a
distribution – this number is the local contribution to the model evidence.

The evidence contribution for a factor f connected to multiple variables Y
is given by:

evidencef =

∑
Y f(Y)× product of all messages into f∑

Y product of all messages into or out of f
(6.4)

In this equation, the notation
∑

Y means the sum over all joint configurations
of the connected variables Y.

We can use equations (6.3) and (6.4) to calculate evidence contributions
for every variable and factor in the factor graph. The product of all these
contributions gives the EP approximation to the model evidence. For a model
M, this gives:

evidenceM =
∏

x in M

evidencex ×
∏

f in M

evidencef (6.5)

In equation (6.5), the first term means the product of the evidence contribu-
tions from every variable in model M and the second term means the product
of evidence contributions from every factor in model M.

6.4.2.1 Adding in gates

If we now turn to factor graphs which contains gates, there is a new kind
of evidence contribution that comes from any edge that crosses over a gate
boundary. If such an edge connects a variable x to a factor f , then the evidence
contribution is:

evidencefx =
∑
x

message from x to f ×message from f to x (6.6)

In other words, we take the product of the two messages passing in each
direction over the edge and then sum the result over the values of the variable
x.

The advantage of computing evidence contributions locally on parts of the
factor graph is that, as well as computing evidence for the model as a whole,
we can also compute evidence for any particular gate. The evidence for a
gate is the product of the evidence contributions for all variables and factors

Understanding Asthma ■ 319

inside the gate, along with the contributions from any edges crossing the gate
boundary. For a gate g , this product is given by:

evidenceg =
∏

x in g

evidencex ×
∏

f in g

evidencef ×
∏

fx crossing g

evidencefx (6.7)

If there are no edges crossing the gate boundary – in other words, the gate
contains an entire model disconnected from the rest of the graph – then this
equation reduces to the model evidence equation (6.5) above, and so gives the
evidence for the contained model.

Given these evidence contributions, we can now define an extended version
of expectation propagation which works for factor graphs that contain gates.
The algorithm requires that gates only occur in gate blocks and that any
variable connecting to a factor in one gate of a gate block, also connects
to factors in all other gates of the gate block. This ‘gate balancing’ can be
achieved by connecting the variable to uniform factors in any gate where it
does not already connect to a factor. We need this gate balancing because
messages will be defined as going to or from gate blocks, rather than to or
from individual gates.

When sending messages from a factor f inside a gate g to a variable x

outside the gate, we will need to weight the message appropriately, using a
weight defined as:

weightgfx =
evidenceg
evidencefx

×message from the selector variable[key] (6.8)

where the notation [key] indicates that we are evaluating the probability of
the gate’s key value under the distribution given by the message from the
selector variable. Using these weights, we can define our extended expectation
propagation algorithm as shown in Algorithm 6.1.

320 ■ Model-Based Machine Learning

Algorithm 6.1: Expectation Propagation with Gates

Input: factor graph with gate blocks, list of target variables to
compute marginals for, message-passing schedule, initial
message values (optional), choice of approximating
distributions for each edge.

Output: marginal distributions for target variables.

Initialise all messages to uniform (or initial values, if provided).
repeat

foreach edge in the message-passing schedule do
Send the appropriate message below:
- Selector variable to gate block: the product of all messages
received on the other edges connected to the selector variable;

- Gate block to selector variable: a distribution over the
selector variable where the probability of each value is
proportional to the evidence for the gate with that key value;
- Factors in gate block to variable outside gate block: Compute
weighted sum of messages from the factor in each gate using
weights given by (6.8). Multiply by the context message (the
message coming from the variable to the gate block). Project
into the desired distribution type using moment matching.
Divide out the context message.
- All other messages: the normal EP message (defined in
Algorithm 3.1);

end

until all messages have converged
Compute marginal distributions as the product of all incoming
messages at each target variable node.

The full derivation of this algorithm is given in Minka and Winn [2009],
along with some additional details that we have omitted here (such as how to
handle nested gates).

Now that we have a general-purpose inference algorithm for gated graphs,
we can use it to do Bayesian model selection and to infer posterior distributions
over variables of interest, both at the same time! For example, recall the
example trial from Section 6.3. In this trial, 13 out of 20 people in the treated
group recovered compared to 8 out of 20 in the control group. Attaching
this data to the gated factor graph of Figure 6.14, we can apply expectation
propagation to compute posteriors over the model selection variable model

and also over other variables such as probTreated and probControl. The
results are shown in Figure 6.15.

Understanding Asthma ■ 321

x

0 0.2 0.4 0.6 0.8 1
0

1

2

3

p(probControl)

p(probTreated)

NoEffect HasEffect
0

0.2

0.4

0.6

0.8

1

FIGURE 6.15: Inferred posterior distributions for the example trial with 20
people in each group. The left plot shows posteriors over probControl and
probTreated in the HasEffect model. The right plot shows the posterior
distribution over the model variable.

Figure 6.15 shows that the posterior distribution over model puts
slightly higher probability on the ‘has effect’ model than on the ’no effect’
model. The exact values are 0.5555 for model=HasEffect and 0.4445 for
model=NoEffect. The ratio of these probabilities is the Bayes factor, which
in this case is 1.25. This is the same value that we computed manually in Sec-
tion 6.3, showing that for this model the expectation propagation posterior is
exact. The posterior distributions over probControl and probTreated give
an indication of why the Bayes factor is so small. The plots show that there
is a lot of overlap between the two distributions, meaning that is possible
that both probabilities are the same value, in other words, that the ’no effect’
model applies.

Let’s see what happens when we increase the size of the trial, but leave
the proportions of people who recovered the same in each group. For a trial
of three times the size, this would see 39 out of 60 recovered in the treated
group compared to 24 out of 60 in the control group. Plugging this new data
into our model, gives the results shown in Figure 6.16.

322 ■ Model-Based Machine Learning

x

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

p(probControl)

p(probTreated)

NoEffect HasEffect
0

0.2

0.4

0.6

0.8

1

FIGURE 6.16: Inferred posterior distributions for the example trial with 60
people in each group. The left plot shows posteriors over probControl and
probTreated in the HasEffect model. The right plot shows the posterior
distribution over the model variable.

Figure 6.16 shows that, after tripling the size of the trial, the ‘has effect’
model has a much higher probability of 0.904, giving a Bayes factor of 9.41.
Since this factor lies in the range 3-20, the outcome of this trial can now be
considered positive evidence in favour of the ‘has effect’ model. The posterior
distributions over probControl and probTreated shows why the Bayes factor
is now much larger: the two curves have much less overlap, meaning that the
chances of the two probabilities being the same is much reduced. We can take
this further and increase the trial size again so that it is five times the size of
the original trial. In this larger trial, 65 out of 100 recovered in the treated
group compared to 40 out of 100 in the control group, giving the results shown
in Figure 6.17.

Understanding Asthma ■ 323

x

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

p(probControl)

p(probTreated)

NoEffect HasEffect
0

0.2

0.4

0.6

0.8

1

FIGURE 6.17: Inferred posterior distributions for the example trial with 100
people in each group. The left plot shows posteriors over probControl and
probTreated in the HasEffect model. The right plot shows the posterior
distribution over the model variable.

In Figure 6.17, the posterior distributions over probControl and
probTreated hardly overlap at all. As a result, the ‘has effect’ model now
has a probability of 0.989, giving a Bayes factor of 92.4. Since this factor lies
in the range 20-150, the outcome of this trial can now be considered strong
evidence in favour of the ‘has effect’ model. These results show the importance
of running a large enough clinical trial if you want to prove the effectiveness
of your new drug!

Now that we understand how gates can be used to model alternatives in
our randomised controlled trial model, we are ready to use gates to model
alternative sensitization classes in our allergy model, as we will see in the
next section.

REVIEW OF CONCEPTS

gate A container in a factor graph that allows the contained piece of the

324 ■ Model-Based Machine Learning

graph to be turned on or off, according to the value of another random variable
in the graph (known as the selector variable). Gates can be used to create
alternatives within a model and also to do model selection. More details of
gates can be found in Minka and Winn [2009] or in the expanded version
Minka and Winn [2008].

selector variable A random variable that controls whether a gate is on or
off. The gate will specify a particular key value – when the selector variable
has that value then the gate is on; for any other value it is off. For an example
of a selector variable, see Figure 6.11.

gate block A set of gates each with a different key value corresponding to
the possible values of a selector variable. For any value of the selector variable,
one gate in the gate block will be on and all the other gates will be off. An
example gate block is shown in the factor graph of Figure 6.12.

Understanding Asthma ■ 325

True False

sensitised

skinTest

probSkinIfSens probSkinIfNotSens

Bernoulli Bernoulli

TRIAL MODE − Click here for more information

FIGURE 6.13: The conditional probability table for the skin test (Figure 6.1)
represented using a gate block. If sensitized is true, the left hand gate is
on and the right hand gate is off. The skin test result skinTest then has a
Bernoulli distribution with the probability of true given by probSkinIfSens.
If sensitized is false, then skinTest has a Bernoulli distribution with the
probability of true given by probSkinIfNotSens.

326 ■ Model-Based Machine Learning

HasEffect

control grouptreated group

NoEffect

recoveredControlrecoveredTreated

model

probControlprobTreated

probRecovery

Bernoulli(0.5)

Beta(1,1)

Bernoulli

Beta(1,1)

Bernoulli

Beta(1,1)

BernoulliBernoulli

FIGURE 6.14: A factor graph which uses gates to do model selection between
two models. The ‘has effect’ model is in the top gate and the ‘no effect’ mode
is in the bottom gate. The observed data variables lie outside both gates,
since they are common to both models. When the selector variable model

has the value HasEffect the top gate is on and the bottom gate is off and
so the ‘has effect’ model applies. When the selector variable model has the
value NoEffect the top gate is off and the bottom gate is on and so the
‘no effect’ model applies. Because model is a random variable with unknown
value, inferring its posterior distribution is equivalent to doing Bayesian model
selection between the two models.

Understanding Asthma ■ 327

6.5 DISCOVERING SENSITIZATION CLASSES

Now that we have gates in our modelling toolbox, we can extend our allergy
model so that different children can have different patterns of allergy gain and
loss. As you may recall from Section 6.2, the model change that we want to
make is to encode this modified assumption:

5 The probabilities relating to initially having, gaining or retaining sen-
sitization to a particular allergen are the same for all children in each
sensitization class.

This assumption requires that each child belongs to some sensitization
class, but we do not know which class each child belongs to. We can represent
this unknown class membership using a sensClass random variable for each
child, which takes a value in 0, 1, 2, . . . depending on whether the child is in
class 0, class 1 and so on. Because this variable can take more than two values,
we cannot use a Bernoulli distribution to represent its uncertain value. Instead
we need a discrete distribution, which is a generalisation of a Bernoulli
distribution to variables with more than two values.

Our aim is to do unsupervised learning of this sensClass variable – in
other words, we want to learn which class each child is in, even though we have
no idea what the classes are and we have no labelled examples of which child
is in which class. Grouping data items together using unsupervised learning is
sometimes called clustering. The term clustering can be misleading, because
it suggests that data items naturally sit together in unique clusters and we just
need to use machine learning to reveal these clusters. Instead, data items can
usually be grouped together in many different ways, and we choose a particular
kind of grouping to meet the needs of our application. For example, in this
asthma project, we want to group together children that have similar patterns
of allergic sensitization. But for another project, we could group those same
children in a different way, such as by their genetics, by their physiology and
so on. For this reason, we will avoid using the terms ‘clustering’ and ‘clusters’
and use the more precise term ‘sensitization class’.

Each sensitization class needs to have its own patterns of gaining and
losing allergic sensitizations, with the corresponding probabilities for gaining
and losing sensitizations at each time point. For example, each class should
have its own value of probSens1 which gives the probability of sensitization at
age 1 for children in that particular sensitization class. To achieve this in our
model, we need the sensitization state at age 1 (sensitized1) to be connected
to the appropriate probSens1 corresponding to the sensitization class of the
child. We can achieve this by replicating the connecting Bernoulli factor for
each sensitization class, and then using a gate block to ensure that only one
of these factors is turned on, as shown in Figure 6.18.

In Figure 6.18, we have assumed that there are four sensitization
classes and duplicated probSens1 into separate probabilities for each class
(probSens10, probSens11 . . .). There is a gate for each class, keyed by the

328 ■ Model-Based Machine Learning

number of the class (0,1,2 or 3). Because each key is different, any value of
sensClass leads to one gate being on and all the other gates being off. In this
way, the value of sensClass determines which of the four initial sensitization
probabilities to use.

The factor graph of Figure 6.18 is quite cluttered because of the repeated
factors and variables for each sensitization class. We can represent the same
model more compactly if we introduce a plate across the sensitization classes
and put the repeated elements inside the plate, as shown in Figure 6.19.

Using the compact notation of Figure 6.19, we can modify our allergy
model of Figure 6.5 to have different probabilities for each sensitization class.
We take all our probability variables probSens1, probGain3 and so on, and
duplicate them across classes using a plate. We then place each factor in
the Markov chain inside a gate and plate, where the gates are all connected
to a sensClass selector variable. Finally, we choose a uniform prior over
sensClass, giving the factor graph of Figure 6.20.

6.5.1 Testing the model with two classes

To test out our model in its simplest form, we can set the number of sensi-
tization classes to two. With just two classes, we would expect the model to
divide the children into a group which have no sensitizations and a second
group that contains those children with sensitizations. However, when we run
expectation propagation in the model, we get an unexpected result. The pos-
terior distributions over the sensitization class are all uniform, for every child!
In addition, when we look at the learned probabilities of gaining/retaining
sensitizations, they are also all the same for each class – and look just like the
one-class probabilities shown in Figure 6.7. What has happened here?

The issue is that our model defines every sensitization class in exactly the
same way – each class has the same set of variables which all have exactly the
same priors. We could reorder the sensitization classes in any order and the
model would be unchanged. This self-similarity is a symmetry of the model,
very similar to the symmetry we encountered in Section 5.3 in the previous
chapter. During inference, this symmetry causes problems because the poste-
rior distributions will not favour any particular ordering of classes and so will
end up giving an average of all classes – in other words, the same results as
the one-class model. Not helpful!

As in the previous chapter, we need to apply some kind of symmetry
breaking to get useful inference results. In this case, we can break symmetry
by providing initial messages to our model, such that the messages differ from
class to class. A simple approach is to provide an initial message into each
sensClass variable which is a point mass at a randomly selected value. The
effect of these initial messages is to randomly assign children to sensitization
classes for the first iteration of expectation propagation. This randomization
affects the messages going to the class-specific variables (such as probSens1)
in the first iteration, which in turn means that the messages to each sensClass

Understanding Asthma ■ 329

variable are non-uniform in the next iteration and so on. The end result is that
the class-specific variables eventually converge to describe different underlying
sensitization classes and the sensClass variables converge to assign children
to these different classes.

With symmetry breaking in place, we can now run inference successfully
in a two-class model. We can visualize the results using a chart like Figure 6.8
for each class. To do this, we assign each child to the sensitization class with
the highest posterior probability, giving the plots of Figure 6.21 for the two
classes. The figure shows that the model has picked up on a large class of
757 children who have virtually no sensitizations and a smaller class of 296
children who do have sensitizations. In other words, the two-class model has
behaved as expected and separated out the children who have sensitizations
from those who do not.

Mite Cat Dog Pollen Milk Egg
0

200

400

600

Allergen

Mite Cat Dog Pollen Milk Egg
0

100

200

Age 1 Age 3 Age 5 Age 8

FIGURE 6.21: Plots for each class showing the number of children with in-
ferred sensitizations for each allergen/time. The first class contains roughly
three-quarters of the children who have almost no sensitizations. The remain-
ing children in the second class are those with sensitizations.

6.5.2 Exploring more sensitization classes

The results for two classes provide a useful sanity check that the model is do-
ing something reasonable. However, we are really interested in what happens
when we have more than two classes, since we hope additional classes would
uncover new patterns of sensitization. Let’s consider running the model with
five possible classes. We say five ‘possible’ classes, because there is no guar-
antee that all classes will be used. That is, it is possible to run the inference

330 ■ Model-Based Machine Learning

algorithm and find that there are classes with no children assigned to them.
With our model and data set, we find that it is common when running with
five classes, that only four of them are actually in use. Effectively the number
of classes in the model defines a maximum on the number of classes found –
which allows for the number of classes itself to be learned. Different random
initialisations give slightly different sensitization classes, but often these con-
tain very similar looking classes. Figure 6.22 shows some typical results for
the four classes found when up to five were allowed in the model.

Mite Cat Dog Pollen Milk Egg
0

500

Mite Cat Dog Pollen Milk Egg
0

100

200

Mite Cat Dog Pollen Milk Egg
0

50

100

Allergen

Mite Cat Dog Pollen Milk Egg
0

50

Age 1 Age 3 Age 5 Age 8

FIGURE 6.22: Plots for each of four classes showing the number of children
with inferred sensitizations for each allergen/time. The first class contains
roughly three-quarters of the children who have almost no sensitizations. The
remaining children, with sensitizations, are divided into three classes according
to which sensitizations they have and when they acquired them, as discussed
in the text.

As you can see from Figure 6.22, model has divided the children with
sensitizations into three separate classes. The largest of these, Class 1, contains
222 children who predominantly have mite and pollen allergies, but have few
other allergies. In contrast, Class 2 contains 112 children who have allergies to
cat and dog as well as mite and pollen. This class also contains those children
who have milk and egg allergies. It is also worth noting that the children in
this class acquire their allergies early in life – in most cases by age 3. The final
class, Class 3 is relatively small and contains 82 children who predominantly
have mite allergies.

These results demonstrate the strength of unsupervised learning – it can

Understanding Asthma ■ 331

discover patterns in the data that you did not expect in advance. Here we have
uncovered three different patterns of sensitization that we were not previously
aware of. The next question to ask is “how does this new knowledge help
our understanding of asthma?”. To answer this question, we can see if there
is any link between which sensitization class a child belongs to and whether
they went on to develop asthma.

For each child, our data set contains a measurement of whether they had
developed asthma by age 8. For each of the two class and four class models,
we can use these measurements to plot the percentage of children in each
sensitization class that went on to develop asthma. The results are shown in
Figure 6.23.

Asthma

10

20

30

40

Class 0

Class 1

(a)

Asthma
0

10

20

30

40

Class 0

Class 1

Class 2

Class 3

(b)

FIGURE 6.23: Percentage of children in each class who developed asthma by
age 8, for (a) the two class model (b) the four class model. In the four class
model, class 2 has a much higher percentage of children with asthma than any
other class, in either model.

Let’s start by looking at plots for the two class model. As we might expect,
the percentage of children with asthma is higher in the class with sensitizations
(class 1), than the class without sensitizations (class 0). Indeed, the presence
of allergic sensitizations is used as a predictor of developing asthma. But when
we look at the results for the four class model, we see a very interesting result
– whilst all the classes with sensitizations show an increased percentage of
children developing asthma, class 2 shows a much higher percentage than
any other class. It seems that children who have the broad set of allergies
characterised by class 2 are more than four times as likely to develop asthma
than children who have other patterns of allergies! This is a very exciting and
clinically useful result. Indeed, when we looked further we found that this
pattern of allergies also led to an increased chance of severe asthma with an
associated increased risk of hospital admission [Simpson et al., 2010]. Being

332 ■ Model-Based Machine Learning

able to detect such severe asthma early in life, could help prevent such life-
threatening episodes from occurring.

In summary, in this chapter, we have seen how unsupervised learning dis-
covered new patterns of allergic sensitization in our data set. In this case,
these patterns have led to a new understanding of childhood asthma with
the potential of significant clinical impact. Although, in general, unsupervised
learning can be more challenging than supervised learning, the value of the
new understanding that it delivers frequently justifies the extra effort involved.

REVIEW OF CONCEPTS

discrete distribution A probability distribution over a many-valued ran-
dom variable which assigns a probability to each possible value. The param-
eters of the distribution are these probabilities, constrained to add up to 1
across all possible values. This distribution is also known as a categorical
distribution.

An example of a discrete distribution is the outcome of rolling a fair dice,
which can be written as Discrete(16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6). The Bernoulli distribution

is actually a special case of a discrete distribution for when there are only two
possible values.

clustering A form of unsupervised learning where data items are automat-
ically collected into a number of groups, which are known as clusters. Each
cluster is then assumed to contain items which are in some way similar.

Understanding Asthma ■ 333

0 1 2 3

probSens1_0 probSens1_1 probSens1_2 probSens1_3 sensClass

sensitised1

Beta(1,1) Beta(1,1) Beta(1,1) Beta(1,1)

Bernoulli Bernoulli Bernoulli Bernoulli

TRIAL MODE − Click here for more information

FIGURE 6.18: A factor graph with four different probabilities of sensitization
at age 1, where the appropriate probability is selected according to the value
of the sensClass variable (0, 1, 2 or 3). For any value of sensClass, one gate
is on and all other gates are off.

334 ■ Model-Based Machine Learning

c : classes

c

sensClass

sensitised1

probSens1

Beta(1,1)

Bernoulli

TRIAL MODE − Click here for more information

FIGURE 6.19: The same model as Figure 6.18, shown more compactly by
using a plate across sensitization classes. The initial sensitization probabilities,
gates and corresponding factors are duplicated for each sensitization class.

Understanding Asthma ■ 335

children

allergens

classes

c : classes

c

c : classes

c

c : classes

c

c : classes

c

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

sensClass

probSens1 probGain3 probRetain3 probGain5 probRetain5 probGain8 probRetain8

sensitised1 sensitised3 sensitised5 sensitised8

Uniform

Bernoulli Table Table Table

Table

Table

Table

Table

Table

Table

Table

Table

TRIAL MODE − Click here for more information

FIGURE 6.20: Modified factor graph which has different probabilities of having, gaining and retaining sensi-
tization for each sensitization class. The random variables for these probabilities are duplicated by a classes

plate at the top of the factor graph. These probabilities are then connected into the rest of the model by factors
each contained in a gate and a plate. The sensClass variable is connected to all gates and switches between
the different sets of probabilities, according to the sensitization class of the child. In this figure, the probability
variables relating to skin and IgE tests have been omitted for clarity.

CHA PT E R 7

Harnessing the Crowd

In 2010 a magnitude 7.0 earthquake struck Haiti, causing massive
loss of life and widespread devastation. The ensuing humanitarian
aid effort was hampered by damage to communication systems,
transport facilities and electrical networks. Messages from people
in the affected area proved to be a vital source of information for aid
workers. But these messages needed to be triaged and categorised
– by volunteer workers with varying abilities, biases and attention
to detail. In a future crisis, could model-based machine learning
make use of such conflicting and noisy information to infer the
true situation on the ground?

Around the world people are increasingly
connected through their mobile phones, even
in remote locations. People close to a crisis
event are a vital source of information for
providing disaster relief, humanitarian aid or
conflict analysis. In 2008, tensions over the
Kenyan presidential election erupted into out-
breaks of violence, resulting in eyewitness re-
ports sent by email and text message. A new
crowd-sourcing platform was created to map
these reports and determine where the vio-
lence was occurring – the platform was named
Ushahidi which translates to ‘testimony’ in
Swahili [Ushahidi, 2008].

The Ushahidi platform was used during
the Haiti earthquake to collect and disseminate information. As reported by
Norheim-Hagtun and Meier [2010], “the tool quickly became the go-to place
for up-to-date crisis information, with a range of military, United Nations,
and non-governmental organizations using the map as part of their needs as-
sessment process. Preliminary feedback from these responders suggests that
the project saved hundreds of lives”.

337

338 ■ Model-Based Machine Learning

A building has
collapsed!

People are
trapped inside.

My child needs
medical help!

- - -

- - -

-

- -

The building is
on fire!

Crowd workers

FIGURE 7.1: In a crisis situation, people on the ground send messages de-
scribing the situation or asking for help. Crowd workers then place messages
into different categories (such as emergency or medical), or mark the messages
as irrelevant. Different crowd workers may assign different category labels to
the same message.

Tens of thousands of tweets, text messages, and pictures were contributed
by ordinary individuals in the field to Ushahidi Haiti, and this enabled hu-
manitarian crisis professionals to quickly get a picture of the disaster and to
start to build a disaster map. Messages were translated and categorised by
volunteer crowd workers, much as shown in Figure 7.1.

Given the quantity of messages needing categorization and the urgency of
the work, it is inevitable that crowd workers sometimes categorised the same
message differently. These differences may have be due to, for example, differ-
ences in judgement, insufficient training or lack of clarity in guidelines given
to crowd workers. In some cases, workers deliberately misclassified messages
“because of a concern that messages not associated with a specific classified
need might be ignored” [Morrow et al., 2011]. The net effect was that different
workers exhibited different biases is how they labelled messages.

One of the recommendations coming out of the use of Ushahidi in Haiti
was to “Implement more rigorous quality assurance techniques to monitor
accuracy of classifications in near real-time”. In this chapter, we will look
at how to automatically improve classifications by modelling worker biases,
using both the crowd worker assessments and the messages themselves. The
goal will be to work out the best category label for each message, taking into
account the abilities and biases of individual crowd workers. The hope is that

Harnessing the Crowd ■ 339

any increase in categorization accuracy that we can achieve could lead to lives
being saved in the next humanitarian crisis.

The model developed in this chapter is based on the models described in
Venanzi et al. [2012] and Venanzi et al. [2014]. You can also refer to the source
code for the chapter [Diethe et al., 2019].

340 ■ Model-Based Machine Learning

7.1 A MODEL OF A CROWD WORKER

Messages sent during the Haiti earthquake were labelled according to the nine
primary categories shown in Table 7.1. Each category was further divided into
a number of sub-categories – for example, “Infrastructure Damage” had sub-
categories of “Collapsed building”, “Unstable structures”, “Roads blocked”,
“Compromised bridge” and “Communication lines down”. The result is 50
possible subcategory labels that could be applied to any given message, al-
though messages could also be labelled only with a primary category.

Harnessing the Crowd ■ 341

Label Descrip�on

Emergency Emergencies requiring rapid response, such as fire, trapped people or medical emergencies.

Vital Lines Supply line issues such as power outages or shortages of food, water or fuel.

Public Health Medical issues such as infec�ous diseases or shortages of medical supplies.

Security Threats Security issues such as loo�ng, violence or rio�ng.

Infrastructure Damage Collapsed buildings, blocked roads, damaged bridges or communica�on lines.

Natural Hazards Floods, landslides, a+er shocks or missing people.

Services Available Services such as clinics, food or aid distribu�on points or shelters.

Other Other relevant messages not falling into the above categories.

Not Relevant Messages not relevant to the situa�on.

TRIAL MODE − Click here for more information

TABLE 7.1: The nine primary categories which could be used to label each
message. Primary categories were further subdivided into a total of 50 sec-
ondary categories (see Morrow et al. [2011] for details).

342 ■ Model-Based Machine Learning

So glad it’s
sunny again!

Did I hear
thunder?

I love
thunderstorms.

- - -

-

- - -

- -

I’m freezing :(

Crowd workers

FIGURE 7.2: In the CrowdFlower competition, crowd workers annotated
tweets as being positive about the weather, negative about the weather, neu-
tral about the weather or unrelated to the weather. Note the similarity be-
tween this setting and that of Figure 7.1.

In addition, each message was permitted to have multiple labels, for ex-
ample “Water Shortage” and “Medical Emergency” – which were allowed to
be a mix of primary and secondary categories. These labelling complexities
would make developing a model more difficult, without adding a lot of value.
Instead of working with such complexities, it makes sense to use a simpler
setting for model development where each message has a single label from a
set of possible labels.

7.1.1 A simpler setting

The problem of inferring high quality labels from a large number of noisy
crowd-sourced annotations arises in many applications. To investigate how
well different approaches work at scale a company called CrowdFlower (now
Appen) ran the CrowdScale Shared Task Challenge, back in 2013. In this
competition, different systems competed to see who could infer the best labels
for a set of messages given a large number of noisy annotations. For the pur-
poses of the competition, CrowdFlower created a data set of tweets about the
weather, along with around 550K annotations from different crowd workers
(which was an unprecedented number at the time). To assess the quality of the
inferred labels, CrowdFlower also provided a high quality set of labels to be
used as ground truth. In the context of crowd sourcing, such labels are often
called gold labels to distinguish them from labels provided by the workers.

Harnessing the Crowd ■ 343

Figure 7.2 shows the setting that CrowdFlower created for their competi-
tion. Crowd workers were presented with tweets selected so as to be mostly
about the weather. The task given to each crowd worker was to read a tweet
and annotate with one of the labels from Table 7.2. Crowd workers were also
given the option to say “Cannot tell” – rather than treat this as a label, we
will take it to mean that the worker could not provide a meaningful label and
so we will discard such labels. This kind of task, where the aim is to infer
an author’s feelings from a piece of text is called sentiment analysis [Liu,
2012].

344 ■ Model-Based Machine Learning

Label Descrip�on

Posi�ve Posi�ve sen�ment about the weather − for example, "It's lovely and sunny today".

Nega�ve Nega�ve sen�ment about the weather − for example, "I'm fed up with all the rain".

Neutral Neutral about the weather − for example, "When do you think we will get some snow?".

Unrelated Messages that are unrelated to the weather − for example, "I love Snow Patrol!".

TRIAL MODE − Click here for more information

TABLE 7.2: The categories which could be used to label a tweet in the Crowd-
Flower data set. This is a much simpler set of labels than those of Table 7.1.

The full CrowdFlower data set consists of:

Harnessing the Crowd ■ 345

• 98,920 tweets, selected so that a high proportion are about the weather;

• 540,021 labels provided by 1,958 crowd workers;

• 975 gold labels provided by expert labellers.

A small sample of the data set is shown in Table 7.3.

Tweet Id Text

81989448 How about an internet special for this sunny Wednesday? Halfpriced bo�les of beer (excludes hig…

81989449 @men%on Aloha! I love Snow Patrol, so this is right up my street. They are going to be HUGE. {link}

81989450 Hey baby the skys on fire, I'm dying ain't I. I'm going to Carolina in my mind. In my mind I'm going t…

81989451 Have you ever wondered how to find a good weather forecast? Now you can: {link}

81989452 #NEWMUSIC Superstar 9000 feat. Stuey Rock Thunderstorm by Superstar 9000.. {link}

81989453 Frozen rain... And no, I don't mean snow.

81989454 today was a good sunny day had to hoop a lil bit but now Im to the lab for a hr or 2 or 3...

81989455 Game Day Preview 5.11: Omaha Storm Chasers 1814 1st Place + 4 G

(a) Example tweets

Tweet Id Worker Id Worker Label

81988817 W397 Unrelated

81988817 W87 Unrelated

81988817 W39 Neutral

81988817 W315 Posi�ve

81988817 W267 Neutral

81988817 W540 Posi�ve

81988817 W99 Posi�ve

81988818 W96 Nega�ve

81988818 W541 Nega�ve

(b) Example crowd worker labels

Tweet Id Gold Label

79197903 Nega�ve

79197928 Posi�ve

80050064 Neutral

80050108 Unrelated

80050144 Neutral

(c) Example gold labels

TABLE 7.3: Sample data from the CrowdFlower data set, consisting of
(a) tweets selected to be likely to be about the weather (b) worker labels
and (c) gold labels.

7.1.2 Using more than two labels

In this weather setting, the true label for each tweet can have one of four
possible values: Positive, Negative, Neutral or Unrelated. We will need to
have a variable in our model for this true label, which we’ll call trueLabel.
As usual, we will keep track of all the assumptions we are making in building
this model. So our first assumption is:

1 Each tweet has a true label which is one of the following set: Positive,
Negative, Neutral or Unrelated.

346 ■ Model-Based Machine Learning

Because trueLabel can take more than two values, we need to use a dis-
crete distribution as a prior or posterior distribution for this variable. Recall
that we first encountered discrete distributions back in Section 6.5 when work-
ing with a sensitization class variable that could also take on more than two
values. The important thing to remember is that the discrete distribution is
an extension of the Bernoulli distribution for variables with more than two
possible values.

When working out which label a tweet has, it is very useful to know
whether some labels are more common than others. For example, if the set
of tweets has been selected to be as relevant as possible, we might expect the
Unrelated label to be less common. We can incorporate this knowledge into
our model by learning the probability of a tweet taking on each of the labels
– effectively this means learning the parameters of a discrete distribution. We
have encountered a similar situation before in Section 2.6, where we used a
beta distribution to learn the probability of true for a Bernoulli distribution.
Here, we want to learn the probabilities associated with each possible value
in a discrete distribution. We need an extended form of a beta distribution,
that can handle learning a set of probability values that add up to 1. Happily,
such a distribution exists: it is called the Dirichlet distribution – and has
a probability density function given by:

Dirichlet(x;α) =
xα1
1 xα2

2 . . . xαK

K

B(α)
(7.1)

where K is the number of values that the variable can have, x is an array
of K probability values adding up to 1 and α is the array of K counts that
are the parameters of the distribution. Here, B() is the multi-variate form of
the beta function that we encountered in the density of the beta distribution
(Section 2.6). When K is 2, equation (7.1) becomes identical to the beta
density given back in equation (2.1) – this means that the beta distribution
is exactly the same as a Dirichlet distribution with K = 2.

For our setting, we have four possible labels and so K is equal to 4. We
want to learn an array of four probabilities for each of the four possible labels.
Since we want to learn this array, we need to create a random variable for it –
which we shall call probLabel. Note that the value of this variable is an array
of probability values, rather than just one value. We need to choose a prior
distribution for probLabel to encode our knowledge about this array of proba-
bilities before we have seen any data. Since we don’t want to assume anything
about the probabilities ahead of time, we can choose a uniform Dirichlet dis-
tribution that gives equal probability to any array of probability values that
sum to 1. Such a uniform Dirichlet can be created by setting all the count
parameters α to 1, which can be written as Dirichlet(1,1,1,1).

We’ve now defined two variables for our model: a trueLabel variable for
each tweet and a single, global probLabel variable giving the probabilities
for each label. We can connect these variables in a factor graph as shown
in Figure 7.3, where the Discrete factor defines a discrete distribution over

Harnessing the Crowd ■ 347

tweets

probLabel

trueLabel

Dirichlet(1,1,1,1)

Discrete

FIGURE 7.3: A model where the probability of the true label for a tweet
taking each possible value is given by the array of probabilities probLabel.

trueLabel whose parameters are the probability array probLabel. Because
there is a label for each tweet, the trueLabel variable sits inside a plate across
the tweets.

In the model of Figure 7.3, neither of the two variables are observed. In
particular, we do not observe the trueLabel because we need to infer this
from the workers’ labels. We need to extend our model then to include the
crowd workers and their labels.

7.1.3 Incorporating crowd worker labels

We can use pieces of models from previous
chapters as building blocks for our new model.

In this chapter, we will find ourselves re-
using pieces of models that we have devel-
oped in previous chapters. The ability to
draw on existing model components is a
very useful advantage of model-based ma-
chine learning. It means that we can of-
ten construct our models out of large pre-
existing pieces rather than having to de-
sign them from scratch each time.

We need to model the situation where a
crowd worker is trying to work out the cor-
rect label for a tweet. This is similar to the
situation in Chapter 2 where a candidate
was trying to work out the correct answer
for a question. In that model, we assumed
that either the candidate had the skills to answer a question or not. Here, we
will make a similar assumption:

2 When a worker looks at a tweet, they will either be able to work out
what the true label is or not.

To model this assumption, we will use a variable for whether the worker can

348 ■ Model-Based Machine Learning

work out the true label or not. We’ll call this isCorrect and it will be true

if the worker can work out the correct label or false otherwise.
Next we need to decide what the worker does to choose a label for the

tweet. Let’s call this label workerLabel and allow it to take any of the four
label values, just like trueLabel. Building on our previous assumption, if the
worker can work out the true label, then we may reasonably assume that this
is the label that they will provide.

3 If a worker can determine the true label, they will give this as their label.

If they cannot work out the true label, then they still need to provide
some label – so we need to decide what they do in this case. In Chapter 2,
we assumed that if someone did not know the answer to a question then they
would just guess at random. We can make the same assumption here:

4 If a worker cannot determine the true label, they will choose a label
uniformly at random.

According to Assumption 3 , if isCorrect is true, then workerLabel

will simply be a copy of trueLabel. But according to Assumption 4 , if
isCorrect is false, then workerLabel must instead have a uniform distribu-
tion. To switch between these two difference ways of modelling workerLabel,
we can use gates just like we did in the previous chapter (Section 6.4). For As-
sumption 3 , we need a gate which is on when isCorrect is true and which
contains a Copy factor that copies the value of trueLabel into workerLabel.
The Copy factor is a deterministic factor which gives probability 1.0 to the
child variable having the same value as the parent variable and probability
0.0 to all other values. To model Assumption 4 , we need a second gate which
is on when isCorrect is false and contains a Uniform factor that gives a
uniform discrete distribution to workerLabel. The resulting factor graph for
a single tweet is shown in Figure 7.4.

7.1.4 Completing the model

The model of Figure 7.4 does not provide a prior for the isCorrect variable.
We could just pick one and assume, say, that worker are correct 90% of the
time. Instead, we will be a bit more sophisticated and allow the model to learn
the probability of each worker being correct. We will call this the ability of
the worker and put it inside a plate over the workers to give each worker there
own ability. The assumption we will make is:

5 Some workers will be able to determine the true label more often than
others, but most will manage most of the time.

Since we expect most workers to determine the true label most of the time, we
will give ability a prior distribution that favours probabilities above 50%. A
Beta(2,1) distribution is a reasonable choice here.

Harnessing the Crowd ■ 349

workers

TrueFalse

workerLabel

trueLabelisCorrect

Copy Uniform

FIGURE 7.4: Model of all the worker labels for a single tweet. Each worker
can either correctly work out the true label or not, as indicated by isCorrect.
If they can work out the true label then they copy it into their label (right
hand gate), otherwise they pick a label uniformly at random (left hand gate).
The resulting label is stored in workerLabel – this is shown shaded because
the values of these labels are known to the system.

We can now put together factor graphs Figure 7.3 and Figure 7.4, along
with this new ability variable to give the overall factor graph of Figure 7.5.
Here we have placed the single tweet model of Figure 7.4 inside a plate over
tweets, added in probLabel from Figure 7.4 and added the ability variable
as a parent to isCorrect.

350 ■ Model-Based Machine Learning

tweetsworkers

TrueFalse

workerLabel

probLabel

trueLabel

ability

isCorrect

Dirichlet(1,1,1,1)

Discrete

Beta(2,1)

Bernoulli

Copy Uniform

FIGURE 7.5: The overall model of a set of crowd workers labelling a set
of tweets. Each worker has a different ability indicating the proportion of
tweets that they will label correctly.

As usual, we should now take a moment to review our modelling assump-
tions. They are shown all together in Table 7.4.

1 Each tweet has a true label which is one of the following set:
Positive, Negative, Neutral or Unrelated.

2 When a worker looks at a tweet, they will either be able to work
out what the true label is or not.

3 If a worker can determine the true label, they will give this as their
label.

4 If a worker cannot determine the true label, they will choose a label
uniformly at random.

5 Some workers will be able to determine the true label more often
than others, but most will manage most of the time.

TABLE 7.4: The five assumptions encoded in our crowd worker model.

Harnessing the Crowd ■ 351

Assumption 1 is given by the setting, so is a safe assumption. Assump-
tion 2 also seems safe since surely the worker can either work out the correct
label or not. Assumption 3 is a reasonable assumption if we believe that
workers are genuinely trying to be helpful and not deliberately providing in-
correct values. If we instead believe that there are workers trying to undermine
the correct labelling, then we would need to revisit this assumption. Assump-
tion 4 is a simplifying assumption – in practice, workers will rarely pick at
random but might instead make a best guess – this assumption may well be
worth refining later. Finally, Assumption 5 seems like a reasonable assump-
tion as long as we believe that the labelling task is easy enough for most
workers most of the time. If this is not true, then we are probably in trouble
anyway!

We now have a complete model and are ready to try it out – read on to
see how well it works.

REVIEW OF CONCEPTS

gold labels Very high quality labels used as a ‘gold standard’ when deciding
whether labels provided by crowd workers are correct.

sentiment analysis The task of determining a person’s feelings, attitudes
or opinions from a piece of written text.

Dirichlet distribution A probability distribution over a set of continuous
probability values that add up to 1. The Dirichlet distribution is an extension
of the beta distribution that can handle variables with more than two values.
The probability density function for the Dirichlet distribution is:

Dirichlet(x;α) =
xα1
1 xα2

2 . . . xαK

K

B(α)

where K is the number of values that the variable can have, x is an array
of K probability values adding up to 1 and α is the array of K counts that
are the parameters of the distribution. Here, B() is the multi-variate form of
the beta function that we encountered in the density of the beta distribu-
tion (Section 2.6). When K is 2, the Dirichlet distribution reduces to a beta
distribution.

The mean of the Dirichlet distribution is the count array α scaled so that
the sum of its elements adds up to 1 – in other words it is α∑

i αi
. The mean

value gives the position of the centre of mass of the distribution and the sum
of the counts

∑
i αi controls how spread out the distribution is, where a larger

sum means a narrower distribution.

352 ■ Model-Based Machine Learning

7.2 TRYING OUT THE WORKER MODEL

To try out the model, we must define some training and validation sets. For
the validation set, we need to know the correct label, in order to be able to
evaluate our model. So our validation set must consist only of tweets where
we have gold labels. We will use 70% of the 950 gold labelled tweets as our
validation set, so that some gold labels are available for training, if we want to
use them. For the training set, we will use the remaining 30% of gold labelled
tweets, plus a random selection of the remaining tweets to bring us to a totals
of 20,000 tweets. The full statistics of the data sets are:

• Training set: 20,000 tweets with 54,440 labels from 1,788 workers;

• Validation set: 683 tweets with 3,637 labels from 764 workers.

To train our model, we will use the 20,000 training set tweets as our ob-
served data. For now, we will not make any use of the gold labels during
training. As we have throughout the book, we will use expectation propaga-
tion to infer posterior distributions over all unobserved variables.

For validation, we will apply the model to each validation tweet individ-
ually. The posteriors learned during training for the probability of each label
probLabel and the ability of each worker will used as priors for these vari-
ables during validation. Expectation propagation will then be used to give
posteriors over the trueLabel for the validation set tweet. The label with the
highest probability under this posterior distribution will be considered to be
the true label inferred by the model.

Since we have gold labels for all tweets in our validation set, we can use
them to evaluate whether the inferred true label is correct. We can then com-
pute the accuracy of our model, as the percentage of inferred labels that are
correct. For this initial model, we find that our accuracy is 91.5%, which seems
like a pretty good start!

Majority vote: the label with the most
votes wins!

But before we break out the champagne, it
would be helpful to know how good this accu-
racy really is. To do this, we should compare
to a simple baseline method. We will use a
simple method where the label assigned to a
tweet is the one that the most workers chose,
breaking ties at random. This method is called
majority vote. If we use majority vote to la-
bel our validation set, then we get an accuracy
of 90.3%. So, in fact, our model is giving us
an improvement over this baseline, but only
of 1.2%.

It’s informative to consider why our model
is able to do better than majority vote. The
main reason is that we are learning the abilities of each worker. This allows
us to let the votes of good workers count more than the votes of bad workers.

Harnessing the Crowd ■ 353

Inferred worker ability

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

0

20

40

60

80

100

120

140

160

180

200

FIGURE 7.6: Histogram of inferred worker abilities, showing the number of
workers with abilities in each bucket of the histogram. The workers have a
wide range of abilities, but most have abilities above 50%.

To explore this a bit more, let’s look at the inferred abilities of our workers.
Figure 7.6 shows a histogram of the inferred abilities of our crowd workers.

We can see from Figure 7.6 that almost all abilities are above 50%, showing
that most workers are able to provide correct labels – this is reassuring given
that we assumed this in Assumption 5 . The histogram also shows that there
is a wide variety of abilities ranging from a bit over 10% up to around 95%.
Being able to discount the weaker workers on the left of the histogram and
pay more attention to the stronger workers on the right allows our model to
achieve this 1.2% improvement in accuracy.

For our application, we want to push the accuracy as high as we can –
as every correct label could have real benefit and every incorrect label could
cause resources to be wasted. To increase our accuracy, it would be helpful to
get a more detailed picture of the mistakes our model is making. If we had
only two possible labels, we could count the true and false positives and the
true and false negatives to produce a table in the structure of Table 2.7. In
that table, each row corresponds to a true label and each column corresponds
to an inferred label. Even though we have more than two labels, we can use
the exact same table structure and put in each cell the count of tweets with
the true label of the row and the inferred label of the column. This table is
then called a confusion matrix. The confusion matrix for our initial model
results is shown in Figure 7.7.

354 ■ Model-Based Machine Learning

Nega�ve

(Inferred True)

Neutral (Inferred

True)

Posi�ve

(Inferred True)

Unrelated

(Inferred True)

Nega�ve (True) 144 8 1 3

Neutral (True) 4 135 9 22

Posi�ve (True) 0 6 136 3

Unrelated (True) 1 0 1 210

FIGURE 7.7: A confusion matrix showing the counts of tweets with each pos-
sible true and inferred label. Counts on the diagonal show where the inferred
label matches the true label. Off-diagonal counts show various kinds of errors.

When working with a confusion matrix like this one, it can be hard to
compare cells since the number of tweets with each true label varies. We can
correct for this by dividing the value in each cell by the sum of the row
and so express it as a percentage. A cell then shows the percentage of items
with this true label that are predicted to have the particular inferred label.
Figure 7.8 gives the same results as above expressed as a confusion matrix
with percentages.

Nega�ve

(Inferred True)

Neutral (Inferred

True)

Posi�ve

(Inferred True)

Unrelated

(Inferred True)

Nega�ve (True) 92.3% 5.1% 0.6% 1.9%

Neutral (True) 2.4% 79.4% 5.3% 12.9%

Posi�ve (True) 0.0% 4.1% 93.8% 2.1%

Unrelated (True) 0.5% 0.0% 0.5% 99.1%

FIGURE 7.8: A confusion matrix where each cell contains the percentage of
items with the true label that have the particular inferred label. Because all
cells contain percentages, it is now easier to compare the values in different
cells.

Looking at Figure 7.8, we can now see more clearly where the main sources
of error are. For example, the most common error is that we are inferred the
label Unrelated when the true label is Neutral. Another kind of error is
incorrectly labelling Positive or Negative tweets as being Neutral – and,
to a lesser extent, vice-versa.

Our model is making these errors because of labelling errors made by
individual crowd workers. So, it would also be useful to understand the kinds
of errors that particular crowd workers make by plotting a confusion matrix
for each individual worker. The problem is that each worker labels relatively
few tweets and it is likely that few, or even none, of these have gold labels.
Instead of limiting ourselves to just gold labels, we can also use the inferred
true label, as we expect that this will generally be more correct than any
individual worker. The resulting confusion matrices will be an approximation,

Harnessing the Crowd ■ 355

but hopefully a good enough for us to get insights into the kinds of errors that
workers make.

Figure 7.9 shows confusion matrices for three workers with different pat-
terns of errors. For each of these three patterns, there were many workers with
similar confusion matrices – we chose a representative example in each case.
Figure 7.9a shows a worker who often gives the Neutral label to tweets that
should have one of the other labels. Figure 7.9b shows a worker that makes
relatively few mistakes – such a worker will have a high ability. Figure 7.9c
shows a worker that often incorrectly gives the Unrelated label, while also
giving the Neutral label to tweets that should be labelled as Positive or
Negative.

Nega�ve (Worker) Neutral (Worker) Posi�ve (Worker) Unrelated (Worker)

Nega�ve (True) 68.6% 24.5% 2.0% 4.9%

Neutral (True) 1.7% 87.5% 0.8% 10.0%

Posi�ve (True) 5.9% 18.8% 68.3% 6.9%

Unrelated (True) 5.0% 24.5% 2.5% 67.9%

(a) Confusion matrix for worker #393

Nega�ve (Worker) Neutral (Worker) Posi�ve (Worker) Unrelated (Worker)

Nega�ve (True) 95.4% 1.8% 2.8% 0.0%

Neutral (True) 6.4% 88.3% 3.2% 2.1%

Posi�ve (True) 0.9% 3.7% 95.4% 0.0%

Unrelated (True) 4.6% 6.9% 1.5% 86.9%

(b) Confusion matrix for worker #128

Nega�ve (Worker) Neutral (Worker) Posi�ve (Worker) Unrelated (Worker)

Nega�ve (True) 67.9% 15.4% 0.0% 16.7%

Neutral (True) 2.4% 77.6% 1.2% 18.8%

Posi�ve (True) 0.0% 11.0% 68.5% 20.5%

Unrelated (True) 0.0% 0.0% 0.0% 100.0%

(c) Confusion matrix for worker #50

FIGURE 7.9: Confusion matrices for three different workers, showing that
each makes different kinds of labelling errors.

Rather than just learn the overall ability of a worker, it would be helpful
if we could learn the individual biases of the worker so that we can more
accurately correct for different patterns of errors. We will look at how to do
this in the next section.

356 ■ Model-Based Machine Learning

REVIEW OF CONCEPTS

baseline method A method for doing a task that can be used to provide
some comparative metrics. Such baseline metrics help us to understand just
how good a model is at performing a task. We would generally hope that a
new model would produce better metrics than a baseline model. If a model
does not do much better than baseline then this suggests that either there is a
bug in the model implementation or the model needs redesigning. A baseline
method is often one that is simple to implement, so that not much effort is
needed to run it and compute its metrics.

majority vote A method for labelling items where the winning label is the
one with the most ‘votes’ – that is, the one that was given by the most crowd
workers.

confusion matrix A table (matrix) giving the results of a label prediction
problem. Each row of the table corresponds to a true label and each column of
the table corresponds to a predicted label. The cells of the table then contain
counts of items with the true label of the row and the inferred label of the
column.

Here is an example confusion matrix, from Figure 7.7.

Nega�ve

(Inferred True)

Neutral (Inferred

True)

Posi�ve

(Inferred True)

Unrelated

(Inferred True)

Nega�ve (True) 144 8 1 3

Neutral (True) 4 135 9 22

Posi�ve (True) 0 6 136 3

Unrelated (True) 1 0 1 210

Harnessing the Crowd ■ 357

7.3 CORRECTING FOR WORKER BIASES

We have discovered that some crowd workers are biased towards certain wrong
labels for tweets with a particular true label. For example, some workers tend
to give the label Neutral for tweets which should be labelled Positive or
Negative. This contradicts our Assumption 4 , which stated that:

4 If a worker cannot determine the true label, they will choose a label
uniformly at random.

In fact, workers do not choose labels at random. They instead choose labels
in a biased way that depends on the true label. If we look at the confusion
matrices in Figure 7.9, then we can see each worker makes different kinds of
mistakes. The confusion matrices provide a clear description of the mistakes
that each worker makes. If only we could get our model to learn the confusion
matrix for each worker, then it could use this to improve its accuracy. For
example, for workers that incorrectly give label Neutral for tweets with true
label Negative, our model could learn that when the worker provides the label
Neutral then this is actually evidence for label Negative.

How can we get our model to learn a confusion matrix for each worker?
First, we need to throw away all of our previous assumptions about how
workers provide labels (Assumption 2 through to Assumption 5). We can
then make a new assumption:

2 Each worker gives a tweet a particular label with a worker-specific prob-
ability that depends on the true label of the tweet.

Here, we are assuming that each worker has their own conditional probability
table, which gives the probability of the worker assigning each label to a tweet,
conditioned on the true label of the tweet. This conditional probability table
has the same rows and columns as the worker’s confusion matrix and the
conditional probabilities in the cells correspond to the percentage entries in
the confusion matrix. In other words, the conditional probability table will
represent the confusion matrix – and so learning the table for a worker will
effectively mean that we are learning their personal confusion matrix.

To learn the conditional probability table for a worker, we will need to
represent it using random variables. Recall from Section 1.1 that the proba-
bilities in each row of a conditional probability table must add up to 1. That
means each row of a conditional probability table is an array of probabilities
summing to 1, just like for probLabel! So we can create a similar random
variable called probWorkerLabel to contain the probabilities for a row. If we
put this variable inside a plate over the labels, we will get a row per label – in
other words, an entire table. To make use of this table, we need a gate for row
which is turned on only when trueLabel has that value. Each gate then con-
nects the corresponding row of the table to a Discrete factor to generate the
workerLabel. The resulting factor graph is shown in Figure 7.10 – notice that
it looks just like the factor graph of Figure 6.19 but with discrete/Dirichlet
factors instead of Bernoulli/Beta ones.

358 ■ Model-Based Machine Learning

k : labels

k

workerLabel

trueLabel

probWorkerLabel

Dirichlet

Discrete

FIGURE 7.10: A model for learning a worker’s conditional probability table.
Each probWorkerLabel variable represents a row of the table. The trueLabel
selects one row of the table which then provides the probabilities for choosing
each possible value for the workerLabel.

In Figure 7.10 we have used a Dirichlet prior over probWorkerLabel, just
like we did for probLabel. We can choose this prior for each row of the con-
ditional probability table to encode any assumptions we want to make about
the probabilities in that row. Specifically, we will assume:

3 Most workers will have a higher probability of giving the correct label
than an incorrect one.

This assumption states that we expect the conditional probability of the cor-
rect label for a tweet to be higher than that for an incorrect label, for most
workers. We can encode this assumption in our model by using a Dirichlet
prior for each row with a higher count parameter for the correct label than for
incorrect labels combined. If we choose the three incorrect labels in a row to
have a count parameter of 1, then we could give the correct label a count pa-
rameter of 6, which is twice the combined counts of the three incorrect labels.
These counts mean we would use Dirichlet(6,1,1,1) for the prior for the first
row, Dirichlet(1,6,1,1) for the second row, Dirichlet(1,1,6,1) for the third row
and Dirichlet(1,1,1,6) for the last row. These prior distributions favour having
high probabilities on the diagonal entries of the CPT than on the off-diagonal
entries, which is just what we want in order to satisfy Assumption 3 .

If we use the factor graph of Figure 7.10 to replace the corresponding
piece of our initial model, we get the new model of Figure 7.11. This kind of
model was first developed by Kim and Ghahramani. [2012] who called it the
Independent Bayesian Classifier Combination (IBCC) model.

We expect that the model of Figure 7.11 will be able to learn about the
biases of each worker and so correct for them. The general problem of correct-

Harnessing the Crowd ■ 359

tweetsworkers

k : labels

k

workerLabel

probLabel

trueLabel

probWorkerLabel

Dirichlet(1,1,1,1)

Discrete

Dirichlet

Discrete

FIGURE 7.11: A biased worker model which assumes that each worker has
their own biases which can be captured by a conditional probability table.
The hope is that the model can learn each worker’s biases and appropriately
correct for them when inferring the true label of a tweet.

ing for data set bias is a very important one in machine learning. Bias in data
sets has been shown to lead to a form of automated discrimination, where ma-
chine learning systems have given biased outputs, for example, with respect to
gender, race or economic status. A core assumption of many machine learning
systems is that the training set is representative of how the system will be
applied – in practice, this is often far from true. For example, face recogni-
tions systems have often been trained on data sets with predominantly white-
skinned people. Overcoming these problems to make fairer machine learning
systems is a very important problem and the focus of much current work (see
Holstein et al. [2019], for example). The approach we are using in this chapter
shows one possible way of correcting for these kinds of biases.

7.3.1 Evaluating our biased worker model

We believe that our new model will be able to learn and correct for the bi-
ases of our workers and so give improved accuracy when inferring the true
labels of tweets. To see if this is true, we can evaluate our new model and
compare results to our initial model and to majority vote. Figure 7.12 shows
the accuracy of each of our models. Looking at this figure, you can see that
our new model is actually doing much worse than our initial model! In fact,
its accuracy is almost down to the level of majority vote.

360 ■ Model-Based Machine Learning

Majority Vote Initial Biased worker
90.2

90.4

90.6

90.8

91

91.2

91.4

91.6

FIGURE 7.12: Accuracy of our new biased worker model compared to the
initial model and to majority vote. Unfortunately, our new model is less accu-
rate than our initial model and only slightly more accurate than our majority
vote baseline.

How can our new model be doing so much worse than the initial one? This
is surprising because we expect our new model to be able to learn the biases
of each crowd worker and so do better. This result is particularly counter-
intuitive because the initial model is actually a special case of the biased
worker model. We can choose a conditional probability table whose diagonal
values are the ability from the previous model and zero elsewhere, and then
add in a uniform distribution to each row to represent the crowd worker guess-
ing when they do not know the true label. With these settings our new model
exactly reproduces the old model. We would therefore expect that the new
model would be at least as good as the old, since it could learn to fall back on
the old model’s settings if necessary. Because the new model is actually doing
less well, there must be some kind of problem in learning a good enough con-
ditional probability table in probWorkerLabel. But what could this problem
be?

Here, it is useful to consider what we are asking our model to learn, and
from what data. For each worker, we are trying to learn a 4 × 4 conditional
probability table – in other words, 16 probability values. But since each row
has to add up to 1, we only really need to learn 12 of these 16 values, be-
cause one value in each row can be computed by subtracting the remaining
values from 1.0. Each of these 12 values is a conditional probability of the
worker giving some label for a tweet with some true label. If we were asked
to estimate such a probability, we’d want to see examples of tweets with each
true label and each possible worker label. For example, if we wanted to es-
timate the probability of a worker giving label Neutral to tweets with true
label Negative, then we’d want to see lots of examples of Negative tweets
so that we could estimate the proportion of these labelled as Neutral. The
more examples we were given, the more accurately we’d expect to estimate
the probability – so we would want lots of labels for each combination of true

Harnessing the Crowd ■ 361

and worker labels. But how many do we actually have? Figure 7.13 shows how
many workers provided differ amounts of labels in our training set.

Number of labels

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

FIGURE 7.13: Histogram of the number of workers who have given different
numbers of labels. The histogram shows that the majority of workers have
labelled fewer than 50 tweets and many have labelled far fewer than that.

The plot shows that the majority of workers have labelled less than 50
tweets – and many have labelled far fewer. Even for workers with 50 labels,
if these were split evenly amongst 12 values we are trying to learn, we would
only have four or so labels per probability value – not enough to accurately
estimate the probabilities. In reality the labels are not split evenly and so it
is likely that we would have no data at all for many probability values. In
short, we do not have enough data to learn the conditional probability tables
for most of the workers. Therefore, most worker conditional probability tables
will end up very uncertain – and so we will, in turn, become less certain about
the true label for a tweet.

When working with data, it’s
not good to be too flexible!

Another way of looking at this problem is that our
model is too flexible. It allows for too many possible kinds
of workers. For example, it allows for workers that always
give the label Positive, for workers that always pick labels
at random, for workers that deliberately give Positive for
tweets that are Negative and vice versa, indeed for workers
that give every possible wrong label for a each true label
and with every possible probability, and so on. This is a
huge number of possibilities! If we believe that workers are
generally well intentioned, then many of these possibilities
will likely not occur. Yet our model is requiring us rule out
each unlikely possibility, and to do this for each worker in-
dividually. This task is asking too much of the available
data.

362 ■ Model-Based Machine Learning

Simpler
model 𝑀1

More flexible
model 𝑀2

Evidence 𝑃(𝐷|𝑀)

Data 𝐷𝐷𝐴 𝐷𝐵

FIGURE 7.14: A visualization of a simpler model M1 and a more flexible
model M2. The x-axis represents all possible data sets and the y-axis gives
the probability of each dataset under the model (the evidence). The simpler
model M1 can explain fewer data sets and so gives higher probability to each
one than the more flexible model M2. So for a data set that fits both models,
like DA, the simpler model is more probable. Where the additional flexibility
of M2 is needed to explain the data set, as is the case for DB , then the more
complex model becomes more probable.

7.3.2 Comparing more and less flexible models

A visualization of this situation is shown in Figure 7.14,
which is heavily inspired by a figure from David MacKay’s
excellent book [MacKay, 2003, p.344]. In this figure, the
x-axis represents all possible data sets, so we can think of each point on the
axis as a particular dataset, such as the marked data sets DA and DB . The
y-axis represents the probability of a dataset given a model, which is the
model evidence (see Section 6.3). The simpler model M1 can only explain a
limited range of possible data sets – which includes DA but excludes DB . Our
initial model is like this – for example, it cannot explain data sets where crowd
workers have strong biases and so these will have very low probability under
the model. However, because a simpler model explains fewer data sets, it can
put higher probability on each one and so have higher model evidence. So
for a data set like DA, the simpler model M1 is more probable, even though
it could also be explained by the more flexible model M2. The result is that
predictions under M1 would be more accurate than under M2 – exactly the
situation that we are seeing with our two models.

The figure also shows another data set DB which can be explained by
the more flexible model M2, but not by the simpler model M1. Here the

Harnessing the Crowd ■ 363

additional flexibility of M2 is essential for explaining the data set and so will
have much higher model evidence than M1. In general, the more restrictive
the assumptions encoded by the model, the smaller the range of data sets that
will be explained well by the model. If the actual data set lies in this range
then this restrictive model will work better than a model with less restrictive
assumptions.

A model with more restrictive assumptions will perform
better, as long as those assumptions hold true for the data.

So the reason that the new model is working less well, is that it is too flexible.
The model is trying to learn a conditional probability table for every single
worker and there is just insufficient data to do this well. We need to find a way
to learn our conditional probability tables from much more data – to learn
how we can do this, read on!

364 ■ Model-Based Machine Learning

7.4 COMMUNITIES OF WORKERS

In the previous section, our biased worker model failed to improve our accu-
racy, due to lack of data. More specifically, each worker does not have enough
data for the model to learn a personalised conditional probability table to
represent their biases. To consider how to solve this problem, think back to
Section 6.5 where we were learning how children gain or lose allergies. Rather
than learning the probabilities of each individual child gaining or losing each
allergy, we grouped the children into classes and learned probabilities for all
children in a class. We can use exactly the same trick here!

It seems reasonable to group our workers together, as we may expect that
there are communities of workers that have similar behaviour. We saw this
when selecting worker confusion matrices for Figure 7.9 – many workers had
very similar confusion matrices. For example, there seemed to be a community
of workers who are very careful and give very good quality labels, another
community who make mistakes about which tweets are relevant or not, a
smaller community of workers who confuse the labels Neutral and Negative

and so on. If we switch our model to learning conditional probability tables for
whole communities, rather than for individual workers, then we will have much
more data to train each CPT. More data will mean more certain inferred CPTs
and so hopefully better accuracy. This was the approach taken by Venanzi
et al. [2014] who developed a model very similar to the one we will now
explore.

To change our model to learn CPTs for communities instead of workers,
we need to modify our assumptions:

2 Each worker in a particular community will give a tweet a particular
label with a worker community-specific probability that depends on the
true label of the tweet.

3 Most workers communities will have a higher probability of giving the
correct label than an incorrect one.

and add a new one:

4 Each worker belongs to a single community.

To encode these new assumptions in a model, we need to move the
probWorkerLabel variable out of the plate over the workers and into a new
plate over communities. Each worker will also need a new community variable
to indicate which community that workers belongs to: 0, 1, 2 . . . and so on. We
will need a new gate inside the communities plate which is switched on and off
by this community variable. Given that we already have a gate connected to
the trueLabel variable, this means that we now have two gates – one inside
the other. The conditional probability for a label is therefore selected by both
the community of the worker and the trueLabel of the tweet. Figure 7.15
shows the resulting factor graph for a single label with the two nested gates
and the new community variable and plate.

Harnessing the Crowd ■ 365

c : communities

k : labels

c

k

workerLabel

community trueLabel

probWorkerLabel

Dirichlet

Discrete

FIGURE 7.15: Community model for a single label. The two nested gates
show that the conditional probability for the worker label is selected by both
the community of the worker and the trueLabel of the tweet.

We expect some communities to be much larger than others, and so it will
be useful to learn the probability that a worker belongs to each available com-
munity. We can use exactly the same approach as for learning the probability
of each true label and create a new variable probCommunity that holds an
array of probabilities that add up to 1 – and once again give this a Dirichlet
prior. Putting everything together, gives us the overall model of Figure 7.16.

366 ■ Model-Based Machine Learning

tweets

c : communities

k : labels

workers

c

k

workerLabel

probLabelprobCommunity

community trueLabel

probWorkerLabel

Dirichlet(1,1,1,1)Dirichlet(1,1,1)

Discrete

Dirichlet

Discrete

Discrete

FIGURE 7.16: The community model in full. Notice that this model has ended
up having a symmetry between the two sides – the community variable and
its parent probCommunity are connected just like the trueLabel variable and
its parent probLabel.

7.4.1 Results of the community model

We can try out our model for different numbers of communities – say, between
1 and 3. For any of these, we can look at the inferred CPTs for each community
given by the posterior over probWorkerLabel. These CPTs should give us a
good understanding of the entire population of workers – what patterns of
mistakes are made and how many workers fall into each pattern. For example,
Figure 7.17 shows the inferred CPTs for a three-community model, along
with the number of workers in the training set assigned to each community.
The three CPTs show three different patterns of errors, much like the three
example worker confusion matrices in Figure 7.9.

Harnessing the Crowd ■ 367

Nega�ve (Worker) Neutral (Worker) Posi�ve (Worker) Unrelated (Worker)

Nega�ve (True) 71.9% 22.0% 1.9% 4.2%

Neutral (True) 3.1% 89.0% 2.0% 5.8%

Posi�ve (True) 2.0% 15.2% 78.3% 4.5%

Unrelated (True) 1.6% 10.4% 1.4% 86.6%

(a) CPT of the largest community with 842 workers

Nega�ve (Worker) Neutral (Worker) Posi�ve (Worker) Unrelated (Worker)

Nega�ve (True) 90.3% 3.9% 3.8% 2.0%

Neutral (True) 13.6% 76.1% 6.9% 3.3%

Posi�ve (True) 3.2% 3.1% 91.4% 2.3%

Unrelated (True) 3.8% 7.2% 4.0% 85.0%

(b) CPT of the middle community with 561 workers

Nega�ve (Worker) Neutral (Worker) Posi�ve (Worker) Unrelated (Worker)

Nega�ve (True) 73.6% 9.7% 2.9% 13.8%

Neutral (True) 5.7% 71.1% 4.1% 19.1%

Posi�ve (True) 2.0% 7.1% 78.1% 12.8%

Unrelated (True) 1.6% 2.2% 1.5% 94.7%

(c) CPT of the smallest community with 385 workers

FIGURE 7.17: Learned conditional probability tables for our community
model, run with three communities. Each CPT shows a different crowd worker
bias. For example, the top CPT shows a community of workers which tend to
label tweets incorrectly as Neutral – this bias is visible in the second column
of the CPT where there is a relatively high probability of giving the label
Neutral for the three rows where the true label is not Neutral. Similarly, the
bottom CPT shows a community of workers that tend to label tweets incor-
rectly as Unrelated.

Understanding the kinds of mistakes different workers make can be useful
by itself. For example, it provides insights in how to improve the training
given to the workers. In our case, Figure 7.9 suggests that we should have
additional training to show what tweets should be labelled as Neutral or
Unrelated perhaps by showing workers real examples of tweets that have
been incorrectly labelled. Hopefully, these kind of changes alone would lead
to improvements in labelling accuracy. We could even provide customised
training for each worker, tailored to the community that the worker belongs
to!

Even without improved worker training, now that we are modelling the
error patterns of our workers, we may hope for improved accuracy. The ac-
curacies for models with 1, 2 and 3 communities are shown in Figure 7.18,
compared to the accuracies of previous models. The chart shows that our com-

368 ■ Model-Based Machine Learning

munity model is now leading to improved accuracy, whether we choose 1, 2 or
3 communities. Interestingly, the numbers of communities does not seem to
have much affect on the overall accuracy. This may be because the communi-
ties are similar enough that modelling one big community really well is nearly
as good as modelling communities separately. It is also possible that having
more communities means that there is less data per community and so more
uncertainty in each community CPT. This uncertainty could be negatively
affecting the accuracy.

Majority Vote Initial Biased worker Community (1) Community (2) Community (3)

90.5

91

91.5

92

92.5

FIGURE 7.18: Accuracies for community models with 1, 2 and 3 communities,
along with previous models for comparison. The community model is giving a
good improvement in accuracy over the previous models. Surprisingly, having
more communities does not seem to help the accuracy much.

7.4.2 Results with less training data

We’ve seen that our new community model works better than our previous
models, and we believe this is because it makes better use of the available
training data. In our application, we care deeply about how quickly we can
get accurate labels – we want our system to be as accurate as possible even
early on when there are relatively few labelled tweets. We can check how well
our system performs with little training data by artificially reducing the size
of our training set and seeing what effect this has on our accuracy. To do this,
we will use training sets ranging from 10% of the original size up to 100% of
the original size, in 10% increments. Figure 7.19 shows how the accuracy of
each model varies as we increase the amount of training data.

Harnessing the Crowd ■ 369

Number of training labels

10000 15000 20000 25000 30000 35000 40000 45000 50000

89.5

90

90.5

91

91.5

92

92.5

93

Majority Vote

Initial

Biased worker

Community (1)

Community (2)

Community (3)

FIGURE 7.19: Plot showing how the accuracy of each model varies with the
number of training labels. As the training data is reduced to 10% of its orig-
inal size, the community models show only a small reduction in accuracy. In
contrast, the accuracy of both the initial model and the biased worker model
drop to below that of majority vote. As a result the communities models do
even better than the other models when there are few training labels, since
the gap is larger on the left of the plot than on the right.

The plot in Figure 7.19 is very encouraging for our community model. It
shows that the accuracy of the model remains high even with only 10% of the
training data (the left-hand end of the graph). This suggests that the model
will do well early on, when there are relatively few labels, and also continue
to give the best performance later, when more tweets have been labelled.
Interestingly, we see that the initial model copes particularly badly with little
training data: its accuracy drops rapidly as the training data is reduced and
at 10% training data it is worse than both the biased worker model and the
majority vote baseline! It seems we were very wise to move away from this
model.

It is fantastic that our community model works well even when there are
relatively few labels – but it would be even better if we could make our model
useful before we have any labels at all! We will explore this idea in the next
section.

370 ■ Model-Based Machine Learning

7.5 MAKING USE OF THE TWEETS

Our community model makes good use of the labels being provided by our
crowd workers. But there is some information that our model is not making
use of: the tweets themselves. We do not expect to be able to build a model
that could accurately label tweets – if we could do this, then we would not
need the human crowd workers! However, we can build a model to label tweets
somewhat accurately, although less accurately than a human worker. Such a
model is useful because it can triage the tweets – in other words, work out if
a tweet is likely to be about an emergency situation and, if so, send it to be
labelled with high priority.

To predict the label for each tweet we can construct a classifier model. We
could use the one from Chapter 4 but instead we will use an even simpler
classifier based on the following assumption:

5 The probability that a tweet contains a particular word depends only
on the true label of the tweet.

To model this assumption, we will need a variable to represent an observed
word in a tweet. To represent a word, we assume that we have a vocabulary of
all words that we want to represent. Then, a word in a tweet will be represented
as an index into this vocabulary – 0 for the first word in the vocabulary, 1 for
the second, and so on. We will use a variable called word to represent each
word and put it inside a plate across the words in a tweet and also inside the
existing tweets plate, since there are different words in each tweet.

We will also need a variable probWords to hold the probability of each
word. Since we need a word probability for each possible true label, probWords
needs to lie in a plate across the labels. Figure 7.20 shows the resulting model
which includes these two variables and connects them to the trueLabel vari-
able. This model is a kind of naive Bayes classifier since it assumes that
the probability of each word does not depend on the presence or absence of
other words in the tweet. This is not a particularly good assumption to make
about words since certain words often occur together, such as in phrases. We
will work with it for now and then discuss how it could be improved later.

Harnessing the Crowd ■ 371

k : labels

tweets

words

k

word

probWords

trueLabel

Dirichlet

Discrete

FIGURE 7.20: A model of the words in each tweet, where the probability of a
word being included in a tweet depends only on the true label of that tweet.

Gold labels are
rare!

An important question is: what data should we use to train this
model? We could use the gold labels, but there are relatively few tweets
with gold labels. Training our classifier only on tweets with gold labels
would mean ignoring most of the tweets. But we would like to be able
to train on all of the tweets!

Our community model gives us inferred labels for all tweets, whether
or not they have gold labels. If we could use this inferred label from
this model, we could train our classifier on all of the tweets. To achieve
this, we can embed the words model of Figure 7.20 inside our existing
community model, and share the trueLabel variable between them –
making one unified model. The resulting combined model is shown in
Figure 7.21.

372 ■ Model-Based Machine Learning

k : labels

tweets

words

k

c : communities

k : labels

workers

c

k

workerLabel word

probLabelprobCommunity

probWords

community trueLabel

probWorkerLabel

Dirichlet(1,1,1,1)Dirichlet(1,1,1)

Dirichlet

Discrete

Discrete

Dirichlet

Discrete

Discrete

FIGURE 7.21: Our combined model, which infers the tweet labels by using
information both from the crowd worker judgements and from the words in
the tweet.

7.5.1 Results with words

Because our combined model can use inferred labels for training, we are
able to train it on all 20,000 tweets in our training set. We use a vocabulary
consisting of all words that occur at least 10 times in this training set, to ensure
there is a reasonable amount of data for each word. To see how well our model
works for triage, we then apply it to the validation set, but without supplying
any worker labels. Unlike earlier models, this model can provide meaningful
predictions without any worker labels, by making use of the words in each
tweet. The resulting predictions have an accuracy of 66.5%. As expected,
this is much lower than the accuracy of 92.5% we achieved when making use
of worker labels. Nonetheless, it may still be useful for triaging tweets. To
explore how useful it can be, let’s take a look at the confusion matrix, shown
in Figure 7.22.

Harnessing the Crowd ■ 373

Nega�ve

(Inferred True)

Neutral (Inferred

True)

Posi�ve

(Inferred True)

Unrelated

(Inferred True)

Nega�ve (True) 75.6% 1.9% 10.3% 12.2%

Neutral (True) 17.1% 51.2% 5.3% 26.5%

Posi�ve (True) 17.9% 0.7% 66.9% 14.5%

Unrelated (True) 18.9% 4.7% 4.7% 71.7%

FIGURE 7.22: Confusion matrix for our words-only model.

The confusion matrix shows that our accuracy differs for different types of
tweet. For example, the accuracy at predicting the label of Negative tweets is
much higher than for Neutral tweets. Suppose we wanted to detect Negative
tweets urgently, as we would for emergency tweets in a crisis situation. If we
prioritise tweets that our words model infers to be Negative, then three times
out of four the crowd workers will confirm this tentative labelling – showing
that our model could provide a pretty useful form of triage.

It is informative to explore how our words model is making its predictions.
One way to do this is to look at the posterior distribution over probWords

for a label. Specifically, we are interested in words that are more common for
tweets with a particular label than for tweets in general. To find such words,
we can compute the ratio of the probability of each word in probLabel to the
probability of the word in the dataset as a whole. Table 7.5 shows the ten
words with the highest such ratio for each of the four labels.

Nega�ve Neutral Posi�ve Unrelated

its {number}f beau�ful patrol

outside {number}mph nice check

hot f perfect snow

f*** pm enjoy video

cold wind loving song

it feels great you

i mph enjoying blizzard

freezing humidity love white

hell severe finally she

d*** cdt gorgeous via

TABLE 7.5: For each label, the ten words with the highest probability in
tweets of that label, relative to their probability in tweets in general.

The words in Table 7.5 tell a fascinating story. The Positive column is
a good place to start looking – the top words here are all words of positive

374 ■ Model-Based Machine Learning

sentiment and ‘finally’ which suggests relief at some bad weather being over
at last. But, surprisingly, words about it being ‘hot’ or ‘sunny’ do not appear
in this column. In fact, ‘hot’ instead appears in the Negative column, along
with many swear words. Interestingly, the Negative column also includes ‘I’
which indicates that people may tend to use more personal language when
complaining about the weather (“I hate the rain”) than when being positive
(“What a lovely day today”). The Neutral column has the kinds of words
that a formal weather forecasting tweet might contain, such as temperatures
and wind speeds – just what you might expect from a neutral tweet about
the weather. Finally, the Unrelated column seems to have identified words
that go with weather words in tweets that are not about the weather, such as
“Snow Patrol” (a rock band) or “Snow White”.

This table helps us to understand how our words model is making pre-
dictions and also suggests the kinds of mistakes it might make. For example,
an unrelated tweet about a ‘hot dog’ would likely lead our model to give an
incorrect prediction of Negative. An interesting exercise is to consider how
to modify Assumption 5 to address these kinds of mistakes. For example,
we could consider assumptions about the probability of words co-occurring,
such as ‘hot’ and ‘dog’ occurring together, conditioned on the true label of
the tweet.

7.5.2 Wrapping up

In this chapter, we have developed a model that can learn about the biases
of crowd workers by assigning them to communities of similar workers. The
model can then appropriately correct for worker biases to give high accuracy
labels. Where tweets are being labelled, the model can also make use of the
words in the tweet to perform triage, in order to prioritise labelling the most
important messages. Importantly, along the way we have learned that more
flexible models are not necessarily better models!

There are a number of ways in which this model could be further im-
proved. For example, the model could be extended to infer the difficulty of
labelling each tweet, somewhat like we did for quiz questions in Chapter 2.
It could also incorporate other kinds of information, such as how long it took
for the annotator to produce a label. Nonetheless, the model is already com-
petitive: Venanzi et al. [2012] used a version of this model to take part in
the CrowdScale Shared Task Challenge described at the start of the chapter.
Because the model can combine labels from the crowd workers with informa-
tion from the words in the tweet, they were able to achieve joint first place in
this challenge. What’s more, Simpson et al. [2015] compared variants of this
model with a number of crowd sourcing models and found that the model with
words was most accurate on two different, challenging data sets. So, at the
time, the model developed in this chapter really was a competitive solution
to processing crowd-sourced labels.

Even more exciting, an extension of this model by Ramchurn et al. [2015]

Harnessing the Crowd ■ 375

was actually used to analyse live streams of emergency tweets received during
environmental disasters in the Philippines – an excellent application of model-
based machine learning!

REVIEW OF CONCEPTS

naive Bayes classifier A classification model that has the label variable
as a parent variable and separate child variables for each feature value. These
classifiers are ‘naive’ because they make the assumption that each feature
value is independent given the label – this is usually a poor assumption since
feature values are often correlated with each other.

CHA PT E R 8

How to Read a Model

We’ve now created several models by piecing together the assump-
tions needed to solve a particular problem. But there is a vast
ecosystem of models and algorithms already out there that other
people have built. It would be great to make use of this work to avoid
reinventing the wheel. Can model-based machine learning help us
to pick up someone else’s model and understand what assumptions
it is making, so that we can make good use of it?

We do not want to re-invent
the wheel.

So far in the book, we’ve designed a variety of different
models in order to solve a range of real world problems. But
this isn’t the only way to apply the skills of model-based
machine learning. As well as designing models, model-based
machine learning also enables us to understand and inter-
pret models created by other people. This understanding is
useful for:

• seeing whether it makes sense to apply someone else’s
model to a particular task;

• explaining the behaviour of such a model – for exam-
ple, on a particular data item;

• diagnosing problems that arise when applying an ex-
isting model to a new problem;

• exploring how best to extend a model to encode new
assumptions or to modify existing ones.

In this chapter, we will demonstrate how to interpret
models by example – we will take a number of popular
models and show how to understand the assumptions rep-
resented in each model. We will explore what these assump-
tions mean in terms of what data and tasks each model is,
and is not, suitable for. We will also identify assumptions that limit where the

377

378 ■ Model-Based Machine Learning

model can be applied. By relaxing these assumptions, we will create extended
models which can be applied more broadly than the original.

In some cases, we will start with an algorithm rather than a model. Here,
we will first have to translate the algorithm into a corresponding model before
we can begin the process of analysis. This is also a very useful skill – as well
as allowing for analysis of the resulting model, it also allows the full range of
inference algorithms to be applied, often unlocking new capabilities that the
original algorithm lacked.

The models and algorithms that we will explore are:

• Latent Dirichlet Allocation – a model of the topics mentioned in a
set of documents;

• Decision Tree – a classification algorithm based on very different as-
sumptions to the classifier we developed in Chapter 4;

• Principal Component Analysis – an algorithm for transforming a set
of observations of correlated variables into a set of values of uncorrelated
variables, known as principal components;

• k-means clustering – a popular algorithm for discovering clusters of
related data points.

To explore our first model, Latent Dirichlet Allocation, read on. . .

How to Read a Model ■ 379

8.1 LATENT DIRICHLET ALLOCATION

LDA is a model of multiple
documents.

Latent Dirichlet Allocation (LDA) is a model of the
words in a set of documents or of other kinds of data with
similar structure, such as sets of genetic sequences or im-
ages. LDA is a kind of topic model – a model which
aims to discover the topics being written about in a set
of documents, and also annotate each piece of text with
the topics mentioned in it. This model was first developed
by Pritchard et al. [2000] in the context of population ge-
netics, and then independently rediscovered by Blei et al.
[2003] who named it LDA. The relative simplicity of the
model, along with its applicability to a broad range of data
types, has made it one of the most popular and widely used
machine learning models, particularly for analysing textual
data.

In previous chapters, we have built up a factor graph
by making a series of assumptions about the problem do-
main. In this chapter, we will reverse this process: we will
start with a factor graph and analyse it to understand the
assumptions that it is making – much as we might do for
any published model that we would like to understand. Fol-
lowing this process, we need the factor graph for LDA so that we can analyze
it. This factor graph can be found in Blei et al. [2003], a version of which is
shown in Figure 8.1.

To analyse this factor graph, we can start by exploring what each variable
is – what type it has and what the variable means in the problem domain.
It is usually easiest to start with observed variables since they correspond to
the data being processed. In this model, there is one observed variable: word.
This word variable lies in a plate over words inside a plate over document,
so the observed data is all the words in some set of documents. The type of
word is discrete (a.k.a. categorical) which here means that its value identifies a
particular word – we can think of this as the index of the word in a particular
vocabulary of words.

From the factor graph, we can see that probWord is a probability distri-
bution over the words in the vocabulary. We can also see that probWord lies
inside a plate over topics – so there is one such distribution for each topic.
Since this is the only topic-specific variable, it shows that a topic is entirely
characterised by its distribution over words. The gate structure in the middle
shows that the topic variable switches between these topic-specific distribu-
tions. Because the topic variable lies inside plates over words and documents,
we can see that this topic switching happens for each word individually. In
other words, each word has its own topic label.

Finally, probTopic is a probability distribution over topics. It lives inside

380 ■ Model-Based Machine Learning

the plate over documents, showing that each document has its own distribution
over the topics in that document.

8.1.1 Exploring the assumptions in LDA

We’ve described the factor graph of Figure 8.1 at a factual level – now let’s see
how to read off the assumptions being made in this graph. Again, let’s start
with the observed variable word. We can see from the graph that the only
parent of word that is word- or document-specific is the topic variable. So
the model is assuming that the topic is the only characteristic of the word or
document that affects the choice of word used. More precisely, the assumption
is:

1 The probability of writing a particular word depends only on the topic
being written about.

Our goal is to understand what the LDA model does and where it can be
applied. So, let’s consider situations where this assumption would and would
not hold. We could start by considering what, other than the topic, might
affect word choice – for example:

• The author – two different people are likely to use different words when
talking about the same topic;

k : topics

documents

words

k

word

probWord

probTopic

topic

Dirichlet(beta)

Dirichlet(alpha)

Discrete

Discrete

FIGURE 8.1: Factor graph for the Latent Dirichlet Allocation model.

How to Read a Model ■ 381

• The kind of document – the choice of word is also likely to vary de-
pending on the kind of document being written. For example, a technical
paper on a topic might use different words to a news article on the same
topic – and a tweet about the topic would likely use yet different words
again.

• When the document was written – use of words changes slowly
over time. Two documents about the same topic written many years
apart would be very likely to have differing distributions of words, even
if written by the same person.

• The language – writing about the same topic in different languages
would definitely lead to very different words being used!

All of these variables could cause a change to the distribution of words unre-
lated to the topic being written about. If we want our inferred topic variable
to actually correspond to the topic of the document, then we would need to
keep all such variables fixed. For example, we would want to run LDA on doc-
uments of the same kind, in the same language, written by the same author at
around the same time. The first two of these are usually quite easy to achieve.
There are many collections of documents available where all documents are
the same kind and written in the same language – for example, news arti-
cles. However, such documents collections are not usually written by a single
author and may have been written over many years. The risk of using LDA
in such cases is that the inferred topics might start to depend on the author
or time as well as the actual topic (or on some combination of these), rather
than on the topic alone.

Let’s explore some more assumptions – looking at the factor graph, we
can see that the topic and word variables sit insides a plate over the words.
This means that the process for generating the topic for each word, and for
generating the word itself, is identical for every word in the document. To
put this another way, you could re-order the words in a document and the
topics inferred for each word would remain exactly the same. There are two
underlying assumptions here:

2 Changing the order of words in a document has no affect on the topic
being talked about.

3 The topics of two words are just as likely to be the same if the words
are adjacent, as if they are far away.

Assumption 2 is a very poor assumption as a model of text. If you re-order
the words in a document then it will likely make very little sense, and should
definitely not be considered equivalent to the original document! Yet, for the
purpose of identifying topics, re-ordering may not be so bad – the relevant
question is ‘do we expect to be able to tell the topic of a word, even if we ig-
nore the surrounding words?’. In many cases, the word alone may be enough

382 ■ Model-Based Machine Learning

to clearly define the topic. An exception would be for phrases where we sev-
eral words in order have a meaning that the individual words lack. Back in
Section 7.5, we found our model trying to distinguish between tweets about
“snow” and about “snow patrol”. Distinguishing between these two topics
is going to be very sensitive to word order! LDA would struggle to provide
correct topic labels in such cases.

Assumption 3 may also be a poor assumption in practice, if the goal is to
have words reliably labelled with topics. In most documents, we may expect
entire sentences, or even entire paragraphs, to be about the same topic. But
LDA is unlikely to give the same topic label to all the words in a sentence or
paragraph, since it is making independent choices for each word. For example,
the phrase “track and field” is likely related to the topic of athletics, but the
middle word “and” by itself is not. Even if “track” and “field” were correctly
labelled, it is most likely that “and” would be inferred to have an entirely
different topic label. In practice, such neutral words like “and” often end up
assigned to a general-purpose topic, for words that are used in many contexts.
If the goal is to infer the topics of the document, rather than the topic of
individual words or sentences, then LDA can work well despite this assumption
– the overall distribution of topic labels can be usefully accurate even if the
labels for individual words are not.

Moving up to the top of the factor graph, we can consider what assump-
tions are being made about the topics overall. One assumption is:

4 The overall number of topics is known.

The size k of the topic plate is fixed and so we are assuming that this number
of topics is known. In practice, LDA is often used in an unsupervised way,
to discover topics in a set of documents. In such an application, there is no
reason to believe that the number of topics would be known. This assumption
can be sidestepped to an extent by exploring many different values of k and
seeing which is best for the intended application.

A document is unlikely to talk about both
patisserie and politics.

A more concerning assumption arises
because of the Dirichlet prior on probTopic:

5 Any pair of topics are equally likely
to be talked about in the same doc-
ument.

On the surface, Assumption 5 is a very
odd assumption. There are topics which
are very unlikely to be addressed in the
same document (such as political com-
mentary and patisserie recipes) and oth-
ers which are much more likely to be men-
tioned together (such as political commen-
tary and economic analysis). The symme-
try between topics in the Dirichlet prior

How to Read a Model ■ 383

means the LDA model treats both equally.
What’s more, with the parameter alpha fixed, the model cannot even learn
which topics are more or less common! As with many questionable choices of
prior distribution, the hope here is that the data will overwhelm the prior. In
other words, it doesn’t matter if the model assumes that all topics are equally
likely to co-occur, since the observed words will provide plenty of evidence
as to which topics are being talked about. For reasonably long documents, it
is likely that the prior would indeed be overwhelmed in this way. For shorter
documents, such as tweets, having a more carefully designed prior would likely
have a significant benefit.

In summary, our analysis of the assumptions suggest that LDA is likely
to work well for similar kinds of documents, written in the same language
and style, where the documents are not too short and not too dependent on
multi-word phrases. Such conditions apply moderately well to many common
data sets of documents, which no doubt explains why LDA is a popular model
in many such cases.

8.1.2 Extensions to LDA

As we have seen, the LDA model makes a number of assumptions which limit
either its applicability or its accuracy. Happily, the model can be extended in a
variety of ways to overcome these assumptions. For example, Assumption 5 ,
that any pair of topics are equally likely to be talked about in the same doc-
ument, arises from the choice of a Dirichlet distribution over probTopic. We
can change this assumption by changing the form of the prior. In the Corre-
lated Topic Model [Blei and Lafferty, 2006], the authors replace the Dirichlet
prior with a logistic-normal prior capable of representing correlations between
topics. The resulting model then gives much higher log-likelihood scores than
LDA when the number of topics is large, where learning the correlations be-
tween topics is going to be particularly benefitical. The learned correlations
between topics also means that topics connect to each other, forming a graph.
Such a topic graph identifies related topics, providing a useful way to browse
a set of topics, along with their associated documents.

Other extensions to LDA have been made when applying it to different
kinds of data. The computer vision community explored making use of LDA
by defining ‘documents’ to be images or regions of images and ‘words’ to
be patches of the image. Various extensions were then developed to tailor
the LDA model to make it more suitable to imaging applicatons. For exam-
ple, the Spatial Latent Dirichlet Allocation model [Wang and Grimson, 2007]
attempted to divide an image into regions (documents) containing patches
(words) of similar appearance. This model is a particularly interesting use of
LDA since it assumes that the allocation of words to documents is unknown,
and so needs to be inferred at the same as time as the topic appearances and
distributions over topics.

Over the years, there have been a variety of other extensions to LDA, each

384 ■ Model-Based Machine Learning

changing some part of the original model so as to replace or modify one of
the assumptions being made. The result is an excellent demonstration of the
modularity of probabilistic models – such models really can have pieces added,
removed or replaced to meet the requirements of the problem domain where
they are being applied.

REVIEW OF CONCEPTS

Latent Dirichlet Allocation A model of the words in a set of documents
which assumes each word has an associated topic and that each document has
an associated distribution over topics. In typical use, the topics and their dis-
tributions are inferred unsupervised given a set of documents. Latent Dirichlet
Allocation can also be applied to other kinds of data with similar structure,
such as sets of genetic sequences or images.

topic model A model which aims to discover topics in text (or other kinds
of data) and also annotate text with the topics being written about.

How to Read a Model ■ 385

yes no

P(reply)=20% P(reply)=13% P(reply)=8% P(reply)=1%

yesyes no no

On To line?

First on To line? On Cc line?

FIGURE 8.2: Decision tree for predicting whether an email will be replied to.

8.2 DECISION TREE

A decision tree is a classifier that makes use of a tree structure to make
predictions over a desired target variable. The tree starts at a root node and
then contains multiple branching points, where a binary feature is applied at
each branching point. Each ‘leaf’ of the tree contains the predictive distribu-
tion used for data items that reach that leaf. For example, Figure 8.2 shows a
decision tree which predicts whether an email will be replied to – the problem
that we explored back in Chapter 4.

To use this decision tree to make a prediction for a particular email, we
start by evaluating the top (root) feature for the email. In Figure 8.2, the first
feature is: ‘is the user is on the To line for the email?’. If the user is on the To
line, we follow the ‘yes’ path to the left, otherwise we follow the ‘no’ path to
the right. Suppose we followed the ‘yes’ path – we then get to the feature ‘is
the user first on the To line?’. Suppose the user is indeed first on the To line,
we again follow the ’yes’ path to the first leaf node. This leaf node contains a
probability of reply of 20%, so the tree predicts a 20% probability of replying
to this particular email. We will see later how these probabilities, and the
structure of the tree itself, can be learned from data.

We’d like to understand the assumptions baked into this prediction pro-
cess. Unlike for Latent Dirichlet Allocation, there is no standard factor graph
for us to analyse. A decision tree is normally described as an algorithm, rather
than as a probabilistic model. So our first challenge is to try and represent a
decision tree as a probabilistic model, by constructing a factor graph corre-
sponding to the algorithm.

8.2.1 Factor graph for a decision tree

In a decision tree, the root feature controls whether to use the left half of
the tree or the right half of the tree. Effectively it switches off the half that
is not being used. Similarly, each feature below the root can be thought of
as switching off one half of the tree below it. If we switch off half the graph

386 ■ Model-Based Machine Learning

sequentially down from the root, we end up with a single leaf node being left
switched on.

Viewing a decision tree this way, we can model its behaviour using gates.
The root feature is the selector for a pair of gates, each containing half of the
tree. The pair of gates are set up so that one is on when the root feature is
true and the other is on when the root feature is false. Within the gate for
the left-hand side of the tree, we then repeat this idea. We have a variable for
the left-hand feature controlling a pair of gates nested inside the top level gate.
Similarly, the gate for the right-hand side of the tree has another pair of gates
controlled by the right-hand feature. This construction continues recursively
down to the bottom of the tree. When a leaf is reached, we place a factor
corresponding to the predictive distribution for that leaf, such as a Bernoulli
distribution. All such leaf node factors connect to the single variable which is
being predicted.

Applying this construction to the decision tree of Figure 8.2 gives the factor
graph of Figure 8.3

In this factor graph, the feature variables are shown as observed (shaded),
since the features can be calculated from the email and so are known. The

True

True False

False

True False

onToLine

firstOnToLine onCcLine

reply

Bernoulli(0.2) Bernoulli(0.13) Bernoulli(0.08) Bernoulli(0.01)

FIGURE 8.3: Factor graph for the decision tree of Figure 8.2.

How to Read a Model ■ 387

only other variable is the unobserved reply variable that we want to make a
prediction for. The nested gates are set up so that only one of the four factor
nodes is switched on, depending on the values of the feature variables. This
switched-on factor directly provides the predictive distribution for the reply

variable.
In Figure 8.3, the leaf probabilities are fixed by the four Bernoulli factors.

If we want to learn these probabilities, we need to make them into variables, as
shown in Figure 8.4. With the leaf probabilities observed, we can apply a stan-
dard inference algorithm to this factor graph to make predictions. Conversely,
if the reply variable is observed, we can use the exact same algorithm to
learn the leaf probabilities. We could further extend the factor graph to learn
which feature to use at each branching point, by adding a gate in a plate that
switches between all possible features. Inference of the selector variable for
that gate would correspond to learning which feature to apply at that point

True

True False

False

True False

onToLine

firstOnToLine onCcLine

reply

leafProb1 leafProb2 leafProb3 leafProb4

Bernoulli Bernoulli Bernoulli Bernoulli

FIGURE 8.4: Factor graph for the decision tree of Figure 8.2 but where the
leaf probabilities have been made into random variables in the model (shown
in blue). This change allows for the leaf probabilities to be learned (at training
time) or observed (for making predictions).

388 ■ Model-Based Machine Learning

in the tree. For now though, we will limit ourselves to using the current factor
graph to analyse the assumptions that it contains.

8.2.2 What assumptions are being made?

We can use our factor graph to understand the assumptions encoded in a
decision tree classifier. It will be informative to compare these assumptions
to the ones we made when designing the classifier of Chapter 4. Since both
models make use of features of the data, they both make the core assumption
that feature values can always be calculated for any data item. But beyond
this, the two models make very different assumptions about how feature values
combine to give a predictive distribution.

In Chapter 4, the effect of changing the value of one feature was always
the same, no matter what the values of other features were (see Table 4.3).
This is not true for a decision tree – the leaf node that is reached depends on
the value of every feature in the path leading to that leaf. Changing a feature
may even do nothing at all, if the feature is not on the path from the root to
the currently switched-on leaf. In fact, given that the number of features is
usually large compared to the depth of the tree (the number of features from
the root to a leaf), changing a randomly selected feature is likely to have no
effect! The relevant assumption that the decision tree is making is:

1 The predicted probability will only change if one of a small subset of
features changes.

To explore this assumption further, consider the set of features we might
wish to use for our email prediction problem. Our small initial feature set
in Table 4.4 had six features, many of which had multiple buckets. To use
these features in a decision tree, they would have to be converted into binary
features. For example, if we created one binary feature for each bucket, we
would have around 30 binary features. When learning a decision tree, we
would need to select one of these features at each branching point. A decision
tree with depth five would have 25 − 1 = 31 branching points, each of which
would need to be assigned a feature. However, for any given email, only five
features would lie on the path from the root to the selected leaf for that
email. Changing any feature apart from those five would have no effect on the
predicted probability of reply.

It follows from Assumption 1 that the decision tree classifier completely
ignores any useful information contained in features other than those on the
selected path. Whilst we might expect a few features to dominate in making a
prediction, that does not mean we would expect other features to contain no
useful information whatsoever. The consequence of this assumption is that the
decision tree is likely less accurate than it could be, because it is not making
use of all the available information.

Now let’s suppose we change the value of a feature that is one of the few
affecting the predicted reply probability. How much do we expect the reply

How to Read a Model ■ 389

probability to change? In Table 4.3 we assumed that a change in a single
feature normally has a small effect on the reply probability, sometimes has
an intermediate effect and occasionally has a large effect. But for a decision
tree, the assumption is again very different. A change in a feature which is on
the path to the root will cause a different leaf node to switch on. This node
could have a completely different probability of reply. So for a decision tree,
the assumption would be:

2 Changing a feature value can completely change the predicted probabil-
ity.

This assumption also has significant consequences. It means that a change in
the value of a single feature can totally change the predicted probability. In
the context of reply prediction, if the email length is used as a feature, adding
a single character to the email could possibly change the leaf node reached.
This in turn would change the predicted probability of reply, potentially by a
large amount. In practice, we would want the probability to change smoothly
as the length of an email changed. This would require a very large decision
tree with many leaf nodes, so that we could transition through a series of
leaf nodes with slightly different probabilities. In addition, training such a
tree would require a great deal of data, in order to accurately learn the reply
probability for each of the tree’s many leaves.

So, both of the above assumptions are problematic in terms of making full
use of the available data and ensuring that the predicted probability changes
appropriately as feature values change. These problems are not just theoretical
– decision tree classifiers do indeed suffer from these issues in practice. The
solution to both problems is to use more than one decision tree, combined
together into a decision forest.

8.2.3 Decision forest

A forest is much better than a single tree.

A decision forest is made up of a collection
of decision trees, known as an ensemble.
Decision forests were first developed by Ho
[1995] and then later extended and popu-
larised by Breiman [2001]. Trees in a de-
cision forest are trained so as to be differ-
ent to one other – for example, by training
each tree using different subsets of features
or different subsets of the training data.
The result of such training is that each tree
will give similar, but different, predictive
distributions for the same input. To apply
the forest, we compute the predictive dis-
tribution for each individual tree, and then

390 ■ Model-Based Machine Learning

average them together. A decision forest can also be represented as a factor
graph – see Figure 8.5.

A decision forest can overcome both of the issues that arise when using
a single decision tree. The first issue, of not making full use of the data,
is addressed by including many trees in the forest. Although each tree only
makes use of a small subset of features for any data item, these are unlikely
to be the same subset from tree to tree. As long as we have sufficient trees,
then together they will likely use a large proportion of the available features
between them. Overall then the forest will be able to make use of all available
information.

Similarly, a change in the value of a single feature is now unlikely to cause
a large change in the predictive probability. This is because many of the trees
will not have this feature in the switched-on set, and so their predictive prob-
ability will remain unchanged. The few trees that do have the feature active
could completely change their predictive probabilities, but when we average
all probabilities together, the overall change is more likely be small. So, us-
ing the decision forest has the effect of smoothing the predictive distribution.
However, if there is lots of data to suggest that the probability should change
rapidly in response to changing a particular feature, then the trees will end
up using the same feature and the probability can change sharply. In practice,
use of decision forests improves both accuracy and calibration compared to
a single decision tree. The relative simplicity and interpretability of decision
forests has led to their use for a wide range of applications. To learn more
about using decision forests for a variety of machine learning tasks, take a
look at Criminisi et al. [2012].

REVIEW OF CONCEPTS

decision tree A classifier that uses a tree structure to make predictions for
a desired target variable. Each branching point in the tree is associated with
a binary feature and each leaf node of the tree is associated with a predictive
distribution. To apply the tree, we start at the root and take the left or right
path according to the value of the binary feature. This procedure is repeated
at each branching point until a leaf node is reached. The output of the classifier
is then the predictive distribution at that leaf node.

decision forest A classifier that makes use of a number of decision trees.
When making a classification, the predicted probabilities for each decision tree
are averaged together to give the prediction for the forest as a whole.

ensemble A collection of models used together to give better predictive
performance than any one of the individual models.

How to Read a Model ■ 391

t : trees

True

True False

False

True False

t

rootFeature

leftFeature rightFeature

selector

reply

treeReply

leafProb1 leafProb2 leafProb3 leafProb4

Uniform

Bernoulli Bernoulli Bernoulli Bernoulli

=

FIGURE 8.5: Factor graph for a decision forest. In this graph, a new plate du-
plicates the decision tree factor graph from Figure 8.4 to give a set of decision
trees. Since these trees may have different features, we define rootFeature to
be an array of the values of the root features for each tree – bearing in mind
that the root feature can differ from tree to tree. Similarly, leftFeature
and rightFeature are the values of the left and right features in each tree,
whatever those features actually are. To make an overall prediction, we use a
selector variable to select one tree at random, and copy its prediction. Since
selector is unobserved, at inference time this has the effect of averaging over
the predictions given by individual trees.

392 ■ Model-Based Machine Learning

8.3 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) assumes that a data set arose from
mixing together some underlying signals in different ways. PCA then attempts
to ‘un-mix’ the data, so as to recover these original signals. More precisely,
PCA is a procedure for transforming a set of observation of correlated vari-
ables into a set of uncorrelated variables called principal components.
PCA was invented back in 1901 by the mathematician Karl Pearson [Pearson,
1901] and, since that time, has been rediscovered and reformulated by numer-
ous people for a variety of applications in fields from mechanical engineering
to meteorology.

Multiple microphones will hear the same
sounds but at different volumes.

The intent of applying PCA is usually
to try to determine the underlying causes
affecting a measured data set. For exam-
ple, in speech recognition, it is important
to be able to separate the sounds from dif-
ferent sources, such as different speakers or
background sources of noise. An array of
microphones will pick up sound from each
source to a different extent, so the audio
signals reaching the microphones will likely
be correlated. To try and separate out the
individual audio signals from different sources, someone may try to use a
method like PCA, under the assumption that the individual sources are un-
correlated. Importantly, ‘uncorrelated’ in PCA means linearly uncorrelated –
whilst there will be no linear dependency between the principal components,
there may well remain a nonlinear dependency. We will see later that this def-
inition of uncorrelated has significant implications in the behaviour of PCA.

Other applications of PCA include applying it to stock market data, to
try and understand underlying causes that affect many stocks at once. PCA
has also been used to process readings from correlated sensors, such as in neu-
roscience applications when sensing neural activation. More generally, PCA
is used for visualizing high dimensional data – for example, by plotting only
the largest few principal components, which are assumed to capture the most
important aspects of the data.

8.3.1 Computing the principal components

In two dimensions, PCA can be thought of as fitting an ellipse to the data
where each axis of the ellipse represents a principal component. This idea is
illustrated in Figure 8.6.

In n > 2 dimensions, PCA can similarly be thought of as fitting an n-
dimensional ellipsoid. The process for fitting the ellipsoid is:

1. Subtract the mean of each variable from each value to centre the data
set at zero;

How to Read a Model ■ 393

2. Compute the covariance matrix of the centered data set;

3. Calculate the principal components as the eigenvectors of this covariance
matrix, as described in Bishop [2006, section 12.1].

When the number of dimensions is large, it is common for some axes of the
fitted ellipsoid to become quite small. The corresponding principal directions
have small variance and so can be collapsed without losing much information
in the original signals. In our microphone array, for example, we might hope
that collapsing directions with small variance would leave only those directions
corresponding to distinct sources of sound – that is, each individual speaker,
whilst reducing general background noise.

8.3.2 A factor graph for PCA

It is far from obvious how to construct a factor graph to get random variables
corresponding to the principal components of a set of observed data. Happily,
this task has already been done for us by Tipping and Bishop [1999], where
the authors develop a probabilistic model which achieves exactly this. The
factor graph for this model is shown in Figure 8.7. In this model, maximum
likelihood inference of the weight matrix gives the principal components of
the observed signal data.

Let’s have a look at what’s going on in this factor graph. The graph con-
tains three plates:

• The number of signals, such as the number of microphones in the
microphone array;

• The number of components, the number of principal components to
find;

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

FIGURE 8.6: A visualization of the principal components of a two dimensional
data set. If we fit an ellipse to our data, the axes of the ellipse give the
directions of the principal components, as indicated by the red arrows.

394 ■ Model-Based Machine Learning

• The number of data points, which we’ve called time since it is com-
mon for these to be measurements across time. However, they could be
any set of measurements, such as measurements of pixels in an image.

The core idea of PCA is to transform the signal dimensions into a smaller num-
ber of underlying principal component directions. We can see this in the coarse
structure of the graph – the observed signal and most variables near it live in
the signals plate, but further up the graph the variables lie in the components
plate. More specifically, we start at the top with a variable for the uncorrelated
source components which, unsurprisingly, lies in the components plate. The
weight variable is the only one in both the components and signals plates
and it is responsible for transforming between the two. The weightedSum vari-
able holds a weighted sum of components that approximately reconstructs the
centered signal. This is then ‘un-centered’ by shifting it by the mean to get
the shifted form. Finally, we add noise with variance noiseVariance to give
the observed signal. This noise accounts for differences between the recon-
struction and the actual measured signal.

In Figure 8.7, we have chosen Gaussian(0,1) priors for the uncorrelated
source components and the elements of the weight matrix. This assumes

signals

components

time

signal

mean

source

weight

weightedSum

noiseVariance

shifted

Gaussian(0,100)

Gaussian(0,1)

Gaussian(0,1)

MatrixMultiply

+

Gaussian

FIGURE 8.7: Factor graph for probabilistic principal component analysis.

How to Read a Model ■ 395

that the signals have approximately unit variance – in other words, that the
signal variation is on the order of ±1. If this is not the case, then it is common
to re-scale the signal before applying PCA – for example, to ensure it has unit
variance. Because we are using a probabilistic model, we have the option of
changing the priors instead – for example, by making the source components
have a prior matched to the observed signal. The factor graph also shows a
broad Gaussian(0,100) prior for the mean. This prior assumes that the mean
lies somewhere roughly in the range 0± 10 on each dimension. With PCA it
is common to subtract the mean – but with this model you do not have to as
long as the prior on mean is sufficiently broad to include the actual mean of
the data.

Representing PCA as a probabilistic model allows us to use standard in-
ference algorithms to infer the principal components. This can be useful in
situations where the normal algorithm cannot be applied. For example, if
there is missing data, we cannot compute the covariance matrix and so the
normal PCA algorithm cannot be used. However, in the probabilistic model,
an inference algorithm can still be run when some of the signal variables are
not observed. We can even use the inference algorithm to compute posterior
distributions over such unobserved variables to fill in missing values!

8.3.3 The assumptions built in to PCA

With the factor graph for PCA in hand, we can now read off the assumptions
being made. As before, we’ll start at the bottom with the observed signal

variable. We are assuming that this observation consists of an underlying
component coming from the shared sources (shifted) and some signal-specific
variability which we are modelling as Gaussian measurement noise. So our first
assumption is:

1 The measurement noise is Gaussian.

For some kinds of sensors, the noise really is approximately Gaussian, and
so this will be a perfectly fine assumption. The problem comes if the sensor
noise is non-Gaussian and occasionally gives large noise values, which will
show up as outliers in the data. Since the PCA model assumes that there are
no outliers, these will be assumed to be valid data points and will strongly
affect the inferred principal components. Informally, they will drag the fitted
ellipsoid toward the outlier – not a good thing!

Moving up the graph, we get to where the weightedSum is being recon-
structed by multiplying the underlying source components by the weight ma-
trix. This is where the really interesting assumptions are being made, starting
with:

2 All underlying sources affect all signals.

Elements in the weight matrix have a Gaussian(0,1) prior, which does not
encourage the elements to be zero or near-zero. As a result, we may expect

396 ■ Model-Based Machine Learning

weights to be generally non-zero and so every source will have an effect on
every signal. For our microphone array, this may be a perfectly reasonable
assumption. The microphones are close together and we might expect that
any sound source heard by one of the microphones would be audible to the
other microphones. In other settings, however, this assumption may not be so
reasonable. For example, if modelling stock prices, we might expect certain
underlying events to only affect stocks in a particular industry, but to have
almost no effect at all on stocks in other industries. The PCA model would
likely fail to capture such a localized effect.

An event may cause one stock to go up, but
another to go down.

Another assumption about the weight
matrix is:

3 Weights can be positive or negative.

In some applications, we may want the
weights to represent the degree to which
a source affects a particular signal. For ex-
ample, in a microphone array we want the
weights to represent how loud the source
signal is at each microphone. In such cases,
it only makes sense for the weights to be
positive, since there is no physical mecha-
nism for inverting the effect of the source.
When modelling stock prices, however, it is
perfectly reasonable to assume that some
underlying event has a positive effect on
some stocks and a negative effect on oth-
ers. For example, the outbreak of a pan-
demic may cause video conference stocks to rise but airline stocks to fall. The
result of incorrectly allowing negative weights is that the inferred source sig-
nals may get inverted. In addition, it introduces a symmetry in the model
which can cause problems during inference, as discussed in Section 5.3.

A related assumption is:

4 Sources can be positive or negative.

As with the previous assumption, there are applications where it makes sense
for the underlying sources to be positive or negative (such as when they are
audio signals) and applications where it does not (such as where the underly-
ing causes are events). As before, getting this assumption wrong can lead to
symmetries that make inference problematic.

We’ll look at one more assumption, which turns out to be quite critical:

5 Sources are Gaussian-distributed.

This assumption is critical in order for the model to discover uncorrelated
principal components. Because principal directions are orthogonal (at right

How to Read a Model ■ 397

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

(a) A sample data set

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

(b) Principal components

FIGURE 8.8: (a) A sample data set where the underlying signals are picked up
by different amounts in two sensors. Here, the weight matrix is non-orthogonal
and so the direction of variation of the two signals are not at right angles. (b)
Since PCA assumes Gaussian sources, it will always find principal directions
which are at right angles, even if these do not match the underlying signals
in the data.

angles to each other), this means that the rows of the weight matrix will be
orthogonal. This causes a major problem in many applications. For example,
in our microphone array we might expect the rows in the weight matrix to be
similar for nearby microphones. However, they cannot be similar if they need
to be at right angles to each other!

Figure 8.8 illustrates this problem. In this figure, data from two non-
Gaussian sources has been mixed using a non-orthogonal weight matrix, much
as might happen when two sound signals arrive at a nearby pair of micro-
phones. Figure 8.8b shows the principal components of this data set, which
are required to be at right angles to each other and so do not capture the
directions of the underlying sources. Simply put, this assumption often makes
PCA unusable – we instead have to use extensions to PCA that make different
assumptions about the sources.

8.3.4 Extensions to PCA

PCA is such a well-known and useful method that people have extended it to
fix the problems caused by each of the above assumptions. For example, to
overcome issues caused by Assumption 1 , robust PCA methods have been
developed that infer the principal components reliably, even in the presence of
outliers. Such robustness can be achieved by changing the measurement noise
to be non-Gaussian. For example, Luttinen et al. [2012] use a distribution
called a Student-t distribution to model the noise. This distribution has more
probability mass in its tails than a Gaussian distribution and so is much more
robust to outliers.

Assumption 2 is not appropriate for applications where measured signals
will be affected by only some of the underlying sources. In such cases, variants

398 ■ Model-Based Machine Learning

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

(a) PCA

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

(b) ICA

FIGURE 8.9: Illustration of the difference between PCA and ICA. (a) As we
saw in Figure 8.8, PCA will always find principal directions which are at right
angles, since it assumes Gaussian sources. (b) ICA instead allows for sources
to be non-Gaussian and so can recover the true directions of the sources.

of sparse PCA have been created which allow the weight matrix to contain
many zero elements – see, for example, Tipping [2001].

In applications where the sources and weights are known to be positive (or
zero), it is preferable to avoid Assumption 3 and Assumption 4 . Here, non-
negative matrix factorization (NMF) methods can be applied instead.
These methods constrain the weights and sources to be non-negative. For
example, NMF can be achieved by changing the priors on weight and source

to distributions that only allow non-negative values. It follows that the prior
on source must now be non-Gaussian and so Assumption 5 no longer holds,
allowing for non-orthogonal weight matrices. Indeed, NMF does lead to a
weight matrices with non-orthogonal rows.

We may want to have a non-orthogonal weight matrix without constraining
our sources to be non-negative. To achieve this we can use some form of
independent component analysis (ICA), which aims to infer latent sources
that are not just linearly uncorrelated but actually statistically independent
of each other. One way to do ICA is to change the prior over the source

variable to a suitable non-Gaussian prior, thus changing Assumption 5 . For
example, the prior can be a mixture of Gaussians, as in Chan et al. [2003].

Figure 8.9 illustrates the difference in behaviour of ICA compared to PCA.
As we saw in Figure 8.8, PCA finds principal directions at right angles (Fig-
ure 8.9a), whereas ICA discovers the underlying source directions, even though
they are not orthogonal (Figure 8.9b). For our example task of separating out
the different audio sources reaching a microphone array, ICA is clearly a better
choice than PCA.

REVIEW OF CONCEPTS

Principal component analysis A procedure for transforming a set of ob-
servations of correlated variables into a set of values of uncorrelated variables,

How to Read a Model ■ 399

known as principal components. Importantly, ‘uncorrelated’ here is linearly
uncorrelated – in other words, whilst there is no linear dependency between
the principal components, there may well remain a nonlinear dependency.

correlated variables Variables such that there is a statistical relationship
between the two variables. Generally, this could be any statistical relationship,
but most commonly, ‘correlation’ is used to refer to linear correlation – the
degree to which a pair of variables are linearly related. The difference between
general correlation and linear correlation is often a cause of confusion, since
there are many ways two variables can be correlated in the general sense,
whilst not being linearly correlated.

principal components The uncorrelated variables produced by applying
principal component analysis.

covariance matrix A matrix computed from a set of random variables
where the element in the (i, j) position is the covariance between the ith and
jth random variables.

robust PCA A variant of principal component analysis that allows for the
presence of outliers in the data.

sparse PCA A variant of principal component analysis where the weight
matrix has sparse structure – that is, contains many zero elements.

non-negative matrix factorization A method which factorizes a non-
negative matrix A into two matrices B and C, such that B and C have no
negative elements. Here ’factorizes’ means that A = BC.

independent component analysis A procedure for transforming obser-
vations of dependent variables into a set of underlying sources which are sta-
tistically independent.

400 ■ Model-Based Machine Learning

8.4 K-MEANS CLUSTERING

K-means clustering (or simply ’k-means’) is an algorithm for dividing a set
of data points into k different clusters, where each cluster is defined by the
mean of the points in the cluster. Data points are assigned to the cluster with
the closest mean. K-means clustering is a popular method for data analysis
when the goal is to identify underlying structure in a data set. The hope is that
the resulting clusters will align with some underlying structure of interest. For
example, suppose we have a medical data set where each data point consists of
a set of relevant measurements for a person. The hope would then be that k-
means clustering would result in clusters that identify useful sub-populations
of people – for example, groups of people who may respond differently to
treatment. K-means clustering has been around for a while – it was named
‘k-means’ in 1967 by James MacQueen [MacQueen, 1967], but the algorithm
itself was developed ten years earlier by Stuart Lloyd in Bell Labs [Lloyd,
1957].

We have seen an example of doing clustering before – in Section 6.5, we
used a carefully constructed model to cluster children into different sensitiza-
tion classes. In doing so, we made a number of assumptions about how the
children should be clustered together, to ensure that the resulting sensitiza-
tion classes made sense. Had we made different assumptions, the children could
have been partitioned into very different clusters. Put simply, the clusters that
you get out of a clustering method depend strongly on the assumptions under-
lying that method. This is such an important point, and one so often ignored,
that it is worth repeating:

The clusters you get out of a clustering method depend
heavily on the assumptions being made by that method.

So when performing any kind of clustering, it is crucially important to
understand what assumptions are being made. In this section, we will explore
the assumptions underlying k-means clustering. These assumptions will allow
us to understand whether clusters found using k-means will correspond well
to the underlying structure of a particular data set, or not.

8.4.1 The k-means algorithm

The standard k-means algorithm involves alternating between two steps:

• Update assignments: given the cluster means, assign each point to
the cluster with the closest mean;

• Update means: given the assignment of points to clusters, set each
cluster mean to be the mean of all points assigned to that cluster.

How to Read a Model ■ 401

X

-2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

(a) Initial random assign-
ment

X

-2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

(b) Iteration 1

X

-2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

(c) Iteration 2

X

-2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

(d) Iteration 3, 4, 5, . . .

FIGURE 8.10: Results of applying the k-means algorithm to an example data set. (a) Initially, points are
randomly assigned to two clusters (red or blue) (b) After just one iteration of k-means, the two underlying
clusters in the data are already fairly well discovered. (c) A second iteration causes some data points near the
boundary to be re-assigned to the correct underlying cluster. (d) A third iteration gives a good final assignment
of points to clusters, which is unchanged by any further iterations.

To start alternating between these steps, you need either an initial set of
means or an initial assignment of points to clusters. One common way to get
an initial set of means, is to randomly select k data points to be the starting
cluster means. Alternatively, to get an initial assignment of points, each point
can be assigned to a randomly selected cluster. This second approach is the
one we will use here.

Figure 8.10a shows some an example set of data points, where the points
have been randomly assigned to one of two clusters (red and blue). Given this
initial assignment, the first cluster centre was set to be the mean of all blue
points, and the second cluster centre to be the mean of all red points. Each
data point was then assigned to the cluster with the closest centre, giving the
result in Figure 8.10b. Already you can see that the colours are reasonably
well aligned with the underlying clusters in the data. A further iteration gives
Figure 8.10c where one data cluster is now almost entirely blue and the other
almost entirely red. One more iteration causes a single data point to change
colour, as shown in Figure 8.10d. Further iterations have no effect, since the
assignment of points to clusters does not change.

In this example, the clusters given by k-means have done a good job at
identifying the underlying structure of the data set. But will this always be the
case? To answer this question, we need to express this algorithm as a model,
so that we can uncover and analyse the assumptions made by the k-means
algorithm.

8.4.2 A model for k-means

A model for the k-means algorithm needs to have variables for:

402 ■ Model-Based Machine Learning

• the data, inside plates for the number of data points and for the number
of dimensions;

• the mean for each cluster, inside plates for the number of clusters (K)
and for the number of dimensions;

• the assignment for each data point, inside a plate across the data points.

Since we don’t know anything about the mean ahead of time, the prior
must be uniform across all real values. Similarly, since we don’t know anything
about each assignment, the prior must be uniform across the clusters. The
assignment controls which of the k means the corresponding data point comes
from – so we use it to turn on a gate connecting the kth mean to the observed
data.

The trickiest part is how to choose the factor connecting the assigned
mean to each data point. To get the same result as k-means, we need a factor
which gives higher probability to data points closer in distance to the cluster
mean. A Gaussian factor achieves this, so long as the variance is kept fixed for
all dimensions and for all clusters. Putting all this together gives the model
in Figure 8.11. This factor graph is a form of a well-known model called a
mixture of Gaussians.

To be exactly equivalent to k-means, we need the message from the gates
to the assignment variable to be a point mass (‘hard’ assignment). Applying
a probabilistic inference method such as expectation propagation results in a
message which is a distribution over the clusters (‘soft’ assignment). Although
soft assignment is generally preferable in practice, hard assignment can be
achieved by setting the variance of the Gaussian factor to be extremely small.

dimensions

k : K

points

k

data

mean variance

assignment

Uniform

Uniform

Gaussian

FIGURE 8.11: A mixture of Gaussians model which gives the same clusters as
the k-means algorithm. The variance of each Gaussian is fixed across clusters
and across dimensions of the data.

How to Read a Model ■ 403

This causes the message to assignment to collapse to a point mass. Alter-
natively, we can just re-define the inference algorithm so that the message to
assignment is defined to be a point mass at the most probable value under
the distribution message. Either approach will give results identical to that of
the k-means algorithm

8.4.3 Some hidden assumptions in k-means

The factor graph of Figure 8.11 reveals a number of assumptions hidden in-
side the k-means algorithm. For example, because the variance is outside the
plate over the clusters, the model assumes that all the clusters have the same
variance. In other words:

1 All clusters are the same size.

This assumption would not hold in a data set where the measurements vary
more in one cluster than another. In a medical data set, for example, the
weight of someone who has severe disease may fluctuate more than the weight
of someone with milder disease and this assumption would be violated.

In Figure 8.11, the variance is also outside the plate over dimensions, which
means that we assume the same amount of variability in each data dimension.
Put simply:

2 Clusters have the same extent in every direction.

This assumption would not be true in a data set where different measurements
are in different units. In a medical data set, the units of body temperature
would be different from the units of weight, and so the variation in these
measurements would be on a different scale.

We’ll look at one more assumption, corresponding to the choice of prior
over assignment variable. Because this prior is uniform, the model is assuming
that all clusters are equally probable. This can be expressed as the assumption
that:

3 Clusters have similar numbers of points assigned to them.

This assumption would not hold in a data set where the underlying variable
causing the clusters is not equally likely to choose any cluster. For example,
in a medical data set, one underlying cluster may correspond to the most
severely ill people and another to people with a milder form of the disease. If
severe cases are rare compared to mild cases then this assumption would not
hold.

8.4.4 Problems with k-means

Now that we understand the assumptions that the k-means algorithm is mak-
ing, we can construct synthetic data sets to illustrate the problems these as-
sumptions can cause. Assumption 1 is that the clusters are all the same size.

404 ■ Model-Based Machine Learning

X

0 2 4 6 8 10

0

2

4

6

8

10

(a) Synthetic data

X

0 2 4 6 8 10

0

2

4

6

8

10

(b) k-means

X

0 2 4 6 8 10

0

2

4

6

8

10

(c) Per cluster variance

FIGURE 8.12: (a) Data with different size clusters. (b) k-means does not
correctly discover the two clusters. (c) If we modify the mixture of Gaussians
model to allow a cluster variance to be learned for each cluster, then the two
clusters are correctly discovered.

So, if we make a dataset with two very different size clusters, we should expect
to see k-means having problems. Figure 8.12a shows a synthetic data set with
one large and one small cluster. If we run k-means clustering on this data set,
we get the result shown in Figure 8.12b, where k-means has failed to discover
the two clusters in the data. Instead, nearby points in the large cluster are
incorrectly assigned to the small cluster, due to this incorrect assumption.

To address this problem, we can modify the factor graph to make the
variance into a random variable, give it a suitable broad prior, and move
it inside the plate over the clusters. With this modification, we can learn a
per cluster variance and so allow clusters to be different sizes. The result of
applying this model is shown in Figure 8.12c, where the two data clusters have
now been correctly identified.

Assumption 2 is that clusters have the same extent in every direction.
So if we make a dataset with clusters that have different extents in different
directions, then we would again expect k-means to have problems. Figure 8.13a
shows such a dataset, where the two clusters have been squashed vertically.
Figure 8.13b shows the result of running k-means on this dataset. This result
is particularly bad – k-means gives two clusters separated by a diagonal line
which are not at all aligned with the actual data clusters!

How to Read a Model ■ 405

X

0 2 4 6 8 10

0

2

4

6

8

10

(a) Synthetic data

X

0 2 4 6 8 10

0

2

4

6

8

10

(b) k-means

X

0 2 4 6 8 10

0

2

4

6

8

10

(c) Per dimension variance

FIGURE 8.13: (a) Data with ‘squashed’ clusters that have different widths
in different directions. (b) k-means clustering gives poor results that do not
align with the data clusters (c) Extending the model to allow a per dimension
variance addresses the problem.

We can further modify the factor graph to address the problem, by moving
the variance variable inside the gate over the dimensions. This modification
allows the variance to be learned per dimension, as well as per cluster. Fig-
ure 8.13c shows the result of running this modified model – now the squashed
clusters in the data are correctly matched to the inferred assignments. This
modification only works because the data clusters are squashed in an axis-
aligned direction. To allow for the data to be squashed in any direction, we
would need to change the model to learn a full covariance matrix for each
cluster.

Our final assumption was that each cluster has a similar number of points
(Assumption 3). Figure 8.14a shows a synthetic data set with two identically-
sized clusters, but where the left-hand cluster has 90% of the data points. This
imbalance makes the left-hand cluster look bigger, even though its variance is
actually the same as the right-hand cluster. Because the left cluster is much
more probable than the right one, points half-way between are much more
likely to belong to the left cluster. If we look at the result of running k-means
(Figure 8.14b), then you can see that it incorrectly assigns such points to the
right-hand cluster.

We can modify our model to solve this problem by introducing a new

406 ■ Model-Based Machine Learning

X

0 2 4 6 8 10

0

2

4

6

8

10

(a) Synthetic data

X

0 2 4 6 8 10

0

2

4

6

8

10

(b) k-means

X

0 2 4 6 8 10

0

2

4

6

8

10

(c) Per cluster probability

FIGURE 8.14: (a) Two same-size clusters where the left contains 90% of the
data points. (b) k-means clustering incorrectly assigns mid-way data points
to the right-hand cluster (c) Learning the probability of a data point being in
each cluster addresses this problem.

probability vector probs, to represent the probability associated with each
cluster. This modified model gives the result shown in Figure 8.14c, where
the two data clusters are again nicely separated. Putting all of the above
modifications together gives the factor graph of Figure 8.15. This model which
makes none of these three assumptions and so has none of the associated
problems.

Even this improved model is still making assumptions about the data
which will not be true for some real data sets – for example, that the num-
ber of clusters is known or that the clusters are elliptical in shape. Further
changes could be made to address these assumptions. For example, gates could
be used to learn the number of clusters. We can continue this process of iden-
tifying assumptions and improving the model until it is sufficiently powerful
and flexible to represent the structure of the desired data set. This ability to
identify and address assumptions is the very essence of what it means to do
model-based machine learning.

How to Read a Model ■ 407

REVIEW OF CONCEPTS

K-means clustering An algorithm for dividing a set of data points into k
different clusters, where each cluster is defined by the mean of the points that
belong to it. Data points are assigned to the cluster with the closest mean.

mixture of Gaussians A well-known model where each data point is
generated by first selecting one of several Gaussian distributions and then
sampling from that distribution.

dimensions

k : K

points

k

data

mean variance

assignment

probs

UniformUniform PositiveUniform

Discrete

Gaussian

FIGURE 8.15: An improved mixture of Gaussians model which addresses
three problematic assumptions made by the k-means algorithm.

Afterword

Ten years ago, when I first started thinking about this book, machine learning
was mostly an academic study. It was primarily an intellectual exercise whose
goal was to push ahead and see what a computer could be made to learn: to
understand what tasks were within the capabilities of our current techniques
and which ones lay outside. The focus was to try and move this boundary –
to test the limits and break through, as a popular children’s song might have
it.

My goal then was to write a book to help people to understand that ma-
chine learning models and algorithms are not abstract mathematical concepts,
but mathematical descriptions of the real world. By explaining the assump-
tions hidden away in machine learning algorithms, I hoped to make them
easier to understand, both to beginners and to those with more experience.
The idea was to show by example how each choice about the structure of
the mathematical model has a real effect on the behaviour of the resulting
machine learning system.

In the intervening decade, the role of machine learning in the world has
fundamentally changed. It is no longer a purely intellectual discipline. Instead,
use of machine learning has expanded ten-fold, a hundred-fold, in a myriad
of applications across every aspect of our digital lives. Increasingly, machine
learning is affecting everything we see online, what is drawn to our attention
and what is hidden. Machine learning influences what we watch, what we listen
to, the things that we buy, even the people that we date. More worryingly,
machine learning is starting to influence who gets hired for a job, who gets
access to medical treatments, even where police get deployed and who gets
sent to jail.

Understanding how the assumptions in a machine learning model affect
its behaviour is no longer just a useful skill for developing machine learning
systems. It has become a critically important way of making sure that a ma-
chine learning system is transparent, interpretable and fair. As people’s lives
are influenced by machine-made decisions to an ever greater extent, the call
to understand the reasoning behind these systems is going to become deaf-
eningly loud. The assumptions in these systems need to be clear, transparent
and available for all to see – and made accessible through clear explanations of
each decision or prediction. Model-based machine learning is a crucial tool in
ensuring that transparency and fairness lie at the foundations of all machine
learning systems.

So, to those who are designing the next generation of machine learning

409

410 ■ Model-Based Machine Learning

systems, think carefully about every assumption you make and about every
data set you train on. Your modelling decisions are not abstract: they will
have very real effects on the lives of real people. Machine learning will affect
the lives of your family, your friends, of you yourself. Remember that if you
use gender as a variable in your model, it will likely make sexist predictions.
If you use race as a variable, your model will likely be racist. Training on data
sets which record the status quo will entrench past inequalities and propagate
them to the future. So apply your skills with thought, with care and, above
all, with empathy.

May all your assumptions be good ones.

John Winn
June 2020

Bibliography0

Bibliography Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for
large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283. USENIX
Association.

Anderson, H. R., Gupta, R., Strachan, D. P., and Limb, E. S. (2007). 50 years
of asthma: UK trends from 1955 to 2004. Thorax, 62(1):85–90.

Bai, J., Lu, F., Zhang, K., et al. (2019). ONNX: Open Neural Network Ex-
change.

Bayes, T. (1763). An Essay towards Solving a Problem in the Doctrine of
Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price,
in a Letter to John Canton, A. M. F. R. S. Philosophical Transactions,
53:370–418.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Blackstone, W. (1765). Commentaries on the laws of England.

Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In Proceedings
of the 23rd International Conference on Machine Learning, pages 113–120.
MIT Press.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3(4–5):993–1022.

Bliss, C. I. (1934). The Method of Probits. Science, 79(2037):38–39.

Breiman, L. (2001). Random Forests. Machine Learning, 45:5–32.

Chan, K., Lee, T.-W., and Sejnowski, T. (2003). Variational Bayesian Learn-
ing of ICA with Missing Data. Neural Computation, 15:1991–2011.

Criminisi, A., Shotton, J., and Konukoglu, E. (2012). Decision Forests: A
Unified Framework for Classification, Regression, Density Estimation, Man-
ifold Learning and Semi-Supervised Learning. Foundations and Trends®
in Computer Graphics and Vision, 7(2–3):81–227.

411

412 ■ Bibliography

Custovic, A., Simpson, B. M., Murray, C. S., Lowe, L., and Woodcock, A.
(2002). The national asthma campaign Manchester asthma and allergy
study. Pediatric Allergy and Immunology, 13:32–37.

Dangauthier, P., Herbrich, R., Minka, T., and Graepel, T. (2007). Trueskill
through time: Revisiting the history of chess. In Platt, J. C., Koller, D.,
Singer, Y., and Roweis, S. T., editors, NIPS, pages 931–938. Curran Asso-
ciates, Inc.

Dawid, A. P. (1982). The Well-Calibrated Bayesian. Journal of the American
Statistical Association, 77(379):605–610.

Diethe, T., Guiver, J., Zaykov, Y., Kats, D., Novikov, A., and Winn, J.
(2019). Model-Based Machine Learning book, accompanying source code.
https://github.com/dotnet/mbmlbook.

Fanta, C. H. (2009). Asthma. New England Journal of Medicine,
360(10):1002–1014. PMID: 19264689.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition
Letters, 27(8):861–874.

Frey, B. and MacKay, D. (1998). A Revolution: Belief Propagation in Graphs
With Cycles. In Proceedings of the 10th International Conference on Neural
Information Processing Systems, pages 479–485. MIT Press.

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collabo-
rative filtering to weave an information tapestry. Communications of the
ACM, 35:61–70.

Graepel, T., Lauter, K., and Naehrig, M. (2013). ML Confidential: Machine
Learning on Encrypted Data. In Kwon, T., Lee, M.-K., and Kwon, D.,
editors, Information Security and Cryptology - ICISC 2012, volume 7839 of
Lecture Notes in Computer Science, pages 1–21. Springer Berlin Heidelberg.

Harper, F. M. and Konstan, J. A. (2015). The MovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst., 5(4):1–19.

Herbrich, R., Graepel, T., and Campbell, C. (2001). Bayes Point Machines.
Journal of Machine Learning Research, 1:245–279.

Herbrich, R., Minka, T., and Graepel, T. (2007). TrueSkill(TM): A Bayesian
Skill Rating System. In Advances in Neural Information Processing Sys-
tems 20, pages 569–576. MIT Press.

Ho, T. K. (1995). Random Decision Forests. In Proceedings of the 3rd Inter-
national Conference on Document Analysis and Recognition, pages 278–282.
IEEE Computer Society.

Bibliography ■ 413

Holstein, K., Vaughan, J. W., Daumé III, H., Dud́ık, M., and Wallach, H. M.
(2019). Improving fairness in machine learning systems: What do indus-
try practitioners need? In ACM CHI Conference on Human Factors in
Computing Systems, pages 1—-16. Association for Computing Machinery.

Junker, B. W. and Sijtsma, K. (2001). Cognitive assessment models with few
assumptions, and connections with nonparametric item response theory.
Applied Psychological Measurement, 25:258–272.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American
Statistical Association, 90(430):773–795.

Kim, H.-C. and Ghahramani., Z. (2012). Bayesian classifier combination.
Journal of Machine Learning Research, 22:619–627.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet Classifica-
tion with Deep Convolutional Neural Networks. In Neural Information
Processing Systems, volume 25, pages 1097—-1105.

Kschischang, F. R., Frey, B. J., and Loeliger, H. (2001). Factor graphs and
the sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498–519.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local Computations with
Probabilities on Graphical Structures and Their Application to Expert Sys-
tems. Journal of the Royal Statistical Society, Series B, 50(2):157–224.

Lazic, N., Roberts, G., Custovic, A., Belgrave, D., Christopher Bishop, J. W.,
Curtin, J., Arshad, S. H., and Simpson, A. (2013). Multiple atopy pheno-
types and their associations with asthma: Similar findings from two birth
cohorts. Allergy, 68, No. 6:764–770.

Little, R. and Rubin, D. (2014). Statistical Analysis with Missing Data,
Second Edition. John Wiley & Sons.

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures
on Human Language Technologies, 5(1):1–167.

Lloyd, S. P. (1957). Least square quantization in PCM. Technical report, Bell
Telephone Laboratories.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS –
a Bayesian modelling framework. Statistics and Computing, 10:325–337.
MRC Biostatistics Unit. http://www.mrc-bsu.cam.ac.uk/software/bugs.

Luttinen, J., Ilin, A., and Karhunen, J. (2012). Bayesian Robust PCA of
Incomplete Data. Neural Processing Letters, 36(2):189–202.

MacKay, D. C. J. (2003). Information Theory, Inference & Learning Algo-
rithms. Cambridge University Press.

414 ■ Bibliography

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of
Multivariate Observations. In Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297. University of Cali-
fornia Press.

Maybeck, P. S. (1982). Stochastic models, estimation, and control. In Volume
2, volume 141, Part 2 of Mathematics in Science and Engineering, chapter
Chapter 12 Nonlinear estimation, pages 212–271. Elsevier.

Minka, T. (2005). Divergence Measures and Message Passing. Technical Re-
port MSR-TR-2005-173, Microsoft Research.

Minka, T., Cleven, R., and Zaykov, Y. (2018). TrueSkill 2: An improved
Bayesian skill rating system. Technical Report MSR-TR-2018-8, Microsoft.

Minka, T. and Winn, J. (2008). Gates: A graphical notation for mixture
models. Technical report, Microsoft Research.

Minka, T. andWinn, J. (2009). Gates. In Proceedings of the 21st International
Conference on Neural Information Processing Systems, page 1073–1080.
Curran Associates Inc.

Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler,
A., and Bronskill, J. (2014). Infer.NET 2.6. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

Minka, T. P. (2001). Expectation propagation for approximate Bayesian infer-
ence. In Uncertainty in Artificial Intelligence, volume 17, pages 362–369.
Morgan Kaufmann Publishers Inc.

Morrow, N., Mock, N., Papendieck, A., and Kocmich, N. (2011). Independent
Evaluation of the Ushahidi Haiti Project.

Moser, J. (2010). The Math behind TrueSkill.
http://www.moserware.com/2010/03/computing-your-skill.html.

Norheim-Hagtun, I. and Meier, P. (2010). Crowdsourcing for Crisis Mapping
in Haiti. Innovations: Technology, Governance, Globalization, 5(4):81–89.

Opper, M. (1998). A Bayesian approach to on-line learning. In Saad, D.,
editor, On-line Learning in Neural Networks, chapter A Bayesian Approach
to On-line Learning, pages 363–378. Cambridge University Press, New York,
NY, USA.

Outlook team (2008). Internal email study.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

Bibliography ■ 415

L., Bai, J., and Chintala, S. (2019). PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Patil, D. J. (2012). Data Jujitsu: The Art of Turning Data into Product.
O’Reilly Media.

Pearl, J. (1982). Reverend Bayes on Inference Engines: A Distributed Hi-
erarchical Approach. In Proceedings of the Second AAAI Conference on
Artificial Intelligence, AAAI’82, pages 133—-136. AAAI Press.

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for
evidential reasoning. In Proc. of Cognitive Science Society (CSS-7), pages
329–334.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, San Francisco.

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points
in Space. Philosophical Magazine, 2(11):559–572.

Powers, D. (2008). Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness and Correlation. Machine Learning Technolo-
gies., 2:37–63.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of popula-
tion structure using multilocus genotype data. Genetics, 155(2):945–959.

Radicati, S. and Hoang, Q. (2010). Microsoft Exchange Server and Outlook
Market Analysis, 2010-2014. Technical report, The Radicati Group, Inc.

Ramchurn, S., Dong Huynh, T., Ikuno, Y., Flann, J., Wu, F., Moreau, L.,
R. Jennings, N., Fischer, J., Jiang, W., Rodden, T., Simpson, E., Reece,
S., and Roberts, S. (2015). HAC-ER: A disaster response system based
on human-agent collectives. Journal of Artificial Intelligence Research,
1:533–541.

Simpson, A., Tan, V., Winn, J., Svensen, M., Bishop, C., Heckerman, D.,
Buchan, I., and Custovic, A. (2010). Beyond atopy: Multiple patterns of
sensitization in relation to asthma in a birth cohort study. American
Journal of Respiratory and Critical Care Medicine, 181:1200–1206.

Simpson, E., Venanzi, M., Reece, S., Kohli, P., Guiver, J., Roberts, S., and
Jennings, N. R. (2015). Language understanding in the wild: Combining
crowdsourcing and machine learning. In 24th International World Wide
Web Conference (WWW 2015), pages 992–1002. International World Wide
Web Conferences Steering Committee.

Stan Development Team (2014). Stan: A C++ Library for Probability and
Sampling, Version 2.5.0.

416 ■ Bibliography

Stern, D., Herbrich, R., and Graepel, T. (2009). Matchbox: Large Scale
Bayesian Recommendations. In Proceedings of the 18th International World
Wide Web Conference, pages 111—-120. Association for Computing Ma-
chinery.

Suermondt, H. and Cooper, G. F. (1990). Probabilistic inference in multiply
connected belief networks using loop cutsets. International Journal of
Approximate Reasoning, 4(4):283 – 306.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learn-
ing with Neural Networks. In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, pages 3104—-
3112. MIT Press.

The CALO Project (2004). Enron email data set. http://www.cs.cmu.edu/ en-
ron.

Tipping, M. E. (2001). Sparse Kernel Principal Component Analysis. In
Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural
Information Processing Systems 13, pages 633–639. MIT Press.

Tipping, M. E. and Bishop, C. (1999). Probabilistic Principal Component
Analysis. Journal of the Royal Statistical Society, Series B, 21(3):611–622.

Tufte, E. R. (1986). The Visual Display of Quantitative Information. Graph-
ics Press, Cheshire, CT, USA.

Ushahidi (2008). http://www.ushahidi.com/.

Venanzi, M., Guiver, J., Kazai, G., and Kohli, P. (2012). Bayesian Combina-
tion of Crowd-Based Tweet Sentiment Analysis Judgments. In Crowdscale
Shared Task Challenge.

Venanzi, M., Guiver, J., Kazai, G., Kohli, P., and Shokouhi, M. (2014).
Community-based Bayesian Aggregation Models for Crowdsourcing. In
Proceedings of the 23rd International Conference on World Wide Web,
WWW ’14, pages 155–164, New York, NY, USA. ACM.

Wang, X. and Grimson, E. (2007). Spatial Latent Dirichlet Allocation. In
Proceedings of the 20th International Conference on Neural Information
Processing Systems, NIPS’07, pages 1577–1584. Curran Associates Inc.

Zhang, C., Guiver, J., Minka, T., and Zaykov, Y. (2015). Groupbox: A gen-
erative model for group recommendation. Technical report, Microsoft Re-
search.

